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ABSTRACT:  11 

Gravid adults of the common intertidal barnacle Semibalanus balanoides (L.) brood fully 12 

developed larvae until individuals perceive some cue from the environment that triggers 13 

synchronous larval release. The prevailing hypothesis has been that phytoplankton 14 

blooms trigger release because they provide a food source for nauplius larvae. Through 15 

observations and field experiments, we tested the hypothesis that turbidity from any 16 

source, not just phytoplankton blooms, can trigger release. We documented five larval 17 

release events at three sites in the northeastern United States. Two events coincided with 18 

chlorophyll increases, and all five coincided with turbidity increases. In experiments, the 19 

larval release response was equivalent when adults were exposed to diatoms or inert 20 

synthetic beads, and it was significantly higher than under exposure to filtered seawater. 21 

We also tested the hypothesis that turbidity can decrease the risk of cannibalism for 22 

newly-released nauplii. Under experimentally manipulated conditions, adults consumed 23 

significantly fewer nauplii in a high-turbidity environment. We suggest that reproduction 24 

in this species may have evolved to coincide roughly with the local onset of winter/spring 25 

phytoplankton blooms, but the timing of larval release may have been fine-tuned further 26 
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by cannibalism and predation pressures. The potential for turbid conditions to serve as a 27 

refuge for planktonic larvae of other marine organisms merits further investigation. 28 
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 36 

INTRODUCTION 37 

 38 

 The plankton community in coastal waters of the temperate North Atlantic Ocean 39 

changes considerably with the seasons.  In late winter or early spring, dense diatom 40 

blooms appear, and they are often followed shortly after by pelagic nauplius larvae of the 41 

common and widespread intertidal barnacle Semibalanus balanoides (Fish 1925). In 42 

some areas, S. balanoides larvae account for up to 15% of zooplankton individuals 43 

(Frolander 1955), but remain in the water column for only 3-6 weeks (Barnes and Barnes 44 

1958). Nauplii feed on phytoplankton and are themselves prey for carnivorous 45 

zooplankton and planktivorous fish (Lockhead 1936; Bousfield 1955). Therefore, the 46 

timing of S. balanoides larval release relative to the seasonal population dynamics of 47 

other species could have an important effect on coastal marine food webs. 48 
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 Gravid Semibalanus balanoides adults brood their larvae for days to months after 49 

the developmental sequence is complete until individuals encounter environmental 50 

conditions that prompt larval release in mass synchrony (Moore 1935; Barnes 1962). The 51 

synchronous release of nauplii often coincides with phytoplankton blooms (Barnes 1956, 52 

1957, 1962), presumably to ensure a plentiful food supply for the larvae. However, in the 53 

field, larvae are sometimes released in the absence of diatom blooms (Barnes 1962), and 54 

adults in the laboratory often release when exposed to high concentrations of many kinds 55 

of plankton, including brine shrimp nauplii (Starr et al. 1991). Additionally, we (Gyory 56 

and Pineda 2011) found that the abundance of first-stage nauplii was strongly correlated 57 

with the passage of storms that increased water turbidity. We therefore suggested that 58 

larval release may be triggered by high turbidity (caused by phytoplankton blooms or 59 

other sources) because the weakly-swimming, newly-released larvae are better protected 60 

from cannibalism when the filter-feeding appendages of adults are temporally clogged by 61 

particles; the “turbidity hypothesis.”  62 

In the present study, we tested three predictions of the turbidity hypothesis:  (1) 63 

Larval release in the field should coincide with periods of high phytoplankton abundance 64 

or high turbidity from other sources. (2) Adult barnacles should release larvae when 65 

exposed to high concentrations of phytoplankton or inert synthetic beads.  (3) High 66 

turbidity should decrease the rate of cannibalism on newly-released barnacle larvae.  67 

 68 

MATERIAL AND METHODS 69 

 70 

Field observations of larval release patterns 71 
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 72 

 We tracked the larval release patterns of barnacles at three sites along the 73 

northeastern coast of the United States to determine whether release was related to 74 

changes in turbidity, chlorophyll concentration, or various abiotic variables (water 75 

temperature, salinity, or depth). The three field sites were (1) a dock in Little Harbor, 76 

Woods Hole, Massachusetts (41° 31.366’ N, 70° 40.008’ W); (2) the University of Rhode 77 

