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ABSTRACT

A surface mooring was deployed in the Gulf Stream for 15 months to investigate the role of air–sea in-

teraction inmodewater formation and other processes. The accuracies of the near-surfacemeteorological and

oceanographic measurements are investigated. In addition, the impacts of these measurement errors on the

estimation and study of the air–sea fluxes in the Gulf Stream are discussed. Pre- and postdeployment cali-

brations together with in situ comparison between shipboard andmoored sensors supported the identification

of biases due to sensor drifts, sensor electronics, and calibration errors.A postdeployment field studywas used

to further investigate the performance of the wind sensors. The use of redundant sensor sets not only sup-

ported the filling of data gaps but also allowed an examination of the contribution of random errors. Air–sea

fluxes were also analyzed and computed from both Coupled Ocean–Atmosphere Response Experiment

(COARE) bulk parameterization and using direct covariance measurements. The basic conclusion is that the

surface buoy deployed in the Gulf Stream to support air–sea interaction research was successful, providing an

improved 15-month record of surface meteorology, upper-ocean variability, and air–sea fluxes with known

accuracies. At the same time, the coincident deployment of mean meteorological and turbulent flux sensors

proved to be a successful strategy to certify the validity of the bulk formula fluxes over the midrange of wind

speeds and to support further work to address the present shortcomings of the bulk formula methods at the

low and high wind speeds.

1. Introduction

The large air–sea heat fluxes associated with warm

western boundary currents imprint profound climate

signatures on both the atmospheric and oceanic circu-

lations (Minobe et al. 2008; Marshall et al. 2009). How-

ever, significant uncertainties about the magnitude and

variability of these fluxes have persisted (Moore and

Renfrew 2002). Renewed interest in improving the quan-

tification of the air–sea coupling in western boundary

current regions therefore triggered recent observational

programs and campaigns in the northwest Pacific region

(Kubota et al. 2008; Cronin et al. 2010; Konda et al.

2010). We discuss a recent effort to obtain accurate air–

sea flux observations in the Gulf Stream region.

In the northwest Atlantic, past attempts to observe

surface meteorology and air–sea interaction in the Gulf

Stream region include the work done during theGenesis

of Atlantic Lows Experiment (GALE) in January 1986

off the Carolinas. Bane and Osgood (1989) reported

a heat loss of 1060 W m22 during a cold-air outbreak

over the Gulf Stream. In GALE the observations were

made from existing weather buoys and additional buoys

located on the continental shelf (Blanton et al. 1989);

furthest offshore and nearest to the Gulf Stream, the

sum of the latent and sensible heat fluxes was as high as

1400 W m22 during a January cold-air outbreak. Yet,
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significant uncertainties of the air–sea exchanges in

deeper water remain, including over the core of the

warm western boundary currents. Renfrew et al. (2002)

found differences in the Labrador Sea between the mean

turbulent heat fluxes (sensible plus latent) recorded on

a research vessel over 40 days and those of the European

Centre for Medium-RangeWeather Forecasts (ECMWF)

operational analyses and the National Centers for En-

vironmental Prediction (NCEP) reanalyses of 38 and

130 W m22, respectively.

Winter buoyancy loss from the warm surface waters of

the Gulf Stream has long been believed to be a key

factor in the formation of the North Atlantic mode water

known as 188C Water (EDW). In 2005–07, the Climate

Variability and Predictability (CLIVAR) Mode Water

Dynamics Experiment (CLIMODE;Marshall et al. 2009)

was conducted to investigate the various processes re-

sponsible for water mass transformation leading to EDW

creation. Accurate air–sea measurements and turbulent

fluxes collected near the Gulf Stream were therefore

quite desirable, and we deployed a surfacemooring during

CLIMODE in the Gulf Stream region (Fig. 1). The sur-

face mooring CLIMODE F was a 2.7-m-diameter foam

hull buoy equipped with climate quality mean meteo-

rological instrumentation (Weller and Anderson 1996)

from which air–sea fluxes could be computed using the

Coupled Ocean–Atmosphere Response Experiment

(COARE) bulk formulas (Fairall et al. 1996, 2003). A

direct covariance flux system (DCFS) also provided di-

rect estimates of air–sea fluxes (Edson et al. 1998). With

these two methods available, we hoped to evaluate the

performance of the sensors as well as the bulk formulas.

A companion paper (Weller et al. 2012) reviews the de-

sign of the surface mooring, the instruments deployed on

the surface mooring, the sampling schemes used, and the

data return from the 15-month CLIMODE F deploy-

ment; it also gives an overview of the collected data.

In this paper, we focus on quantifying the uncer-

tainties associated with making these measurements in

the challenging Gulf Stream regime. Section 2 describes

the processing of the mean meteorological data, while

section 3 discusses the direct covariance (DC) air–sea

flux measurements. Section 4 focuses on the different

biases that were identified in the data—in particular, in

wind speed and direction—and then provides an anal-

ysis of the accuracy of the measurements. In section 5,

the accuracies of air–sea fluxes are quantified and the

bulk formulas and DCFS fluxes are compared. Finally,

we conclude with section 6.

2. Processing of the mean meteorological data

We discuss here the processing of the data from the

Air–Sea Interaction Meteorology (ASIMET) sensors

deployed on CLIMODE F to collect mean meteoro-

logical data. For more details on these sensors, see

Hosom et al. (1995) and Weller et al. (2012). Processing

of the meteorological and oceanographic data records

include linear correction for clock drift using pre- and

postdeployment time marks in the records (e.g., plung-

ing temperature sensors in an ice bath). All instruments

were, where possible, calibrated before deployment and

after recovery. Data from redundant sensors were com-

pared with each other and also with measurements from

ship during deployment and recovery operations. This

allowed the identification of biases and drifts. Once each

meteorological sensor record was corrected for known

drifts and biases, data from redundant mean meteoro-

logical sensors were used to fill gaps and make one final

set of mean meteorological time series (wind speed and

direction, air temperature, barometric pressure, relative

humidity, incoming shortwave radiation, incoming long-

wave radiation, and rain rate). To do this, a primary data

record was first selected from the pool of redundant

sensors, which had the least bias, the longest coverage,

and the fewest anomalous data spikes. Gaps in this pri-

mary record were then filled by data from a secondary

sensor. The criterion for accepting data from this sec-

ondary sensor was that the hourly moving average time

series be within 5% of each other. When no secondary

measurement was available to replace outliers or miss-

ing data in the primary record, a local time mean that

excluded these data points was substituted. For all var-

iables except wind speed, this local mean was an average

FIG. 1. Map of the Gulf Stream region, off the northeastern

United States. The bottom bathymetry contours are shown in

thick gray lines (200 and 1000 m). Color contours are the winter

[December–March (DJFM)] mean net air–sea heat loss from sen-

sible and latent heat from the objectively analyzed air–sea fluxes

(OAFlux; Yu et al. 2004) for the winters of 2005–07. The average

location of the north (south) wall of the Gulf Stream for the same

period is indicated with the red (green) dashed line, based on the

U.S. Navy front and eddy analysis product. The dashed black line is

the average 188C SST isotherm for the same period. The site chosen

for the mooring, 388N, 658W, is shown by the white crossed circle.
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over 60 samples (1 h), and creation of 15-month time

series for barometric pressure, incoming shortwave ra-

diation, incoming longwave radiation, relative humidity,

and air temperature was straightforward. Development

of the precipitation and wind records required addi-

tional steps.

