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Abstract 13 
In situ skeletal markers have been widely used to quantify skeletal growth rates of 14 
scleractinian corals on sub-annual time-scales.  Nevertheless, an evaluation of different 15 
techniques, both in terms of their efficacy and potential impacts on the growth process 16 
itself, has not been undertaken.  Here the effects of exposure to four different dyes 17 
(alizarin, alizarin complexone, calcein, oxytetracycline) and isotope spikes (Ba and Sr) on 18 
the growth rates of scleractinian corals are compared.  Oxytetracycline increased coral 19 
growth.  Alizarin, alizarin complexone, calcein, and Sr and Ba isotope spikes had no 20 
significant effect on coral growth, but polyp extension appeared reduced during exposure 21 
to alizarin and alizarin complexone.  Calcein provided a more intense fluorescent mark 22 
than either alizarin or alizarin complexone.  Isotope spikes were challenging to locate 23 
using isotope ratio analysis techniques.  Thus, calcein appears best suited for marking 24 
short-term calcification increments in corals, while a combination of alizarin or alizarin 25 
complexone and calcein may be useful for dual labeling experiments as there is little 26 
overlap in their fluorescence spectra. 27 
 28 
 29 
 30 
 31 
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1. Introduction 33 

Mounting concern about the impacts of climate change, ocean acidification and direct 34 

anthropogenic activities on coral reef ecosystems has spurred the need for accurate and 35 

precise quantification of rates of skeletal growth of corals and other calcifying organisms, 36 

on diurnal through seasonal timescales, in both field and laboratory experiments.  The 37 

most frequently used measure of skeletal growth rate in corals is based on annual 38 

banding, high and low density couplets that together represent one year. While extremely 39 

successful and widely used (e.g. Buddemeier 1974; Macintyre and Smith 1974; Cantin et 40 

al., 2010), this technique limits measures of growth to timescales of one year or longer, 41 

and cannot resolve sub-annual growth responses that are essential for understanding 42 

calcification responses to changes in light, temperature, nutrient availability, carbonate 43 

ion concentration, photosynthesis and catastrophic events such as storms. 44 

A wide range of approaches have been developed to estimate coral growth on sub-annual 45 

timescales, including: alkalinity uptake (e.g. Smith 1973; Jacques and Pilson 1980), 46 

changes in buoyant weight (e.g. Davies 1989), and radioisotope incorporation (e.g. 47 

Tambutte et al., 1995), direct physical measurement (e.g. Cruz-Pinon et al., 2003), time 48 

lapse photography (Barnes and Crossland 1980), laser diffraction (Stromgren 1976; Vago 49 

et al., 1997), and the use of various dye, elemental, and isotope spikes.  Dye- and isotope-50 

based approaches are commonly used in a range of calcifying organisms and offer many 51 

advantages over other approaches.  In particular, dye and isotope based marks are easily 52 

implemented in field settings, can be used in-situ, offer the ability to mark large numbers 53 

of organisms at the same time, and can be used on corals of vastly different sizes – from 54 

newly settled polyps to colonies meters across.  Due to their ease of detection, dyes are 55 
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commonly used to provide a time point marker within the coral skeleton as a means of 56 

estimating coral growth or identifying skeleton deposited within a particular time interval 57 

(Barnes 1970, 1972; Gladfelter 1983; Cohen et al., 2004; Marschal et al., 2004; Raz-58 

Bahat et al., 2006; Tambutte et al., 2011; Venn et al., 2011).  However, one commonly 59 

used dye, alizarin, has been shown to negatively affect the growth of corals (Dodge et al., 60 

1984), thus alternative dyes are desirable.  Here, four dyes (alizarin, alizarin complexone, 61 

calcein, and oxytetracycline) and stable isotope spikes (commonly used to mark fish 62 

otoliths (Thorrold et al., 2002; 2006) and bones (Sun et al., 1992)) were used to mark the 63 

skeletons of corals to assess if they were effective in marking coral skeletons and if 64 

exposure to the dye impacted coral growth.  Absorption spectra for each dye in seawater 65 

are presented to assist in choosing dyes which do not absorb light in regions of the 66 

spectrum which may be of experimental interest.  Emission spectra for each dye 67 

incorporated into the skeleton are also presented to aid in choosing appropriate filter sets 68 

for imaging the dyes with fluorescence microscopy. 69 

 70 

2. Methods 71 

2.1. Dyes 72 

One of four dyes was used in each dye incubation to mark the skeleton: alizarin red S 73 