Island pier in Narragansett, Rhode Island (41° 29.524’ N, 71° 25.145’ W); and (3) the 78 

University of New Hampshire pier in New Castle, New Hampshire (43° 04.316’ N, 70°  79 

42.707’ W) (Fig. 1). Larval release of Semibalanus balanoides is known to occur 80 

sequentially, in this order, in these three regions (Fish 1925; Pineda et al. unpub.). All 81 

sites had an abundance of S. balanoides adults distributed vertically in the intertidal zone 82 

from approximately high water to low water spring tide levels, which is the usual range 83 

for this species (Stubbings 1975). 84 

 From November 21, 2009 to February 25, 2010, we sampled barnacle adults to 85 

determine what proportion of the population was gravid and what proportion had empty 86 

mantle cavities. When a Semibalanus balanoides individual releases its larvae, all larvae 87 

leave the mantle cavity, usually in 24 hours or less (Barnes 1955). Thus, a rapid increase 88 

in the proportion of adults with empty mantle cavities signaled a larval release event. We 89 

randomly sampled at least 31 adult barnacles (mean = 60, SD = 19) daily whenever 90 

possible. On a few occasions, severe weather impeded sampling efforts. 91 

 At the three field sites, we measured water salinity, temperature, depth, turbidity, 92 

and chlorophyll fluorescence. A logger (model XR-420, RBR Ltd., Ottawa, Ontario, 93 

Canada) recorded temperature and salinity every five minutes. A fluorometer (dual-94 
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wavelength, single-angle sensor) measured turbidity and in vivo chlorophyll fluorescence 95 

simultaneously (model ECO FLNTU, WET Labs, Philomath, Oregon, USA). The 96 

instrument took a “burst” of measurements (one per second for five seconds) every five 97 

minutes. In Massachusetts and Rhode Island, we strapped the instruments to pier pilings 98 

0.5 m above bottom. The water depth was 1.5-2 m during the highest tides. In New 99 

Hampshire, it was not possible to strap the instruments to pier pilings, so the instruments 100 

were attached to a floating dock instead, where they remained 0.5 m below the surface at 101 

all times. We obtained tide and water level data from the United States National Oceanic 102 

and Atmospheric Administration (station ID numbers: 8447930, 8452660, and 8423898). 103 

 Instrumentation problems at the Massachusetts site caused loss of salinity data 104 

and required that we eliminate some bad values from the turbidity and chlorophyll data. 105 

A piece of macroalga wrapped itself around the ECO fluorometer, and every time the 106 

blades of the alga swept past the sensors, the readings were unrealistically high. We 107 

removed  the bad values from the chlorophyll and turbidity data (in Massachusetts only) 108 

as follows: (1) Since the instrument sampled once per second for 5 seconds every 5 109 

minutes, we computed the median for each 5-second sampling burst. This eliminated bad 110 

data in situations when only some of the values in the sampling burst were affected by the 111 

alga.  (2) When all five values in a sampling burst were bad, we divided the sampling 112 

period into 2-hour bins and calculated the mean and standard deviation of the values in 113 

the bins. If the standard deviation of the mean was equal to or greater than half of the 114 

mean, we eliminated the highest 1/3 of the values from the 2-hour bin. (3) We calculated 115 

the median values for each 1-hour bin, and those are the values used in the analyses (see 116 
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Electronic Supplement 1 for figures of filtered and un-filtered data). After these 117 

corrections, the effective sampling rate for the instrument became 1 hr-1. 118 

 119 

Larval release in response to phytoplankton or turbidity 120 

 121 

 We conducted experiments to test whether the larval release response was 122 

different when gravid adult barnacles were exposed to unfiltered seawater, seawater with 123 

diatoms added, or seawater with particles added. The diatom was Skeletonema marinoi 124 

Sarno et Zingone (strain CCMP 1332 from the National Marine Phytoplankton Collection 125 

[NMPC] at Bigelow Laboratory for Ocean Sciences) added at 107 cells L-1. Although 126 

many previous studies on barnacle feeding reported using the diatom Skeletonema 127 

costatum (Greville) Cleve, a recent study discovered that S. costatum is actually a species 128 

complex made up of previously unrecognized species, including S. marinoi (Sarno et al. 129 