Raw precipitation data were noisy, and the rain rate

was computed by first filtering the original accumulation

data with a 20-min moving average and then time dif-

ferencing and rejecting negative values higher than

a nominal evaporation rate. The data were interpolated

back to a 1-min sampling rate. ECMWF provided us

with hourly time series of near-surface meteorological

variables from their high-resolution forecast model

output at the model grid point (38.468N, 658W), which

was 25 (53) km northwest (north-northwest) of the

mooring for the first (second)-year deployment. The rain

gauge data comparedwell (in terms of rain events timing

and intensity) with ECMWF high-resolution forecast

model rain rates, and suspicious parts of the first year of

in situ rain data (12 December 2005–31 January 2006

and 31 April 2006–19 November 2006) were replaced

with the hourly ECMWF values linearly interpolated to

1-min resolution.

The ASIMET wind sensors were averaged and logged

at 1-min resolution. The DCFS sensors were logged at

5 Hz for 20 min out of every hour (i.e., a one-third duty

cycle); in the resulting 1-min average DCFS record, the

first and last minutes were discarded because of end

filter effects. Although the ASIMET wind sensors had

multiple failures (in their vane, compass, and propellers),

the instrument redundancy allowed for the construc-

tion of a continuous dataset until 12 September 2006,

when Tropical Storm Florence damaged the propeller

vane anemometers. From this date until the recovery in

November 2006, the 1-min wind speed record comes

from the DCFS system, linearly interpolated to 1 min

for the full hour each hour. Comparison with ECMWF

and Quick Scatterometer (QuikSCAT) data indicated

the interpolation did not introduce any additional bias.

The replacement criterion for suspicious ormissing wind

speed records was raised to 10%. The wind speed pri-

mary record was merged with the equivalent of 20 days

of data from other sensors out of the 302 days of the first-

year deployment that preceded the passage of Tropical

Storm Florence. These substitutions did not change sig-

nificantly themean and variance of wind speed compared

to the original primary record.

Wind direction measurement from the ASIMET sen-

sors was also uncertain from the time of the collision with

a ship (around 0800 UTC 19 January 2006) and sub-

sequent repair (around 1600 UTC 12 April 2006). Dur-

ing this period, the only vane measurement available

had a large offset and less variability compared to other

periods. However, by correcting the offset using the

DCFS wind data, the wind direction compared favor-

ably with both DCFS and QuikSCAT. Although crude,

this correction may be sufficient for low-frequency sig-

nals because the wind direction was the sum of the vane

and compass measurements from the anemometer. As

the buoy itself tended to be oriented facing the wind,

the anemometer vane was mostly aligned with the buoy,

such that most of the low-frequency variability was pro-

vided by the compass. The period with problematic vane

signals corresponded to a time when the buoy was north

of the Gulf Stream, when currents were weaker and the

wind was therefore acting more efficiently on the buoy

orientation. However, in infrequent cases with rapid

variations in the wind direction, or weak wind speeds,

the buoy may not have been facing the wind.

The resulting mean meteorological data were used

together with the COARE version 3.0 bulk algorithm

(Fairall et al. 1996, 2003) to compute bulk estimates of

air–sea fluxes. To support computation of the fluxes, two

Seabird 37 instruments on the buoy bridle at 0.89-m

depth provided the ocean temperature closest to the sea

surface, and the current velocity record at 10-m depth

was used as the surface current estimate when comput-

ing the wind velocity relative to the sea surface.

3. Direct covariance air–sea fluxes

Air–sea fluxes were also estimated through DC mea-

surements from the DCFS, which operated nearly con-

tinuously during the 15-month deployment. The sonic

anemometer measures horizontal and vertical veloc-

ity components that are used to calculate turbulent

velocity fluctuations after correction for platform mo-

tion. The covariance (or correlation) between the cor-

rected vertical and horizontal velocity components

provide the near-surface momentum flux or stress vec-

tor, given by

t52u0w0i2 y 0w0j , (1)

where u0, y0, and w0 are the along-wind, crosswind, and

vertical velocity fluctuations, respectively; i and j are the

along-wind and crosswind unit vectors, respectively; the

overbar denotes the mean; and prime denotes the fluc-

tuation about this mean. The instrument also measures

the sonic temperature Ts 5 T(11 0.51q), where T and q

are the ambient temperature and specific humidity, re-

spectively. This measurement closely approximates the

virtual temperature Ty 5 T(1 1 0.61q), and correlation

with the vertical velocity provides an estimate of the

buoyancy flux, given by

452 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 30



QB5 rcpaw
0T 0

y 5QH(11 0:6q)1QE0:61
cpa

Le

T , (2)

whereQH andQE are the sensible and latent heat fluxes,

respectively; r is the density of air; cpa is the specific heat

at constant pressure; and Le is the latent heat of vapor-

ization. The contribution of the sensible heat flux to the

buoyancy flux is an order of magnitude larger than that

of the latent heat flux when the magnitudes of these

fluxes are roughly equivalent.

A comparison of the momentum and buoyancy fluxes

estimates from the direct covariance method and bulk

formula method using the COARE 3.0 algorithm is

shown in Fig. 2. The buoyancy flux has been adjusted

to account for the difference between the sonic and vir-

tual temperatures using the latent heat fluxes from the

COARE algorithm. The agreement between these flux

estimates is overall very good. However, it was found

that the bulk formula method underestimated the mo-

mentum flux and overestimated the buoyancy flux under

highwind conditions. The findings are explained inmore

detail in section 5b.

4. Error analysis: Systematic biases

Errors in the meteorological mean variables have ran-

dom and systematic components, the latter being gener-

ated, for example, by a bias or drift of the instrument.

Other sources of uncertainty arise from environmental

variability, sampling resolution, and methodologies used.

For example, various atmospheric and oceanic forcing

mechanisms tilt the buoy, which can decrease the re-

sponse of propellers and enhance flow distortion. In this

section, we focus on the biases that we could identify.

During the deployment and recovery cruises, as R/V

Oceanus was stationed for 24 h near the surface moor-

ing, comparison of the shipboard and surface mooring

measurements provided information on sensor perfor-

mance. In addition, change between pre- and post-

deployment calibrations provided a means to identify

drift. However, several instruments were damaged dur-

ing either the deployment or the recovery process. This

limited the number of postrecovery calibrations. Finally,

one field test of wind sensors was conducted after the

CLIMODE field deployment, using sensors identical to

the ones used during CLIMODE in order to confirm

findings and solidify our conclusions.

a. Wind speed and direction

For wind measurements, no postcalibration was avail-

able and comparison between buoy and ship winds

proved difficult, complicating the identification of bia-

ses. Wind speed estimates from the CLIMODE F buoy

showed a discrepancy between ASIMET and DCFS

measurements; theDCFS values tended to be larger.We

found that the relative difference in wind speed between

FIG. 2. Time series of DCFS and bulk fluxes of (top) momentum and (bottom) buoyancy for

December 2006. The fluxes were derived from 20-min means computed every hour, i.e., the

DCFS was operated on a one-third duty cycle. The DC fluxes are shown in black, and the