(sodium salt – Alfa Aesar 42040 lot E22R017 – referred to as alizarin throughout this 74 

manuscript), alizarin complexone (Alfa Aesar A16699 lot E8180A), calcein (Alfa Aesar 75 

L10255 lot USLF006789 - this particular lot was soluble in distilled water, suggesting it 76 

was in the form of a salt), and oxytetracycline HCl (USB 23659 lot 113648).  In addition, 77 
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isotope spikes (Ba 135 or Sr 86, purchased as carbonate salts from Oak Ridge National 78 

Lab) were used as markers in some incubations. 79 

All dyes and isotope spikes were added as aliquots of stock solutions.  Spikes were mixed 80 

with sufficient HCl to dissolve the carbonate salt and made up in distilled water to make 81 

stock solutions of which 50-125 μl was used per liter of seawater. For Sr isotope spikes, 82 

50 µl of a given stock solution added to a liter of seawater doubled the concentration of 83 

that particular Sr isotope. For Ba isotope spikes, 50 µl of stock solution almost doubled 84 

the total Ba concentration.   85 

2.2. Coral maintenance 86 

Colonies of the temperate scleractinian coral Astrangia poculata were collected and 87 

processed as described by Holcomb et al. (2010), except that in addition to colonies, 88 

newly settled polyps and their associated substratum were also attached to slides.  All 89 

slides with corals were suspended vertically in a flow-through aquarium receiving filtered 90 

(20 µm) Vineyard Sound seawater.  Incoming seawater was heated in the winter, thus 91 

corals experienced a temperature range of 14-30 oC, temperatures at the time of 92 

experiments are as specified.  Aquaria were aerated to maintain water circulation.  Corals 93 

were maintained under aquarium conditions for at least one month prior to use in 94 

experiments.  A mixture of brown and white colonies (zooxanthellate and azooxanthellate 95 

colonies) each ~2-5 cm in diameter was used for all treatments.  Corals were fed 96 

regularly with newly hatched and frozen brine shrimp. 97 

For marking experiments, corals were placed in pre-washed (with fresh and seawater) 1 L 98 

PET food service containers with lids (SOLO) containing ~800 ml of water from the 99 

source aquarium. Airstones were added to each container and each container bubbled 100 
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continuously.  Containers were held within a water bath with a temperature similar to that 101 

of the source aquarium. 102 

 103 

2.3. Dyeing corals 104 

In dye experiments with A. poculata (March – Oct. 2009), growth rates were estimated 105 

via alkalinity depletion measurements the day before (pre-treatment), the day of 106 

(treatment), and the day after (post-treatment) dye exposure.  All alkalinity incubations 107 

were ~24 hrs in duration, covering a full light-dark cycle.  The temperature range was 25-108 

26 oC.   For each treatment 4-7 corals were used, each in an individual incubation 109 

container.  At the same time as dye treatments, additional corals not exposed to dye were 110 

also measured to control for day-to-day variations in growth.  Incubations were carried 111 

out in 1 L PET food service containers: ~800 ml (actual amount weighed to 0.01 g) of 112 

water from the source tank was added to each container, and a coral added.  Containers 113 

with no coral added were used to estimate background changes in alkalinity. Irradiance 114 

(PAR – measured with a diving-PAM underwater quantum sensor (WALZ)) ranged from 115 

10-40 μmol photons/m2/s with a 12 hr light dark cycle (white colonies were incubated 116 

under the lower end of the range of light levels, brown colonies under the higher light 117 

levels – a similar light gradient was present in the source tank due to different corals 118 

being at different distances from the light bulbs or being closer to the ends of the light 119 

bulbs which produce less light than the center).  Light was provided by two T5-HO bulbs 120 