2005). The strain we used from the NMPC had been identified initially as S. costatum 130 

when it was collected in 1956, but has been re-classified since then. It has a cell length of 131 

6-14 μm, cell width of 6-8 μm, and forms chains of 2-45 cells. The particles we used 132 

were neutrally-buoyant Dynoseeds® 40-µm polystyrene beads (Microbeads AS, 133 

Skedsmokorset, Norway) added at 107 beads L-1.  134 

 At each field site during low tide, we gathered barnacle-covered rocks that were 135 

small enough to fit inside a one-liter clear plastic jar. We placed one rock inside each jar 136 

and immediately filled it with one of the three treatments listed above. After sealing the 137 

jars with lids, we placed them inside plastic cages that floated at the water surface and 138 

were tethered to the sampling dock. We assume that the floating cages maintained the 139 
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jars at ambient water temperature and ambient light levels, and the slight to moderate 140 

wave action around the docks kept the phytoplankton and beads suspended inside the jars. 141 

After 24 hours, we recovered the jars, filtered the water through 100 µm mesh, and 142 

counted the number of nauplii swimming in the water and the number of adults on each 143 

rock. We ran experiments twice in Rhode Island and twice in New Hampshire. 144 

Experiments contained multiple replicates of each treatment (Table 1). 145 

 The statistical analysis for these experiments tested the null hypothesis that there 146 

is no difference in the larval release response of adults when exposed to beads, 147 

Skeletonema marinoi, or unfiltered seawater, versus the alternative hypothesis that there 148 

is a difference among the three treatments. There were two complicating factors.  First, 149 

not all the adults were gravid at the beginning of the experiments, and it was impossible 150 

to determine how many were gravid without sacrificing the animals. Second, the number 151 

of nauplii produced can be highly variable among individuals. To address these 152 

uncertainties, we developed a statistical model relating the observed number of nauplii in 153 

each jar to the unknown number of gravid adults and the distribution of the number of 154 

nauplii released by each of them.  Based on this model, we performed a likelihood ratio 155 

test of the null hypothesis that the conditional mean number of nauplii released by an 156 

adult was the same for the three experimental treatments (see Electronic Supplement 2 157 

for details). We repeated the entire analysis while omitting the outlier from the S. marinoi 158 

treatment (see Results) because the outlier could have undue influence on the results. 159 

 We considered the possibility that the number of nauplii that we found in the jars 160 

at the end of each experiment could differ among treatments if the rates of cannibalism 161 

by adults were also different among treatments. Thus, in addition to comparing the 162 
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number of nauplii in the jars, we also examined the percentage of treatment replicates in 163 

which adults were inferred to have participated in “mass release” (defined as 95% or 164 

more of adults in a jar with empty mantle cavities). Mass release could only be inferred, 165 

not verified, because it was impossible to determine whether adults were gravid at the 166 

beginning of the experiment without sacrificing them. 167 

 168 

Predation rate of adults on newly released larvae under normal or turbid conditions 169 

 170 

 We tested the null hypothesis that turbidity would not affect the rate of 171 

cannibalism on newly-released barnacle larvae by exposing adults either to larvae and 172 

synthetic beads or to larvae alone. The experiment took place in New Hampshire on 173 

February 19, 2010. By this date, most (>75%) of the barnacles we sampled in the field 174 

had already released their larvae, so we assumed that the adults in the experiments also 175 

had released their larvae.  176 

The experiment consisted of 5 jars with a control treatment (seawater filtered 177 

through 100 µm mesh) and 5 jars with an experimental treatment (filtered seawater with 178 

40 µm Dynoseeds® added at 107 beads L-1). Each 1-L jar contained one rock covered 179 

with barnacle adults. The number of adults in a jar was random, and not significantly 180 

different among treatments. We added at least 250 live, actively swimming nauplii to 181 

each jar, noting the exact number used. To obtain the nauplii, we scraped adults off pier 182 

pilings along the uppermost limit of the barnacle colonies. A few (<25%) of these adults 183 

still had viable eggs inside their mantle cavities. We collected the eggs from 10 184 

individuals and placed them in seawater (pre-filtered through 100 µm mesh). The eggs 185 
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hatched within minutes, and nauplii swam to the surface. Using a glass pipette, we 186 