COARE 3.0 fluxes are shown in red.
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the two sensors was a function of wind direction relative

to the buoy. This behavior has been seen in other de-

ployments with similar buoy configuration and instru-

mentation; Fig. 3 shows the relative difference in wind

speed between two identical ASIMET wind sensors

(R. M. Young with vane and propellers) as a function of

wind direction relative to the buoy. The data used in

Fig. 3 are from a different deployment (subtropical South

Pacific with very persistent southeasterly winds) that

had no DCFS and no wind sensor in the center front

location. The two R. M. Young sensors were placed on

opposite corners of the buoy front. The linear depen-

dence of the relative wind speed difference for wind

directions relative to the buoy between6508 is clear and
repeatable across other similar deployments. The pat-

tern is also almost perfectly antisymmetric with wind

direction. Therefore, we hypothesize that our wind

measurements from surface moorings are subject to

wind flow distortion, which leads to a bias of up to 5% in

wind speed. Note that the incoming wind can be oblique

with respect to the buoy because the action of the buoy

vane, which tends to align the buoy into the wind, is

counteracted by a torque created by the wind on the

asymmetric structure of the buoy’s central well that

hosts the batteries and electronics. Because of these two

opposite forces, the buoy actually tends to orient at

about 6(208–308) from the incoming wind.

In Fig. 4, we show a top-view schematic of wind in-

strumentation on CLIMODE F. For more details of the

buoy and its instrumentation, see Weller et al. (2012,

their Fig. 2). Our interpretation of the relative wind-

direction-dependent bias in wind speed is also illustrated

in this figure. In the situation depicted, the wind im-

pinges on the buoy with an angle of about 308, inter-
acting first with the front port-side corner of the buoy.

We hypothesize that the tower on the buoy deflects the

airflow, creating a divergence near the stagnation point

in the front port-side corner. The wind sensor nearest to

the divergent flow may therefore measure a low biased

wind speed. Similar to Fig. 3, data from CLIMODE F

are shown in Fig. 5, where the wind heading on the

graph’s x axis is relative to the buoy vane, positive

counterclockwise. The data were first organized in 58
bins from which the mean and standard deviation were

extracted and plotted. The wind speed relative differ-

ence is also systematically computed between the DCFS

on the starboard side of the buoy and oneASIMETwind

sensor farther on the port side (one in the center, the

FIG. 3. Wind speed relative difference between two ASIMET propeller wind sensors as

a function of wind direction relative to the buoy. ASIMET sensors are in opposite front corners

of the buoy. Data are from a surface mooring in the South Pacific (Stratus Ocean Reference

Station at 208S) and based on 1 yr of data averaged hourly. Black crosses are bin averages from

these data (108 bins) and the black dashed line is a linear fit for data with relative wind direction
between 2458 and 458.
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other on the port-side front corner). We focus here on

winds that are within 508 of the buoy (08 being aligned

with the buoy vane), because this is where most data exist.

As the incoming wind moves from starboard (negative

abscissa) to port side (positive abscissa), the wind speed

relative difference (DCFSminus ASIMET) increases. The

measurements shown here and CFD simulations (Edmond

et al. 2012) indicate that flow distortion can create up to

a 5% wind speed difference between sensors on differ-

ent sides of the buoy. The differences exhibited during

CLIMODEwere larger—up to 10%betweenDCFS and

ASIMET—so further error sources were sought.

We began by investigating the effect of vertical com-

ponents of the wind on the different sensors. The DCFS

measures wind along three orthogonal axes, which can

be used to measure the total tilt in the sonic reference

frame. This tilt is due to a combination of physical tilting

of the anemometer–platform relative to vertical and

tilting of the flow due to flow distortion. In principle, the

platform tilt is removed and theDCFSwind components

are rotated into a level reference frame after motion

correction. Any tilt remaining after motion correction

is mainly due to flow distortion by the superstructure.

Therefore, the difference between the total tilt mea-

sured by the sonic and the platform tilt measured by the

motion sensors represents the tilt in the flow due to flow

distortion.

Bin-averaged estimates of the total (squares and

lines), platform (line), and remaining (circles and lines)

tilt are shown in Fig. 6. The platform tilt is well repre-

sented by 58 pitching up of the buoy as modeled by the

broken line in Fig. 6. This was confirmed by measure-

ments, which showed a mean pitch of approximately

4.858 61.888 and a smaller roll of 0.558 60.758. The pitch
was linearly dependent on wind speed ranging from

approximately 38 at low winds to 88 at high winds.

Therefore, the mean pitch is likely due to a combination

of drag on the buoy and mooring by winds, waves, and

currents, along with a simple weight imbalance of the

sensor packages, battery packs, and other structures on

the buoy.

The tilt that remains after motion correction is posi-

tive for all relative wind directions. This is due to airflow

distortion from the buoy structure, which deflects the

incoming wind upward. For winds coming from the

starboard side (negative abscissa in Fig. 6), the tilt of

the wind at the DCFS location peaks, with values be-

tween 58 and 68. As the incoming wind rotates coun-

terclockwise, the tilt measured at the DCFS location

decreases to approximately 38 for incoming wind coming

from the port side of the buoy (positive abscissa). As

shown in the bottom panel of Fig. 5, the majority of the

relative winds (;80%) are between 6408; whereas the
motion-corrected tilts are between 48 and 58. Contrary to
the DCFS, the R. M. Young propeller–vane sensor can

measure only 2D wind. Its response function is close to

cosine for small values of the wind angle with its pro-

peller axis (less than 308). Assuming the ASIMET sen-

sor samples only the horizontal wind in a framework

similar to the DCFS, it should therefore also under-

estimate the true horizontal wind component. To quan-

tify this we first compute a linear regression of the

horizontal wind (Uh) measured by theDCFS in the tilted

frame against the horizontal wind speed computed in the

level frame. This is given by

FIG. 4. Top-view schematic of CLIMODE F surface mooring.

Only wind sensors are portrayed for simplicity. The incoming wind

tends to have an angle with the buoy front, due to asymmetry of the

buoy well. In the situation portrayed here, the wind comes from the

port side of the buoy. The thick gray lines are a hypothetical rep-

resentation of the streamlines that encounter obstacles like the

crash bar or wind tower [for more details of the buoy and its in-

strumentation, see Weller et al. (2012, their Fig. 2)]. Wind sensors

are located above this, but may still be influenced by some of the

distorted streamlines.
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Uh
DCFS

level
520:11 1:04Uh

DCFS
tilted

. (3)

We then assume the ASIMET horizontal wind speed

also underestimates the true horizontal wind speed by

the same 1.04 multiplying factor. Combining this cor-

rection with the lateral distortion shown in Fig. 3, we can

write, using h�i notation for 1-min averages,

D
UASIMET

E
ffi

D
Uh

DCFS
level

E�
12

0:11

100
wdir

�
/1:04. (4)

Equation (4) is used to correct the ASIMET wind speed

record, which decreases the relative difference with

DCFS from 10% to about 5%, as seen in Figs. 5 and 7.

The histogram in the bottom panel of Fig. 7 indicates

that a 5% difference is reachable for most situations.