(10000 K, 54 w).  121 

Alkalinity samples were taken from each container ~1 hr after the corals had been added 122 

and again at the end of the incubation.  Waiting 1 hr after the addition of the coral to take 123 
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the first sample was intended to allow the coral to recover from any handling stress and 124 

thus avoid capturing any temporary changes in calcification.  Salinity (Hach conductivity 125 

probe – read to 0.1, accurate to ~1) and pH (NBS scale, Thermo-Orion ROSS 126 

8165BNWP electrode, read to 0.1 mV) were measured at the end of each incubation for 127 

every container, as well as at the start of incubations for a subset of the containers. 128 

Aragonite deposition was assumed to be the only process affecting alkalinity, with 2 mol 129 

alkalinity consumed per mol of CaCO3 deposited.  This may under-estimate calcification 130 

as any ammonia released by the coral will increase the alkalinity of the solution (e.g. 131 

Jacques and Pilson 1980). Alkalinity depletion rates were corrected for evaporation 132 

(based on the change in container mass), and for background rates measured in containers 133 

containing no slides. Background alkalinity consumption rates were invariably low, with 134 

the highest rates being <10% of coral rates. 135 

Final dye concentrations were as follows:  2.7-3.2 mg/kg alizarin (added as ~0.2 ml of 136 

stock solution/L, pH not adjusted, but pH declined <0.01 upon dye addition), 8.6-8.8 137 

mg/kg alizarin complexone (added as ~1 ml of stock solution/L with sufficient NaOH to 138 

dissolve, pH declined ~0.03 upon dye addition), 9.5-10 mg/kg calcein (added as ~0.8 ml 139 

of stock solution/L, pH of the stock solution was not adjusted, thus pH declined ~0.03 140 

upon dye addition), 24-26 mg/kg oxytetracycline (added as ~0.3 ml/L of stock 141 

suspension, pH adjusted with NaOH, no measureable pH change upon addition). 142 

 143 

2.4. Isotope spikes 144 

Marking corals with isotope spikes was carried out as a part of long term growth 145 

experiments (see Holcomb et al. 2010, 2012); data from control corals included in those 146 
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experiments are presented here.  Isotope experiments were carried out using two different 147 

isotopes, 86Sr and 135Ba, with 6-16 corals for each treatment.  Marking with 86Sr was 148 

carried out in much the same manner as used for dye experiments, with 60 µl of an 86Sr 149 

solution added to ~800 ml seawater and corals incubated for two days.  Growth was 150 

estimated from changes in buoyant weight (per Holcomb et al., 2010) for the 5 months 151 

prior to and the month following the isotope spike.  Corals were held at one of two 152 

temperatures - ~19 or ~26oC throughout that six month period.   153 

Spikes with 135Ba were carried out in a flow-through aquarium system as used by 154 

Holcomb et al. (2012).  Each reservoir used to supply water to individual aquaria was 155 

spiked with 81 µl 135Ba solution/L seawater.  Individual aquaria received spiked seawater 156 

for a period of two days: unspiked seawater was then added to the reservoir, diluting the 157 

spike ~80%, and each subsequent day the remaining spike was diluted by an additional 158 

~60%.  Buoyant weights were measured for the two months prior and one month 159 

following isotope exposure using a Sartorius G803S balance, aquaria were held at either 160 

16 or 24 oC throughout this period.  161 

  162 

2.5. Alkalinity 163 

Alkalinity samples were taken in pre-cleaned glass or plastic scintillation vials with screw 164 

top lids and foamed polyethylene liners (Wheaton).  Samples were stored refrigerated for 165 

no more than 1 month prior to measurement.  Alkalinities were measured via titration 166 

with 0.01 N HCl containing 40.7 g NaCl/L using a  Metrohm Titrando 808 dosimat and 167 

730 Sample Changer controlled by Tiamo software to perform automated normalized 168 

Gran titrations of 1 ml samples. Duplicate samples were run and additional replicates run 169 
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if measured values differed by more than 4 μmol/kg.  Certified seawater reference 170 

material supplied by the lab of Andrew Dickson (Scripps Institution of Oceanography) 171 

was run each time samples were run. 172 

 173 

2.6. Spectra 174 

2.6.1. Absorbance spectra 175 

To estimate the potential effect of the presence of the dye on the light spectra received by 176 

the coral, the absorbance spectra of each dye in seawater was measured using an Ocean 177 