suctioned actively swimming larvae and added them to the experimental jars. We sealed 187 

the jars with lids, placed them in the plastic cages described above, and hung the cages 188 

off the pier so that the jars were submerged in seawater. 189 

The experiment began at 14:00 and ended at 20:00. At the end of the experiment, 190 

we filtered water from each jar through 100 µm mesh and counted the number of nauplii 191 

that remained. We calculated the percentage of nauplii that survived in each jar without 192 

being consumed and performed a one-way ANOVA to detect any differences in the 193 

means for the two treatments. 194 

 195 

RESULTS 196 

 197 

Field observations of larval release 198 

 199 

 There were five major larval release events at the three sites. Two of the events 200 

coincided with higher chlorophyll levels, but all five coincided with higher turbidity 201 

levels. Two release events occurred in Massachusetts, one between December 12 and 202 

December 14, and the other between December 18 and December 22 (Fig. 2). On 203 

December 8, the increase in percent of empty adults might suggest that there was a 204 

release event, but that is unlikely because the next three samples had a lower percentage 205 

of empty adults. These barnacles reproduce once per year (Barnes 1963), so it is not 206 

possible for them to release larvae and become gravid again a few days later. Similarly, 207 

the decrease in percentage of empty adults on December 17 and 24 is likely due to 208 
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sample variability. The percentage of adult barnacles that were brooding viable larvae 209 

generally increased until reaching a maximum on December 17. The two decreases in this 210 

percentage coincided with the two larval release events. 211 

 Chlorophyll concentration fluctuated between approximately 0.6 and 3 µg L-1 in 212 

Massachusetts (Fig. 2). A short-lived, modest increase in chlorophyll concentration 213 

occurred during the second larval release event, but not during the first. Turbidity ranged 214 

from approximately 0.8 to 6.5 Nephelometric Turbidity Units (NTU). NTUs measure the 215 

amount of light scattered by particles. A high-turbidity event was ending when the 216 

instrument was placed in the water, and another event followed it the next day. These two 217 

events coincided with the first larval release event. A second high-turbidity event 218 

coincided with the second larval release event. Water level relative to mean lower low 219 

water fluctuated between -0.1 and 1.4 m. Water temperature declined steadily from 11° to 220 

1.5° C. 221 

 In Rhode Island, major larval release events occurred between January 9 and 222 

January 10 and between January 11 and January 13 (Fig. 3). During the first release, there 223 

was an increase in turbidity, but no noticeable increase in chlorophyll. During the second 224 

release, there was one high-chlorophyll event and two high-turbidity events. The 225 

percentage of adult barnacles brooding viable larvae decreased during the larval release 226 

events. Water level fluctuated between -0.5 and 1.7 m. Salinity and water temperature 227 

fluctuated with a semi-diurnal period, so they were probably tidally influenced. Salinity 228 

ranged from 30.4 to 31.8 psu. Water temperature ranged from 1.4° to 3.9° C. During the 229 

evening of January 12, an extreme low tide caused the instruments to be briefly exposed 230 
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to air, so chlorophyll, turbidity, salinity, and water temperature data are missing for that 231 

period. 232 

 In New Hampshire, larval release occurred between February 12 and 15 (Fig. 4). 233 

The percentage of adult barnacles brooding viable larvae increased until it reached a 234 

maximum on January 29. The percentage remained high until the larval release event 235 

began on February 12. Chlorophyll values were generally low. Turbidity was generally 236 

higher near the beginning of the sampling period and then decreased, but there was an 237 

increase at high tide during the larval release period. Turbidity, salinity, and water 238 

temperature fluctuated semi-diurnally with the tides. Water level ranged from -0.7 to 3.5 239 

m. Salinity ranged from 22.7 to 31.7 psu. Water temperature ranged from 0.7° to 4.2° C. 240 

In general, salinity and temperature increased and decreased as the tide flowed and ebbed, 241 

respectively. 242 

 243 

Larval release in response to phytoplankton or turbidity 244 

 245 

 Larval release response was significantly stronger (Likelihood Ratio [LR] test, p 246 

<< 0.001) in the phytoplankton and turbidity treatments than in the control treatments, 247 

even when the outlier in the Skeletonema marinoi treatment was removed (LR test, p << 248 