In these comparisons, the wind speed data are ad-

justed to the height of the DCFS sensor using the

COARE 3 algorithm. However, compared to theDCFS,

the vertical flow is higher near the ASIMET sensors,

which are lower and therefore closer to the top of the

buoy tower. There is an indication from CFD simula-

tions (Edmond et al. 2012) that the streamlines inter-

secting the ASIMET wind sensors originate about one

foot lower upstream of the buoy, whereas the deflection

at the DCFS location is much lower. Assuming the

ASIMET samples airflow that is in fact 0.3 m lower, the

height adjustment to DCFS should increase ASIMET

wind speed values by only about 0.8%.

Which wind speed is closest to the true wind, away

from the buoy-distorted wind flow? We attempted to

answer this question with a short buoy deployment near

the Martha’s Vineyard Coastal Observatory (MVCO)

Air-Sea Interaction Tower (ASIT) in about 15 m of

water off the island in late spring of 2010. The buoy was

similar in configuration to the second deployment of

FIG. 5. (top) Wind speed relative difference (%) between DCFS and ASIMET sensors as a function of wind direction relative to buoy

vane (positive counterclockwise). The DCFS was on the buoy front starboard side. One ASIMET was on front center and the other on

front port side. Lines and symbols represent the mean values from 16-min-averaged data in 58 bins; error bars are the standard deviations

about these means. (middle) As in (top), but ASIMET wind speed is corrected for lateral distortion and vertical tilt, using Eq. (4).

(bottom) Distribution of wind speed with respect to wind direction relative to the buoy.
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CLIMODE F (e.g., ASIMET wind sensors consisted of

one 2D sonic in the center front and one vane propeller

in the port side front corner of the buoy tower) and was

located 500 m upwind of the ASIT. The observed wind

speeds were smaller than during CLIMODE, and the

buoy motion was also reduced. With less instrumen-

tation on the buoy superstructure, flow distortion may

also have been reduced compared to CLIMODE. The

buoy orientation stayed mostly about 308 to the right of

the wind, so we cannot make the same comparisons we

did for CLIMODE because we do not have the same

range of relative wind directions. Wind direction on the

buoy was on average about 58 off the ASIT estimate but

this bias is not significant since the accuracy of the com-

passes is also about 58. As for wind speed, in the range

observed during CLIMODE MV (0 to 14 m s21), esti-

mates from ASIT are slightly lower than the buoy DCFS

(2%) which itself is higher than the ASIMET buoy pro-

peller vane (5%) and 2D sonic (1%). These differences

are quite small (i.e., never exceeding 5%) and compara-

ble to the sensors’ accuracies. It is therefore reassuring

that wind speed measurements on the buoy are reason-

ably close to the real wind, at least in the speed range

mentioned above.

Flow distortion is believed to be the major source of

error in wind speed. Our observations show that up to

5% relative error in wind speed can exist between two

identical sensors, with the low biased sensor being closer

to the zone where the incoming airflow first impinges

on the buoy structure. This result is qualitatively and

quantitatively consistent with computational fluid dy-

namics (CFD) simulations (Edmond et al. 2012) that

also show that at the location of the low biased in-

strument, the 3D wind speed is similar to the undis-

turbed airflow but that the horizontal component is

slightly lower. Vertical tilt of airflow, partly due to buoy

tilt and to vertical airflow distortion, tends to produce

underestimates of wind speed when measured by 2D

wind sensors like the ASIMET ones used here. This low

bias compensates in part for the lateral acceleration.

Therefore, we think that ASIMET wind speeds pre-

sented in this work are 0%–5% lower than the undis-

turbed wind speed. For high wind speeds, the low bias in

the 2D wind from ASIMET may increase. The motion-

corrected DCFS wind speed measurement is probably

closer to the true wind, although it may have a small high

bias. We saw that an empirical correction, dependent on

wind speed and wind direction relative to the buoy,

FIG. 6.DCFSwind vertical tilt (degrees) vs relative wind direction (where 08 is head on) using
18-min averages. The lines represent the total tilt, platform tilt, and remaining vertical tilt after

rotation into the local vertical frame of reference as labeled. The remaining tilt is assumed to be

a result of flow distortion. The symbols represent the means computed in 158 relative wind

direction bins, and the error bars are the standard deviations about these means.
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could be used to adjust the 2D ASIMET wind speed

closer to the DCFS value and therefore the undisturbed

wind. To be conservative, our error is therefore less than

5% for winds less than 15 m s21 and below 10% for

stronger winds (Fig. 7). A 10% error for the whole wind

speed range is probably a worst-case scenario.

b. Other meteorological data

Based on comparisons between shipboard and surface

mooring measurements during the recovery cruise, as

well as postrecovery calibrations, we identified end-

of-deployment offsets in some of the ASIMET data.

Experience suggests ASIMET sensors drift linearly with

time. We therefore applied an empirical linear drift that

matched the final offsets. Colbo and Weller (2009) dis-

cuss in detail the errors that are typical in ASIMET

measurements, although in less dynamic environmental

conditions (subtropics).

We estimated a dry linear drift in relative humidity

(RH) of20.0026% day21 and cold-air temperature drift

of23.43 1024 8C day21. After a year, these drifts would

induce offsets of 20.96% and 20.128C, respectively.
Barometric pressure had a drift of 2.97 3 1024 hPa

day21. Small offsets in the incoming longwave radiation

sensors were encountered that were caused by insta-

bilities of the thermopile voltage amplifier. Based on

cross-sensor comparison, we estimated the typical error

from this source to be within 8 W m22, with slightly

higher values in the winter. In our final dataset, in-

coming longwave radiation values were increased by

15.18 W m22 to agree with R/VOceanusmeasurements

at recovery and for consistency with postdeployment

calibrations. As we saw earlier, the buoy and therefore

the radiometers were tilted, which induces discrepancies

with the amount of radiated energy compared to a hor-

izontal surface. The in situmeasurement of precipitation

is underestimated because of the undercatch of falling

raindrops caused by flow distortion above the rain

gauge. The undercatch depends strongly on wind speed

but also possibly on rain rate or drop size. For daily

values, estimates of 20% undercatch have been pro-

posed (Yang et al. 1998; Serra et al. 2001; Serra and

FIG. 7. Relative wind speed difference betweenDCFS (horizontal component in level reference frame) andASIMET, based on 16-min-

averaged data as a function of wind speed. One ASIMETwas in the center front, and the other was in a port-side front corner of the buoy.

The DCFS was in the front starboard corner. (top) Raw data. (middle) ASIMET corrected [Eq. (4)] for lateral distortion and vertical tilt.

(bottom) Histogram of the relative wind speed difference with respect to wind speed.
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McPhaden 2003). Our data indicate that many observed

rain events also corresponded to periods of high winds

(warm and cold fronts ahead of low pressure atmospheric

systems) and were short lived (less than a few hours), so

that undercatch may be even more pronounced on these

short time scales. Table 1 reviews some of these biases.