Optics USB4000 spectrophotometer configured for measuring the visible spectrum with a 178 

blue filtered (SCHOTT glass BG-34 filter) tungsten light source (LS-1) and a 1 cm 179 

cuvette.  In addition to the dyes used for the coral experiments, the absorption spectra 180 

were also measured for other lots of calcein (from Alfa Aesar, Invitrogen, and Sigma) 181 

and oxytetracycline (Acros).  Different lots of calcein were found to be highly variable in 182 

their appearance and solubility – some being readily soluble in distilled water, while 183 

others requiring addition of NaOH to dissolve.  Even when purchased as a sodium salt, 184 

not all lots were soluble in distilled water.  Thus when preparing calcein stock solutions 185 

the manner of preparation will depend greatly on the lot of calcein used.  It may be 186 

possible to make up the solution directly in water, or it may require the use of a base, 187 

such as NaOH or NaHCO3 (per Wilson et al., 1987) to solubilize the calcein; it is 188 

advisable to check the pH of calcein stock solutions and adjust as needed before use. 189 

 190 

2.6.2. Emission spectra 191 
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A Leica TCS SP5 confocal microscope at the Centre Scientifique de Monaco was used to 192 

measure the emission spectra of each dye incorporated into the coral skeleton.  Polished 193 

sections of dyed coral skeletons were prepared using standard methods with water or 194 

mineral oil used to suspend polishing compounds (e.g. Holcomb et al., 2009).  195 

Fluorescence was excited using one of three lasers: a 543 nm He/Ne laser, a 488 nm Ar 196 

laser, or a 405 nm diode laser.  The resulting fluorescence spectra were captured with the 197 

confocal microscope.   198 

 199 

2.7. Statistics   200 

All data for dye comparisons were expressed as relative growth rates - the ratio of the 201 

post treatment growth rate to the pretreatment growth rate - for statistical and plotting 202 

purposes (see Holcomb et al., 2012 for discussion of this normalization approach).  203 

treatmentpretime
treatmentpremass
treatmentposttime
treatmentpostmass

growthrelative

∆
∆
∆
∆

=  204 

Rates were further corrected for day to day changes in calcification by dividing by the 205 

average relative growth rate of untreated corals run at the same time.  Similar patterns 206 

were observed for both brown and white colonies, thus data were pooled. 207 

Differences among treatments were detected using a Kruskal-Wallis test (Systat 9), and if 208 

warranted, nonparametric multiple comparisons were performed to compare treatments to 209 

controls per Zar (1984).  For isotope treatments at different temperatures (Fig. 2), growth 210 

rates were normalized to starting mass; a sign test (Zar 1984) was used to test whether the 211 

post isotope treatment growth rate differed from the pre-treatment rate at each 212 

temperature.   213 
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 214 

3. Results 215 

All dyes used gave detectable marks in the skeleton and all corals survived exposure.   216 

Growth rates of A. poculata were reduced during exposure to all dye treatments except 217 

oxytetracycline; rates during exposure were 84%, 77% and 70% of initial rates for 218 

alizarin, alizarin complexone and calcein respectively (Fig. 1).  Growth rates during 219 

oxytetracycline treatment were higher (114%) than initial rates.  Following dye exposure, 220 

growth rates returned to near pre-treatment rates – 99%, 125%, and 115% of initial rates 221 

for alizarin, alizarin complexone and calcein respectively.  Growth rates following 222 

oxytetracycline exposure, however, were significantly (p<0.01) higher (168%) than 223 

pretreatment rates.  Exposure to isotope spikes had no measurable effect on coral growth 224 

(Fig. 2) 225 

Absorption spectra (Fig. 3) measured in seawater showed peak absorbances for 226 

oxytetracycline at ~380 nm, calcein at ~486 nm, alizarin at ~540 nm, and alizarin 227 

complexone at ~550 nm.  Different lots of calcein and oxytetracycline had similar 228 

spectra, despite differences in solubility and appearance. 229 

Emission spectra (Fig 4) of dyes incorporated into coral skeletons showed peaks at ~550 230 

nm for oxytetracycline when excited at 405 nm, ~520 nm for calcein when excited at 488 231 

nm, ~610 nm for alizarin and ~630 nm for alizarin complexone when excited at 543 nm. 232 