0.001). The difference in larval release response between the phytoplankton and turbidity 249 

treatments was not significantly different (LR test, p ≈ 1) (Fig. 5). 250 

The statistical model estimates of π (the probability that an adult is gravid and 251 

receptive to a larval release cue) are shown as percentages in Table 2. The model 252 

estimates of θ (the unknown shape parameter of the negative binomial distribution), along 253 
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with the estimated mean number of nauplii released by each gravid adult, are shown in 254 

Table 3.  255 

Twenty-seven percent of replicates for the control treatment had mass larval 256 

release. In contrast, forty-six percent and fifty-four percent of bead and diatom replicates, 257 

respectively, had mass release (Fig. 6). 258 

 259 

Predation rate of adults on newly released larvae under normal or turbid conditions 260 

 261 

 The mean percentage of nauplii that escaped predation in the turbidity treatment 262 

(85.4) was significantly greater (ANOVA, p = 0.015) than in the control treatment (64.7) 263 

(Fig. 7) 264 

 265 

DISCUSSION 266 

 267 

 Gravid Semibalanus balanoides barnacles brood their larvae until they perceive 268 

some cue from the environment that triggers naupliar release. The generally accepted 269 

hypothesis has been that barnacles release their larvae in response to phytoplankton 270 

blooms because high concentrations of phytoplankton provide abundant food for nauplii. 271 

In contrast, Gyory and Pineda (2011) proposed that high turbidity (which can be caused 272 

by phytoplankton blooms, sediments re-suspended by storms, or other sources) triggers 273 

the release of larvae, since a highly turbid environment may protect poorly-swimming, 274 

newly-released larvae from cannibalism and predation. Our field observations and 275 

experiments tested the predictions that (1) high phytoplankton concentrations or (2) high 276 
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turbidity levels trigger larval release in S. balanoides. We found that larval release in the 277 

field and in controlled experiments could be triggered by high-turbidity events in the 278 

absence of phytoplankton blooms.  279 

 We observed five major larval release events at three sites along the northeastern 280 

coast of the United States. Two events coincided with increased chlorophyll 281 

concentrations, three did not, but all five events coincided with increased turbidity. Other 282 

authors have also noted that Semibalanus balanoides sometimes releases larvae in the 283 

field in the absence of phytoplankton blooms. Barnes (1962) identified 2 years (1950 and 284 

1960) in which larval release in Millport, Scotland occurred in the absence of blooms. 285 

Another barnacle species, Chamaesipho brunnea, has been observed to release larvae 286 

under conditions when turbidity would be expected to be high. In New Zealand, they 287 

brood mature larvae during neap tides and calm weather, and release them during spring 288 

tides and stormy weather (Foster 1965 as cited in Luckens 1970). 289 

In Massachusetts, the two larval release events coincided with an increase in 290 

turbidity. There was a small increase in chlorophyll during the second event, but not 291 

during the first. Since macroalgal interference with our instrument sensors required 292 

eliminating bad values from the data, it is possible that we failed to detect short-lived 293 

pulses in chlorophyll. This is unlikely, though, because we were able to detect short-lived 294 

pulses in turbidity after filtering the data, so we should have been able to do the same 295 

with chlorophyll. There is an increase in the percentage of adults with no embryos from 296 

35% on December 18 to 51% on December 19 with seemingly no corresponding increase 297 

in chlorophyll or turbidity. The data filtering process may have obscured an increase in 298 
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one or both of these variables. In Rhode Island, there were increases in both turbidity and 299 

chlorophyll at the second larval release event, but not during the first.  300 

In New Hampshire, there was an increase in turbidity at the time of larval release, 301 

but there was no major increase in chlorophyll. 92% of adults were brooding viable 302 

larvae during the highest turbidity event of the time series, on January 29. Why did the 303 

barnacles fail to release during the high-turbidity events at the end of January? We 304 

speculate that the extreme salinity fluctuations associated with the spring tide may have 305 

stressed the barnacles and caused them to close their opercular openings. Cawthorne and 306 