The bulk SST measured under the buoy may actually

be more characteristic of water parcels closer to the air–

sea interface, because of the downward deflection of the

flow past the buoy hull. Thus, a high bias may exist in our

SSTmeasurement, but it is most probably very small due

to the sustained high winds observed in the Gulf Stream

region. Similarly, the cool skin correction was not di-

rectly measured during CLIMODE, but the parame-

terization included in the COARE 3 algorithm gave

estimates with values up to 0.78C during high heat loss

events in winter. Similarly, we expect the current mea-

surement at 10-m depth to be different from the actual

interface value. Using the DCFS motion package, esti-

mates of significant wave height were obtained that were

linearly related to wind speed (Hsig 5 0.18Uair). This

linear fit is quite close to a Joint North Sea Wave Pro-

ject (JONSWAP1) estimate with 125-km wind fetch

(not shown). Given that at 10-m depth, wind wave or-

bital velocities decrease at a rate of 0.5 m s21 per meter

of wave amplitude (half the wave height), we infer that

surface velocities may be 0.045Uair higher than the

measured value from the current meter.

c. Subsurface data

The main source of biases in the subsurface temper-

ature data stems from the tilt of the mooring line, which

makes the actual depths of the sensors shallower than

their nominal depth (distance along the mooring line).

Strong currents and drag on the mooring line and in-

struments caused this tilt. The two Nortek Aquadopp

acoustic Doppler current meters recorded current ve-

locities at 10- and 20-m depths, as well as instrument

tilts. Current speeds measured at both depths were

nearly identical. The deepest sensor on the mooring line

was a Seabird 37, which also recorded pressure and

allowed the computation of its actual depth, denoted

as zbottom. Its nominal depth was 662 m, but zbottom
ranged from 663.7 to 550.7 m with a mean of 644.5 m.

Assuming the mooring line was straight above this

lowermost sensor, an estimate of the tilt would be

Qz5662 5 cos21(zbottom/662). Tilt measured at 20 m

was less than 108 for 82%of the deployment duration.All

three tilts mentioned above were clearly dependent on

the current speed and the following linear regressions

were obtained:Qz510520.21 5.9Ucurrent (withRMSE5
1.78), Qz520 5 20.3 1 8.3Ucurrent (with RMSE 5 28),
and Qz5662520.131 14.7Ucurrent (with RMSE5 2.68),
where Ucurrent denotes current speed (in m s21) mea-

sured by the Aquadopps and the tilts (u) are in degrees.

These tilt estimates and their increase with current

speed and depth are in very good agreement with nu-

merical simulations of the mooring line shape, using

the Cable software (Gobat and Grosenbaugh 2000), and

they indicate the mooring line was not really straight

TABLE 1. Measurement errors for 1-min data to daily averages. Cross-sensor error is defined as one standard deviation of the difference

between two records from duplicate sensors. Systematic biases arise from drift correction, calibration, or environmental conditions. Drift

values correspond to observed offset at postcruise calibration, after 1-yr deployment.

Bulk measurement

Cross sensor standard deviation

Instantaneous 10 min Hourly Daily Systematic biases

Incoming longwave (W m22) 5 3.9 3.6 3.1 Tilt: unknown (,5%)

Amplification bias: ,15

Incoming shortwave (W m22)* 17 7.1 5 1.5 Tilt: ,5%; calibration low bias: ,5%

RH (% RH) 2.3 (2.7 winds . 6 m s21)

(1.7 winds , 6 m s21)

1.7 1.3 0.6 Drift: 1

Air temperature (8C) 0.3 0.25 0.2 0.12 Drift: 0.1

Wind speed (m s21) 0.7 0.25 0.22 0.16 Drift: 0.1; flow distortion: 5% Tilt: 5%

Wind direction (8)** 7.5 2.6 1.8 1.5 Accuracy and flow distortion: ,10

Bulk SST (8C) 0.025 8.4 1023 0.004 8 1024 Flow distortion: small, maybe high bias

Barometric pressure (hPa) 0.32 0.15 0.12 0.083 Drift: 0.11

Rain rate (mm h21) Large due to low-pass

filtering

;20% 20% Low bias increases with wind

speed

* Incoming SWR estimates based on daylight data.

** Wind direction data for the period 19 Jan 2006–12 Apr 2006 should be taken with caution and have a higher uncertainty.

1 JONSWAP refers to the wave spectrum defined by

Hasselmann et al. (1976) and is based on in situ data from

JONSWAP. JONSWAP takes into account nonlinear interactions

between waves, thus extending the wave spectrum to growing sea

conditions. The spectrum leads to a wave significant height given by

Hsig 5 4sH and (sH)
2 5 1.673 1027(xU10)

2/g, where x is fetch and

U10 is wind speed at 10-m height.
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but rather sagged downward. However, we assumed a

straight mooring line and applied a linear depth correc-

tion to all 18 subsurface temperature sensors by multi-

plying their nominal depths with R 5 zbottom/662 at each

time step. The correction factor R used here, which is

depth invariant, is therefore high biased near the surface

and slightly low biased near 662-m depth. Near the sur-

face, the high bias can reach up to 108 or 158, whereas in
the lower 300 m the low bias is less than 58. The error in

estimated depth is Dz ffi z sin(Q)D(Q)p/180, where z is

nominal depth,Q is mooring line tilt, and D(Q) is the tilt

error. Near the surface, assuming Q ; D(Q) ; 158, z ;
20 m leads to D(z); 1.3 m. Lower in the water column,

this error could be larger as z increases and tilts remain

large, but it is less than the vertical resolution of the

sensor array.

d. Random errors

The random errors in our measurements were esti-

mated using the difference betweenmeasurements from

redundant sensors, DX 5 X1 2 X2, where X1 and X2

were the redundant measurements of the same meteo-

rological variable X, after drift correction. We used the

first 6 weeks of data available for most of our variables

because some sensors failed after that period and also to

limit the influence of possible residual drifts and to re-

main close to the predeployment calibrations. Time se-

ries of DX averaged over 10 min were used to construct

normalized histograms (Fig. 8). The average (mX) and

standard deviation (sX) of DXwere also calculated. The

number of underlying data points reached nearly 5000 or

more (incoming shortwave radiation had less, since only

daylight periods were used). For wind direction, which

is a circular variable, mX and sX were computed using

Yamartino (1984). Most observed probability density

functions (PDFs) have a narrower spread than the nor-

mal distributions N(mX, s
2
X). Remaining biases can be

identified in these histograms as the mean value or

dominant mode and are relatively small. Table 1 sum-

marizes values of sX for different averaging intervals,

thus providing estimates of themeasurement errors. The

relative error of the 10-min averaged data is within 5%

for most of the variables. It is less than 2% for incoming

longwave radiation and below 0.1% for sea surface

temperature and barometric pressure. Wind speed and

shortwave radiation had large instantaneous errors be-

cause these variables are highly variable from one

minute to the next, which combined with small differ-

ences in instruments clocks can lead to large measure-

ment differences. For these two measurements, the

cross-sensor standard deviation drops quickly as data

samples are averaged together. At low values, these two

measurements also exhibit large relative variations. For

winds less than 6 m s21, this relative error can go up to

10% and beyond for very low winds.

As samples are averaged together, the central limit

theorem predicts that the standard deviation of the av-

eraged data s decreases like 1/
ffiffiffiffi
N

p
, with N being the

number of samples forming the average. For correlated

random variables, N should be replaced with the effec-

tive number of observations Neff (Zhang 2006; Zięba

2010), written as

s2 5

2
666411

2 �
N21

i51

(N2 i)r̂(i)

N

3
7775s2

N
5

s2

Neff

, (5)

where s and r(i) are the standard deviation and auto-

correlation at time lag i of the original 1-min time series

DX, respectively. Figure 9 shows how s decreases as-

ymptotically as s/
ffiffiffiffiffiffiffiffiffi
Neff

p
for large samples. In contrast,

for small N, the formula for Neff is inaccurate (Zhang

2006). We can use Fig. 9 to quantify the random error of

our measurements in Table 1. Note that bulk variables

are often averaged hourly before they are used in bulk

formulas to compute the fluxes.