  233 

4. Discussion   234 

All dyes employed in this study proved effective in marking coral skeletons.  However, 235 

consistent with previous reports of alizarin negatively affecting growth (Dodge et al., 236 
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1984), growth rates tended to be slightly lower following exposure to alizarin (Fig 1), 237 

and, though not quantified, polyps appeared less expanded during exposure to alizarin.  238 

Oxytetracycline significantly increased coral growth rates (Fig. 1C).  Though it is not 239 

known why oxytetracycline increases growth rates, corals, such as Astrangia poculata, 240 

are often host to a wide range of endolithic organisms which erode the skeleton from 241 

within (e.g. Tribollet et al., 2009).  Oxytetracycline may negatively impact some of the 242 

boring organisms and thus could decrease dissolution rates, thereby increasing net 243 

calcification.  Calcein, alizarin complexone and isotope spikes had no measurable effect 244 

(Fig. 1,2), and for calcein and isotope spikes, there was no apparent difference in polyp 245 

behavior during exposure. 246 

 247 

Isotopes 248 

A few studies have used stable isotope markers in calcium carbonates (Thorrold et al., 249 

2006; Houlbreque et al., 2008; Holcomb et al., 2009; Ries et al., 2010), but this approach 250 

is not common due both to the expense of the spikes and to the difficulty of detecting the 251 

spikes once in the skeleton, which generally requires specialized instruments such as 252 

secondary ion or laser ablation mass spectrometers.  In principle, however isotope based 253 

techniques for marking coral skeletons offer several advantages.  The use of isotopes with 254 

low natural abundances can allow a relatively small change in the concentration of a 255 

given element to yield a large change in the isotopic composition.  Isotope spikes had no 256 

measurable effect on coral growth (Fig. 2), and since the elements used occur naturally in 257 

the skeleton and surrounding seawater, a small change in their concentration would not 258 

be expected to affect growth.  Radio-isotopes have been used (Bonham 1965; Knutson et 259 
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al., 1972; Marshall and Wright 1998) and the detection means are relatively accessible.  260 

However, the risks associated with artificially spiking corals with radioisotopes, and 261 

regulatory concerns, may make their use undesirable.  The use of stable isotopes avoids 262 

these problems, and, since there are multiple stable isotopes available for many of the 263 

elements found in coral skeletons, it is possible to introduce distinct isotopic markers at 264 

different time points.  Our results suggest that even with specialized instrumentation, 265 

dyes are still more convenient than stable isotopes for mapping calcification at high 266 

spatial resolution over large areas of the skeleton (see supplementary figures).  267 

Depending on which salt is purchased (e.g. carbonate or chloride), isotope spikes may 268 

require dissolution in acid and pH adjustment prior to use.  269 

 270 

Dyes 271 

Dye based methods have the potential to change growth due to the introduction of a 272 

foreign substance (e.g. Ibsen and Birkedal 2010), and due to their inherent absorption of 273 

light, they will change the light spectrum (Fig 3) received by the coral during the 274 

incubation, potentially affecting growth (e.g. Kinzie et al., 1984).  Dyes have the 275 

potential to have long-term effects on the reflected light spectrum and thus may alter an 276 

important source of light for photosynthesis (e.g. Falkowski et al., 1990; Kuhl et al., 277 

1995; Enriquez et al., 2005).  Despite their limitations, dyes also offer many advantages.  278 

A range of dyes are available, so it is possible to introduce multiple time markers, and the 279 

dyes are all visualized with widely available techniques – visible light (alizarin, alizarin 280 

complexone) or fluorescence (alizarin, alizarin complexone, calcein, oxytetracycline) 281 
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microscopy (see supplemental figures 1,2), and dye methods require relatively little 282 

specimen preparation. 283 

 284 

Alizarin 285 

 Alizarin has a long history of use for marking coral skeletons and has been used 286 

on a wide range of species (e.g. Barnes 1970, 1972; Cohen et al., 2004; Trotter et al., 287 