Davenport (1980) found that when gravid barnacles in the laboratory were exposed to 307 

large and rapid salinity fluctuations, they closed their opercular openings, halting larval 308 

release. Moreover, the peaks in turbidity in late January and early February occurred as 309 

the tide was ebbing, so a substantial portion of the adult population may have been out of 310 

the water and unable to release larvae. Finally, there is the possibility that another factor 311 

not taken into account here also affects larval release. 312 

To examine the relationship between phytoplankton abundance and the timing of 313 

barnacle larval release, we used in vivo chlorophyll fluorescence to estimate chlorophyll-314 

a concentrations, though this is known to be an imperfect method. The ratio of 315 

fluorescence to chlorophyll-a can vary depending on the species composition of the 316 

phytoplankton, the health of the cells, and the ambient light conditions (e.g., Loftus and 317 

Seliger 1975; Dandonneau and Neveaux 1997). In our data, we see decreases in 318 

fluorescence almost daily during the middle of the day. This is likely due to non-319 

photochemical quenching. Non-photochemical quenching processes protect 320 

phytoplankton from photooxidative damage when light energy exceeds the capability of 321 
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the cell to utilize it (Müller et al. 2001). Quenching appears as a reduction in fluorescence 322 

during periods of high light intensity. Thus, care must be taken in interpreting the data 323 

from the brightest period of the day. 324 

 The results of laboratory and field experiments lend further support to the 325 

hypothesis that turbidity triggers larval release. Starr et al. (1991) found that in the 326 

laboratory, the larval release response is strongest when adult barnacles are fed 327 

phytoplankton in concentrations 3-6 times greater than those found in typical blooms. 328 

Barnacles in that study may not have been responding to the phytoplankton per se, but to 329 

the mechanical stimulus from turbidity caused by high concentrations of phytoplankton 330 

cells. This would explain why the barnacles did not respond to phytoplankton culture 331 

filtrates, only to the presence of the cells themselves (Starr et al. 1991). The barnacles 332 

also released when they were exposed to high concentrations of brine shrimp nauplii, 333 

which are not a normal food item for them or their larvae in the field (Starr et al. 1991). 334 

In the present study, we conducted field experiments to examine the larval release 335 

response of gravid adults to Skeletonema marinoi diatoms and synthetic beads. The larval 336 

release response was stronger when barnacles were exposed to the diatoms and beads 337 

than when they were exposed to control conditions. The responses to diatoms and to 338 

beads did not differ, suggesting that the barnacles respond to mechanical stimulation 339 

from the particles, not to the identity of the particles. 340 

 Starr et al. (1991) suggested that particles in the water column might indicate that 341 

a phytoplankton bloom is underway. Gyory and Pineda (2011) proposed that cannibalism 342 

and predation may be an important source of mortality for newly-released larvae, and that 343 

particles in the water column would signal turbid conditions that may provide a 344 
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temporary refuge for barnacle nauplii. Semibalanus balanoides will consume its own 345 

nauplii in the laboratory (Crisp and Patel 1960), and the gut contents of other barnacle 346 

species sometimes contain substantial numbers of conspecific larvae (Navarrete and 347 

Wieters 2000). Because suspension-feeding barnacle adults tend to be found in high 348 

abundance and high densities in the intertidal zone, larvae released into this environment 349 

could be at risk for cannibalism. A highly turbid environment may reduce that risk by 350 

temporarily swamping the filter-feeding appendages of adults with other particles. The 351 

results of our predation experiments showed that S. balanoides adults consumed fewer 352 

nauplii in turbid conditions than in control conditions, suggesting that mortality of larvae 353 

is indeed lower when turbidity is high. 354 

Our study provides a new explanation for the synchrony of larval release in the 355 

barnacle Semibalanus balanoides. We show that high turbidity triggers release, whether 356 

the source of turbidity is a phytoplankton bloom or not. However, it is possible that 357 

phytoplankton blooms also play an important role in the timing of release. The timing of 358 

reproduction in this species may have evolved so that larvae are developmentally ready to 359 

be released by the onset of winter/spring phytoplankton blooms in order to maximize the 360 

likelihood of a plentiful food supply, and the actual timing of larval release may have 361 

been fine-tuned further by cannibalism and predation pressures. As seen in our data, 362 

increases in phytoplankton abundance were often very brief, so the food limitation 363 

hypothesis would imply that short-lived increases in food supply have a substantial 364 

benefit on the growth or survival of larvae. Turbidity increases were also very brief, but 365 

the potential benefit to larval survival (reduced risk of cannibalism) would only be 366 

needed for a short period until nauplii dispersed away from the adult population. Other 367 
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crustaceans employ larval release strategies that reduce predation on newly-released 368 

larvae (e.g., Morgan and Christy 1995). Releasing larvae during turbid conditions to 369 

protect them from cannibalism or predation may be a strategy shared by other marine 370 

organisms that release propagules into the water column.  371 

372 
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Figure 1. Sampling sites along the northeastern coast of the United States: 1) Woods 478 