5. Air–sea flux accuracies

The impacts of the observational errors and uncer-

tainties on the computation of the air–sea fluxes are

examined here.

a. Errors in bulk flux estimates

The COARE bulk algorithm is based on the Monin–

Obukhov layer theory, which assumes that turbulent

fluxes are constant near the surface. In reality, fluxes vary

by approximately 10%, which is commensurate with the

uncertainty of measurements, so the assumption is valid

(Shaw 1990). In this section we describe the uncertainties

in air–sea flux estimates from bulk parameterization. The

following equations are the bulk flux estimates:

QH 5 rcpaCHS(Ts 2 u) , (6)

QE5 rLeCES(qs 2 q) , (7)

t5 jtj5 rCDS(us 2 u) , (8)

where CH, CE, and CD are the bulk transfer coefficients

for heat, mass, and momentum, known as the Stanton

number, Dalton number, and drag coefficient, respec-

tively; S is the magnitude of the wind speed relative to

water, u represents themean potential temperature, us is

the component of the mean current in the direction of
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the wind, and u is the vector-averaged wind. Also, TS

and qS are the temperature and specific humidity of air

parcels near the water interface, respectively; therefore,

TS is equivalent to the skin sea surface temperature

(SST) and qS is the saturated specific humidity at tem-

perature TS. Note that above the ocean, qS is reduced by

2% from its value above pure water at temperatureTS to

account for the salinity effect on vapor pressure (Fairall

et al. 1996).

The bulk transfer coefficients in Eqs. (6)–(8) are based

on experimental fits and therefore have uncertainties.

Fairall et al. (2003) discuss the COARE 3.0 bulk

FIG. 8. Errors in bulk variable measurements. (top to bottom ) (left)Wind direction (degrees), air RH (%), barometric pressure (hPa),

air temperature (8C); (right) wind speed (m s21), SWR (W m22), sea surface temperature (8C), and LWR (W m22). Bars indicate his-

tograms of differences in measurements from two primary sensors, X5 X1 2 X2 based on 10-min averages of original 1-min data. Here,

the y axis represents the proportion of values that are inside each bin on the x axis. Number of observations forX, average, and standard

deviation are included as text. Equivalent Gaussian distribution (same mean and standard deviation) shown as black curve. Mean dif-

ference also shown as the vertical black line. Dashed vertical lines are the one standard deviation lines of the equivalent Gaussian. Gray

bins are the 68th percentile of the data PDFs.
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algorithm and state that the transfer coefficients have

a root-mean-square (RMS) error of 5% for winds

below 10 m s21 and less than 10% for winds between 10

and 20 m s21. These and themeasurement uncertainties

of the bulk variables propagate through the bulk for-

mulas as shown by Colbo and Weller (2009), which we

reproduce here. The relative error or uncertainty in the

sensible heat flux is estimated from

�
›QH

QH

�2

5

�
›CH

CH

�2

1

�
›S

S

�2

1
›u

2
1 ›T

2
s

(u2Ts)
2
. (9)

Similarly, the relative error in latent heat flux is esti-

mated from

�
›QE

QE

�2

5

�
›CE

CE

�2

1

�
›S

S

�2

1
›q2 1 0:96›q2s

(q2 0:98qs)
2
. (10)

However, the specific humidity, as measured on the

buoy, is a function of temperature, pressure, and relative

humidity, written as

q ffi RH3 qsat(T, p) , (11)

FIG. 9. Standard deviation of difference between two ASIMET measurements for each bulk variable

(panels ordered as in Fig. 8), as a function of number (N) of samples averaged together: data (solid lines),

sN51/
ffiffiffiffi
N

p
(dotted lines), and sN51/

ffiffiffiffiffiffiffiffiffi
Neff

p
(dashed lines).
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where RH is the relative humidity (in %) and qsat rep-

resents the saturation specific humidity at the ambient

temperature and pressure. Therefore, the relative error

in the latent heat flux can be written�
›QE

QE

�2

5

�
›CE

CE

�2

1

�
›S

S

�2

1
RH2›q2sat1 q2sat›RH21 0:96›q2s

(RHqsat2 0:98qs)
2

. (12)

The momentum stress error is

�
›t

t

�2

5
›C2

D

C2
D

1 4
›U21 ›U2

s

(U2Us)
2
, (13)

where S 5 U 2 Us. Finally, the errors in the net long-

wave and shortwave radiation fluxes are as in Colbo and

Weller (2009) as shown:

›Q2
LW 5 «2›YQ2

LW 1 16«2s2
SBT

6
S›T

2
S , (14)

›Q2
SW5YQ2

SW›a21 (12a)2›YQ2
SW , (15)

whereYQLW andYQSW represent the downwelling (i.e.,

measured) components of the longwave and shortwave

radiative fluxes, respectively; « is emissivity; sSB is the

Stefan–Boltzmann constant; and a is albedo.

Uncertainties of the hourly averaged bulk variables

presented in the previous section (Table 1) were prop-

agated in the COARE algorithm (Bradley and Fairall

2006). Assuming a 5% relative error in all transfer co-

efficients, the resulting uncertainties in bulk air–sea

fluxes are shown in Fig. 10. The wind speed uncertainty

was modeled as an offset (0.2 m s21) and gain (6%), in

keeping with the difference between ASIMET and the

DCFS measurements corrected for platform motion.

Air temperature and humidity uncertainties were mod-

eled as 0.28Cand 0.4 g kg21 offsets, respectively. SST and

air specific humidity were kept constant at 208C and

6 g kg21, respectively, while air temperature ranged from

58 to 198C, similar to observations during CLIMODE.

Our choice of SST is important since it directly in-

fluences qs and therefore the vertical gradient in q. For

a higher SST value, the latent heat flux would rise and

the associated relative error would decrease. After

FIG. 10. Air–sea heat fluxes and their errors, estimated fromCOARE3.0, as functions of wind speed (x axis) and air

temperatureTair (line styles, see legend in top-left plot) andwith SST fixed at 208C and air-specific humidity 6 g kg21;

these conditions were common in winter. (left) Latent heat, (middle) sensible heat, and (right) momentum fluxes.

(top) Flux values, (middle) absolute error, and (bottom) relative error.
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trying different combinations of values for the bulk

variables, it appears the worst error in the latent heat

flux reaches 20% for low wind and near-neutral stability

conditions. Relative errors in sensible heat and mo-

mentum fluxes are below 10% and 15%, respectively,

for winds higher than 5 m s21. Error propagation through

COARE 3.0 results in uncertainties of the bulk fluxes

listed in Table 2.