2011).  Alizarin is readily available as a sodium salt making solution preparation simple 288 

and reducing the need for pH adjustment.  We have used various lots of alizarin and the 289 

dye appears fairly consistent lot to lot.  The pink color of alizarin incorporated into the 290 

skeleton is readily distinguished from the unstained skeleton under visible light.  Alizarin 291 

can be detected with fluorescence microscopy too, and its absorption and emission 292 

spectra are sufficiently different from those of calcein and oxytetracycline that it can 293 

potentially be used for dual labeling experiments.  The pink-purple color of water 294 

containing alizarin allows its presence to be readily verified.  295 

Unfortunately, alizarin can also negatively impact the growth of corals (e.g. Dodge et al., 296 

1984).  Our own observations suggest that 12 hr exposures to 10 mg alizarin/L seawater 297 

can kill some species of corals and reduce polyp extension in other species yet have no 298 

effect on still others (we have since used <5 mg alizarin/L seawater and at this dye 299 

concentration have not observed any mortalities for a range of species).  Alizarin will 300 

precipitate out of seawater if present at high concentrations (Barnes 1972), thus when 301 

adding concentrated stock solutions the seawater must be vigorously mixed to prevent the 302 

formation of precipitates. 303 

 304 
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Alizarin complexone 305 

  Alizarin complexone is similar in many respects to alizarin, with the advantage that it 306 

has not been found to reduce the growth of any coral species, although our results suggest 307 

it may reduce polyp extension in Astrangia poculata.  Unfortunately, alizarin 308 

complexone is not as easy to distinguish from unmarked skeleton using transmitted light 309 

microscopy – the purple coloration of alizarin complexone provides nowhere near the 310 

contrast of alizarin.  However, it can be seen readily with fluorescence microscopy (see 311 

supplementary materials), with a spectrum similar to that of alizarin. We have only used a 312 

single lot of alizarin complexone; for that lot a base must be used to get the alizarin 313 

complexone into solution, and pH adjustment is advisable. 314 

 315 

Calcein 316 

Calcein does not appear to affect coral growth and has been recommended over alizarin 317 

and Sr marking for some shellfish species (Riascos et al., 2007; Herrmann et al., 2009), 318 

though it may affect the growth of some organisms (Thebault et al., 2006).  The effect of 319 

calcein on the incorporation of Sr and Mg into calcite has been investigated, and it has 320 

been found not to significantly affect incorporation of these elements (Dissard et al., 321 

2009).   The brilliant yellow-green color of calcein in seawater makes it easy to detect 322 

when it is present.  The formation of precipitates was not observed to be a problem, 323 

making it convenient to inject a concentrated stock solution into bags surrounding corals 324 

for field marking.  Fluorescence microscopy is required to detect calcein in the skeleton 325 

as the yellow-orange color of aragonite containing calcein is difficult to see, while the 326 

intense fluorescence of calcein is easily detected.  Unfortunately there appears to be 327 
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considerable variability between suppliers, and for certain suppliers, lot-lot variability in 328 

the composition of the material sold as calcein.  So depending upon the lot, base may be 329 

needed to dissolve the calcein or it may be readily soluble in distilled water, and pH 330 

adjustment may or may not be needed. 331 

 332 

Oxytetracycline   333 

Oxytetracycline suffers from relatively low solubility at seawater pH making preparation 334 

of concentrated stock solutions more difficult, and if used without pH adjustment, it will 335 

reduce pH.  The increase in growth observed following oxytetracycline exposure suggests 336 

that it affects the coral holobiont, and should be used with caution.  337 

 338 

Of the dyes used, calcein appears to be the most satisfactory for marking coral skeletons.  339 