Thus far, we only accounted for measurement un-

certainties that we were able to detect. As such, we as-

sumed the current speed uncertainty to be equal to the

current meter accuracy, namely, 0.01 m s21 or 1%. If in

fact there was a velocity shear due to waves, as discussed

in section 4b, then the stress uncertainty would be near

20%. Similarly, assuming an additional bias of 0.28C in

SST and 0.25 g kg21 in qs, due to flow distortion below

the buoy hull, uncertainties of hourly heat fluxes would

be closer to 15% (latent) and 19% (sensible). For long-

wave and shortwave incoming radiations (LWR and

SWR, respectively), cross-sensor differences are very

small (about 1%–2% of mean values for hourly and

daily averages). However, the platform tilt must bias the

direct solar radiation compared to a level surface. We

cannot quantify this effect since we measured only the

global incoming SWR (sum of diffuse and direct com-

ponents). But preliminary work following Long et al.

(2010) and assuming 50% direct sunlight indicates it

is less than 5%. Moreover, there are indications that

ASIMET SWR used during CLIMODE had a low bias

because of ageing of the paint on the calibration standard.

Errors in the radiative fluxes are estimated at 5% for

longwave and 10% for solar radiation. Overall, air–sea

flux errors tend to be less than 20%when all these effects

are included. Note that during high heat loss events, these

errors become closer to 10%. However, uncertainty in

the transfer coefficients should also be raised in such

conditions since they are associated with high winds.

b. Comparison with DCFS fluxes

A goal of the CLIMODE program was to use the

DCFS fluxes to improve bulk estimates of the fluxes and

to reduce their overall uncertainty through refinement

of the bulk transfer coefficients. As explained in section

3, the DCFS on the buoy produces DC estimates of the

surface stress and buoyancy flux. The DCFS fluxes are

then combined with mean ASIMET measurements to

compute the drag and buoyancy flux transfer coefficients

using Eqs. (6)–(8) and (2) as shown:

CD 5
t

rS(us 2 u)
, (16)

CB 5
QB

rcpaS(Tvs 2 uy)
, (17)

whereTvs is surface value ofTy. The transfer coefficients

are converted to their neutral values using the stability

functions from COARE 3.0 as shown:

CDN 5
CD"

11
C1/2
D cu(z/L)

k

#2 , (18)

CBN5C1/2
DN

C1/2
B"

11
C1/2
B cu(z/L)

k

# , (19)

where the neutral values are denoted by N, and cu and

cu are the stability corrections for the wind and potential

temperature profiles, respectively.

The neutral drag and buoyancy transfer coefficients

are plotted against the neutral relative wind speed in

Figs. 11 and 12. These values have been adjusted to 10 m

to allow comparison with the formulation provided by

Large and Pond (1981, 1982). The plotted wind speed

covers the entire range of wind conditions for which the

bulk transfer coefficients have been reported in the lit-

erature. These results are in good agreement with the

COARE 3.0 drag coefficient parameterization for wind

speeds between 6 and 14 m s21. However, there appear

to be systematic departures from the COARE 3.0 drag

coefficients at both low and high wind speeds. Recent

investigations from the Coupled Boundary Layers and

Air–Sea Transfer (CBLAST) program have reported

similar results at low winds (Edson et al. 2007), where it

has been hypothesized that the drag can be reduced in

TABLE 2. Absolute errors in air–sea differences of temperature,

humidity, wind speed, and resulting relative errors in latent (QE),

sensible (QH), and momentum bulk fluxes using COARE 3.0.

Relative errors (%) of air–sea bulk fluxes, using propagation of

random errors in Table 1 through COARE 3.0 algorithm. Relative

errors in fluxes are median values of CLIMODE time series for the

different sample averaging periods in each column (these errors are

high biased due to small heat loss events, usually in summer).

Variable 10 min Hourly Daily

D(Tsea – Tair)

(8C)
0.25 0.2 0.15

D(qsea – qair)

(g kg21)

0.5 0.4 0.35

D(Usea – Uair)

(m s21)

0.35 1 0.06Uair 0.2 1 0.06Uair 0.2 1 0.06Uair

DQE/QE (%) 13.6 11.2 10.2

DQE/QE (%) 14 11.4 10.1

Dt/t
(%)

15.8 13.8 13.8

464 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 30



this regime due to the presence of swell (Sullivan et al.

2008). The buoy measurements show enhanced drag

compared toCOARE3.0 at winds speeds above 14 m s21.

These drag coefficients are significantly larger than the

commonly used Large and Pond (1981) formulation,

which is also lower than the COARE 3.0 algorithm.

The measured buoyancy transfer coefficients are in

very good agreement with the COARE 3.0 algorithm at

wind speeds up to 15 m s21. There is again a systematic

departure from the COARE 3.0 at high winds. In this

case, themeasured transfer coefficients for the buoyancy

flux are substantially lower than the COARE 3.0 pre-

diction at wind speeds above 15 m s21. Although the

comparison has focused on the buoy data, preliminary

results from the air–sea interaction spar (ASIS) de-

ployed during CLIMODEagree with these observations

for both the drag and buoyancy flux transfer coefficients.

Therefore, the data are now being used to reduce the

uncertainty in the transfer coefficients, particularly for

wind speeds greater than 15 m s21. Work has begun to

modify the COARE 3.0 algorithm to COARE version

3.5 (Edson et al. 2012, manuscript submitted to J. Phys.

Oceanogr.). The main difference between the two ver-

sions is in the roughness length parameterization used

for the drag coefficient and a slight modification with

thermal roughness length to make the transfer co-

efficients agree with COARE 3.0 at low to moderate

winds with reduced values at high winds. The latter is the

subject of an ongoing investigation. The COARE 3.5

drag coefficient predicts slightly lower values of the

stress at lowwinds and somewhat higher estimates of the

stress at high winds. The COARE 3.5 buoyancy flux

transfer coefficient is in close agreement with COARE

3.0 at low to moderate wind speeds and with Large and

Pond (1982) at all wind speeds.

A comparison of the DC fluxes versus the three bulk

algorithms investigated here are shown in Fig. 13. As

expected, the agreement between the stress estimates

shown in Fig. 13 is significantly improved at high winds

through use of the COARE 3.5 parameterization. All

three parameterizations give good agreement with the

buoyancy fluxes shown in Fig. 13. However, again as

expected, there is better overall agreement between the

direct covariance and COARE 3.5 parameterization of

the buoyancy flux.

An attempt to quantify the reduction of the un-

certainty in these estimates is shown in Fig. 14. There,

the mean and standard deviation of the difference be-

tween bulk and DC flux estimates are shown as a func-

tion of wind speed. The RMS normalized by the mean

FIG. 11. (top) Individual estimates of the drag coefficient and (bottom) their averages within

1 m s21 wind speed bins. The error bars in (bottom) represent the standard error. The co-

efficient has been adjusted to neutral conditions using the functions given by Fairall et al.

(2003). Data are from CLIMODE F buoy (black dots or circles) and ASIS (magenta dots or

circles). The red line is the COARE3.0 formulation fromFairall et al. (2003), and the green line

is the neutral drag efficient parameterization from Large and Pond (1981). The blue line

represents a modification of the COARE 3.0 algorithm based on the CLIMODE data

(COARE 3.5).
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DC flux estimate is also shown and provides an estimate

of the uncertainty of the fluxes. The uncertainty is

computed for six wind speed bins incremented by

4 m s21 between 0 and 24 m s21. This represents the

combined uncertainty in the DC fluxes due to, for ex-

ample, naturally occurring variability, flow distortion,

and incompletemotion correction; and in the bulk fluxes

due to, for example, missing physics in the parameteri-

zation (i.e., wave age and sea state) as well as the un-

certainty in the mean measurements.

The uncertainty in the stress is greater than 100% at

wind speeds below 5 m s21, due to the combined un-

certainty and small value of the momentum flux. How-

ever, the plot shows a progressive improvement in the

stress estimates where uncertainty in the COARE fluxes

is less than 20% at moderate to high winds and ap-

proaches 10% for COARE 3.5. The uncertainty in the

buoyancy flux is generally less than 30% for all param-

eterizations, for winds above 6 m s21. This uncertainty

is in remarkably good overall agreement with the error

analysis given in section 5a and shown in Fig. 10. This

suggests that a substantial fraction of the uncertainty

shown in Fig. 14 is due to random errors and errors in the

bulk method. This provides additional evidence that

accurate direct covariance flux estimates are possible

from surface moorings and that these results can be used

to improve the bulk formula.

Last, the COARE 3.0 and 3.5 parameterizations both

show an increasing uncertainty in buoyancy flux at high

winds, consistent with the results shown in Fig. 12. Un-

der these conditions, a number of studies have shown

that evaporating sea spray begins to have a noticeable

impact on the heat exchange (Andreas et al. 1995).

However, the contribution of both latent and sensible

heat exchange between the droplets and atmosphere

make it difficult to determine the impact of sea spray

using the buoyancy flux alone. Therefore, the buoyancy

flux estimates from the buoy and other platforms are

now being combined with latent heat fluxes to inves-

tigate the Stanton and Dalton numbers directly.

6. Conclusions

A surface mooring was successfully deployed for al-

most 15 months in the Gulf Stream region and allowed

the continuous collection of air–sea measurements. This

FIG. 12. (top) Individual estimates of the buoyancy flux transfer coefficient and (bottom)

their averages within 1 m s21 wind speed bins. The error bars in (bottom) represent

the standard error. We have only plotted the transfer coefficients for the buoyancy flux

when the absolute value of the air–sea virtual potential temperature difference exceeded

28C. The coefficient has been adjusted to neutral conditions using the functions given by

Fairall et al. (2003). Colors and symbols as in Fig. 11. The red line is the COARE 3.0

formulation from Fairall et al. (2003), and the green line is the neutral Stanton number

parameterization for unstable conditions from Large and Pond (1982). The blue line

represents a modification of the COARE 3.0 algorithm based on the CLIMODE data

(COARE 3.5).
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paper focused on the uncertainties in the observations

and how these uncertainties impacted the goal of ob-

serving the air–sea fluxes. Pre- and postdeployment

calibrations together with in situ comparison between

shipboard and moored sensors supported identification

of biases due to sensor drifts, sensor electronics, and

calibration errors. A postdeployment field study was

used to further investigate the performance of the wind

sensors. The use of redundant sensor sets not only filled

data gaps but also provided a means to examine the

contribution of random errors.

In some cases, for air temperature and humidity,

barometric pressure, and rain rate, the errors in the

mean meteorological observations in this challenging

environment were not significantly larger than those

reported by Colbo and Weller (2009) for subtropical

conditions. Calibration and instrumentation electron-

ics errors were dealt with in incoming shortwave radi-

ation and incoming longwave radiation, respectively.

Better quantification of the error in observed rain rates

was not possible. A significant effort was directed at a

better definition of errors in wind speed. Flow distor-

tion was quantified in the observations and was con-

sistent with CFD simulations (Edmond et al. 2012). An

empirical correction was proposed to reduce the low

bias in wind speed estimates from 2D sensors like the

ASIMET. We estimate that this low bias is less than

5% for winds less than 15 m s21 and less than 10% for

higher winds.

The propagation of the observation errors in the bulk

formulas allowed us to develop figures showing the error

in these fluxes as a function of wind speed and air–sea

temperature difference. These propagated errors as-

ymptote to lower values in high wind speeds to about

12% in latent heat flux, 10% in sensible heat flux, and

15% in wind stress. However, an additional uncertainty

stems from use of the bulk formulas. To investigate this,

direct covariance fluxes were compared with the bulk

formulas. Between 6 and 15 m s21, there was good

agreement between the COARE 3.0 bulk formula mo-

mentum fluxes and the DCFS momentum fluxes. At

both lower and higher wind speeds, there were system-

atic departures in the drag coefficients. These are now

being addressed through a modification to the COARE

algorithm using CLIMODE data. Below 15 m s21, the

buoyancy fluxes were in good agreement. But above

15 m s21, the DCFS buoyancy fluxes were lower than

the COARE 3.0 buoyancy fluxes. Additional biases may

FIG. 13. A comparison between DC and estimates from commonly used bulk formulas. (left) Mo-

mentum flux (stress) and (right) buoyancy flux [from Eq. (2)]. (top) Scatterplots of bulk estimates using

Large and Pond 1981 (green circles), COARE 3.0 (Fairall et al. 2003, red squares), and a new improved

version COARE 3.5 (Edson et al. 2012, manuscript submitted to J. Phys. Oceanogr.; blue crosses) vs DC

measurements. Black line is a 1:1 relationship. (bottom) Binned data from scatterplots above (bin size is

0.2 N m22 and 100 W m22 for stress and buoyancy flux, respectively); symbols denote the average bulk

value, and vertical bars denote the corresponding standard deviation inside each bin.
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exist but could not be directly quantified that affect in-

terface values ofTs, qs, andUs. We attempted to account

for these biases in the flux errors, which remained close

to or less than 20%.

Thus, our basic conclusion is that the surface buoy

deployed in the Gulf Stream to support air–sea inter-

action research was successful, providing an improved

15-month record of surface meteorology, upper-ocean

variability, and air–sea fluxes with known accuracies.

At the same time, the coincident deployment of mean

meteorological and turbulent flux sensors proved to be

a successful strategy to certify the validity of the bulk

formula fluxes over the midrange of wind speeds and to

support further work to address the present shortcom-

ings of the bulk formula methods.

Acknowledgments. The National Science Founda-

tion (Grant OCE04-24536) funded this work, as part

of the CLIVAR Mode Water Dynamics Experiment

(CLIMODE). The Vetlesen Foundation is also acknowl-

edged for the early support of S. Bigorre. We thank Al

Plueddemann and Tom Farrar (WHOI) for discussions

of the uncertainties in the wind observations. Many

thanks to Frank Bradley and Chris Fairall, who kindly

provided their code for COARE 3 bulk flux errors. The

personnel of the Upper Ocean Processes Group (WHOI),

who designed, calibrated,maintained, and deployedmost

components of the surface mooring and its instrumen-

tation, are deeply appreciated. Finally, we thank the three

anonymous reviewers, whose constructive comments

helped improve this manuscript.

FIG. 14. Statistics of flux difference bulk estimates minus DC measurements as a function of wind speed. (left) Momentum flux and

(right) buoyancy flux. (top) Mean of flux difference for wind speed data in 4 m s21 bins (see inset in top-right plot for histogram of wind

speed bins). (middle) Standard deviation inside each bin. (bottom) RMS of the difference inside each bin, divided by the mean DC flux

value inside the bins in percent.
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