Calcein had no detectable effect (negative or positive) on coral growth and no obvious 340 

effect on tissue expansion, it is readily available, and relatively soluble (in alkaline 341 

solutions).  The brilliant yellow-green color of the water following its addition makes it 342 

easy to verify it is present in field settings, and its strong fluorescence signal allows it to 343 

be easily detected.  Additionally, calcein has the potential to be used with alizarin or 344 

alizarin complexone to carry out dual marking studies. 345 

  346 
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Figure Legends 497 
 498 
Figure 1.  Relative growth rates of corals versus treatment based on changes in alkalinity 499 
depletion measured during dye exposure (A), and following dye exposure (B).  Bars 500 
represent average values for 11 untreated corals, 7 for alizarin, 4 each for alizarin 501 
complexone and calcein, and 5 for oxytetracycline.  Treatments are as follows: None = 502 
untreated control, Aliz = alizarin, AC = alizarin complexone, Cal = calcein, OTC = 503 
oxytetracycline.  Bars are means, error bars are standard deviation.  The treatment 504 
significantly (p<0.01) different from control (OTC in B) is indicated by “*”. 505 
 506 
Figure 2. Growth rates normalized to skeletal dry weight for Astrangia poculata 507 
specimens treated with isotope spikes at different temperatures.  At 26 oC and 19 oC, 508 
corals were treated with 86Sr, 16 corals were used at 26 oC, 6 at 19 oC.  At 24 oC and 16 509 
oC, corals were treated with 135Ba, 10 corals were used at 24 oC, 8 at 16 oC.  Black bars 510 
are pre-treatment rates, gray bars are post treatment rates, values are means, error bars are 511 
standard deviation.  Post-treatment growth rates did not significantly (p<0.01) differ from 512 
pre-treatment rates. 513 
 514 
Figure 3. Absorption spectra for each dye in seawater.  Alizarin (Aliz) 6.6 mg/kg, alizarin 515 
complexone (AC) 4.9 mg/kg, calcein (Cal) 8 mg/kg, and oxytetracycline (OTC) 26 516 
mg/kg. 517 
 518 
Figure 4. Fluorescence emission spectra from coral skeletons (Porites and Goniastrea) 519 
containing different dyes, as well as background spectra taken on adjacent unstained 520 
regions of the skeleton, with fluorescence excited using different wavelengths.  A. 405 521 
nm excitation. B. 488 nm excitation. C. 543 nm excitation (some spectra also include 488 522 
nm excitation).  Note, the portion of the spectra within 10 nm of the excitation 523 
wavelength(s) has been deleted for clarity.  Spectra are shown for OTC = oxytetracycline, 524 
BKG = background, taken on an unstained region of the coral, Cal = calcein, AC = 525 
alizarin complexone, CalAliz = calcein and alizarin staining the same region, Aliz = 526 
alizarin, Cal Aliz AC = calcein, alizarin, and alizarin complexone staining the same 527 
region.528 
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 529 
Figure 1.  Relative growth rates of corals versus treatment based on changes in alkalinity 530 
depletion measured during dye exposure (A), and following dye exposure (B).  Bars 531 
represent average values for 11 untreated corals, 7 for alizarin, 4 each for alizarin 532 
complexone and calcein, and 5 for oxytetracycline.  Treatments are as follows: None = 533 
untreated control, Aliz = alizarin, AC = alizarin complexone, Cal = calcein, OTC = 534 
oxytetracycline.  Bars are means, error bars are standard deviation.  The treatment 535 
significantly (p<0.01) different from control (OTC in B) is indicated by “*”. 536 

537 
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 538 
Figure 2. Growth rates normalized to skeletal dry weight for Astrangia poculata 539 
specimens treated with isotope spikes at different temperatures.  At 26 oC and 19 oC, 540 
corals were treated with 86Sr, 16 corals were used at 26 oC, 6 at 19 oC.  At 24 oC and 16 541 
oC, corals were treated with 135Ba, 10 corals were used at 24 oC, 8 at 16 oC.  Black bars 542 
are pre-treatment rates, gray bars are post treatment rates, values are means, error bars are 543 
standard deviation.  Post-treatment growth rates did not significantly (p<0.01) differ from 544 
pre-treatment rates. 545 
 546 

547 
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Figure 3. Absorption spectra for each dye in seawater.  Alizarin (Aliz) 6.6 mg/kg, alizarin 549 
complexone (AC) 4.9 mg/kg, calcein (Cal) 8 mg/kg, and oxytetracycline (OTC) 26 550 
mg/kg. 551 
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Figure 4. Fluorescence emission spectra from coral skeletons (Porites and Goniastrea) 555 
containing different dyes, as well as background spectra taken on adjacent unstained 556 
regions of the skeleton, with fluorescence excited using different wavelengths.  A. 405 557 
nm excitation. B. 488 nm excitation. C. 543 nm excitation (some spectra also include 488 558 
nm excitation).  Note, the portion of the spectra within 10 nm of the excitation 559 
wavelength(s) has been deleted for clarity.  Spectra are shown for OTC = oxytetracycline, 560 
BKG = background, taken on an unstained region of the coral, Cal = calcein, AC = 561 
alizarin complexone, CalAliz = calcein and alizarin staining the same region, Aliz = 562 
alizarin, Cal Aliz AC = calcein, alizarin, and alizarin complexone staining the same 563 
region.564 
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Supplemental Materials: Example stain lines and ion-probe tracks.  565 
 566 
Transmitted light images were acquired using a Nikon Eclipse E 600 Polarizing 567 
microscope equipped with a Spot Insight color CCD camera.  Fluorescence images were 568 
acquired using a Zeiss Axio Imager Z1 microscope with an Axiocam HR camera at the 569 
Marine Biological Laboratory Center for Microscopy or with a Leica TCS SP5 confocal 570 
microscope at the Centre Scientifique de Monaco. With the Axio Imager, calcein images 571 
were taken using a Zeiss 38HE filter set, oxytetracycline images were taken using filter 572 
set 2.  Confocal microscopy images (Fig. 2) were taken using a 543nm He/Ne laser for 573 
excitation of alizarin complexone and alizarin, calcein was excited at 488nm with an Ar 574 
laser, oxytetracycline was excited with a 405nm diode laser.  Corals were exposed to 575 
dyes for two 12 hr periods 12 hr apart, specific details regarding the times of stain 576 
addition, skeletal structures and environmental conditions will be part of a forth coming 577 
paper addressing the timing of formation of different portions of the skeleton in different 578 
species in relation to environmental parameters.   579 
An example series of ion-microprobe spots and associated isotope ratios is shown in 580 
Figure 3 (see Holcomb et al., 2009 for details on specimen preparation and 581 
measurement).  The coral shown was exposed to 84Sr for a day, which, based on dye 582 
based estimates, should lead to the formation of an 84Sr enriched band a few microns 583 
thick at a growing septal tip, however only a slight 84Sr enrichment was found, suggesting 584 
that enriched points may have corresponded to thinner septal thickening deposits.  585 
Whether the failure to detect more enriched regions was due to low growth rates in the 586 
regions chosen for measurement, or the measurement points missing the center of a 587 
labeled band is unknown, however it does illustrate the limitation of using discreet point 588 
measurements for detecting narrow, potentially heterogeneous isotopic markers in coral 589 
skeletons.   590 
 591 
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 592 
 593 
 594 
Supplementary figure 1.  Light micrographs of stained specimens.  A. Porites coral 595 
stained with alizarin imaged with transmitted light.  B. Goniastrea coral stained with 596 
calcein (fluorescence image).  C. Goniastrea coral stained with oxytetracycline 597 
(fluorescence image).  D. Coralline algae (growing adjacent to a coral) stained with 598 
alizarin (specimen not polished, imaged with a Nikon dissecting scope).  In each figure, 599 
an arrow points to the stain line. 600 
 601 

602 
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 603 
Supplementary figure 2.  Confocal microscopy images of stained specimens.  A. Porites 604 
specimen stained with calcein (green) followed by alizarin and alizarin complexone 605 
(blue).  B. Porites stained with alizarin complexone. C. Goniastrea stained with alizarin. 606 
D. Goniastrea stained with oxytetracycline.  A,B,C show overlay images of fluorescence 607 
and transmission channels, D shows fluorescence only.  Scale bars are 100 µm, except in 608 
C in which the scale bar is 25µm.   609 
 610 

611 
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 615 
Supplementary figure 3. Ion probe measurement spots (dark round dots) and associated 616 
ion probe count ratios measured in an 84Sr spiked Astrangia poculata specimen.  Isotope 617 
ratios are plotted in the same order (left to right) as the spots appear on the skeleton.  The 618 
last (ninth) spot is indicated with a red arrow. 619 
 620 
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