Hole, Massachusetts; 2) Narragansett, Rhode Island; and 3) New Castle, New Hampshire. 479 

Semibalanus balanoides release larvae sequentially, in this order, at these three sites. 480 

 481 

Table 1. Number of replicates for three treatments (Skeletonema marinoi, Beads, and 482 

Control) used in four experiments conducted in Rhode Island and New Hampshire. 483 

 484 

Figure 2. Field surveys of the reproductive condition of adult Semibalanus balanoides 485 

barnacles in Massachusetts in relation to environmental variables. (a) Percentage of adult 486 

barnacles with no embryos, shown with standard error bars, suggests that there were two 487 

major larval release events, indicated by grey vertical shading. (b) Percentage of adult 488 

barnacles that were brooding viable larvae. (c) Chlorophyll concentration. (d) Turbidity. 489 

(e) Water level relative to mean lower low water. (f) Water temperature. 490 

 491 

Figure 3. Field surveys of the reproductive condition of adult Semibalanus balanoides 492 

barnacles in Rhode Island in relation to environmental variables. (a) Percentage of adult 493 

barnacles with no embryos, shown with standard error bars, suggests that there were two 494 

major larval release events, indicated by grey vertical shading. (b) Percentage of adult 495 

barnacles that were brooding viable larvae. (c) Chlorophyll concentration. (d) Turbidity. 496 

(e) Water level relative to mean lower low water. (f) Salinity. (g) Water temperature. 497 

 498 

Figure 4. Field surveys of the reproductive condition of adult Semibalanus balanoides 499 

barnacles in New Hampshire in relation to environmental variables. (a) Percentage of 500 
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adult barnacles with no embryos, shown with standard error bars, suggests that there was 501 

one major larval release event, indicated by grey vertical shading. (b) Percentage of adult 502 

barnacles that were brooding viable larvae. (c) Chlorophyll concentration. (d) Turbidity. 503 

(e) Water level relative to mean lower low water. (f) Salinity. (g) Water temperature. In 504 

(c), (d), (e), (f), and (g), the gray line indicates values when water level was below 1.5 m 505 

above MLLW, and the black line indicates values when it was above 1.5 m. 506 

 507 

Figure 5. Pooled results of the Rhode Island and New Hampshire experiments in rank 508 

order. Each bar represents the number of nauplii released in each replicate jar at the end 509 

of experiments in which adult barnacles were exposed to Skeletonema marinoi diatoms, 510 

inert synthetic beads, or control treatment (plain filtered seawater). We rejected the null 511 

hypothesis that the larval release response was the same in all three treatments (p << 512 

0.001). We cannot reject the null hypothesis that the larval release response was the same 513 

for the S. marinoi and bead treatments (p ≈ 1).  514 

 515 

Table 2. Probability, estimated by the statistical model, that an adult barnacle produced 516 

nauplii for each of the four experiments conducted in Rhode Island and New Hampshire.  517 

 518 

Table 3. Estimates of θ (the unknown shape parameter of the negative binomial 519 

distribution) under the null hypothesis and under the three experimental treatments 520 

(including and excluding an outlier), and the estimated mean number of nauplii that each 521 

gravid barnacle adult released. 522 

 523 
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Figure 6. Pooled results of the Rhode Island and New Hampshire experiments in rank 524 

order. Each bar represents the percentage of adult barnacles that had not released larvae 525 

by the end of the experiment within a replicate jar. Replicate jars that had fewer than five 526 

percent of adults brooding larvae at the end of the experiment were considered to have 527 

undergone “mass release.” Twenty-seven percent of replicates for the control treatment 528 

had mass release. In contrast, forty-six percent and fifty-four percent of bead and diatom 529 

replicates, respectively, had mass release. 530 

 531 

Figure 7. Results of experiments in which adult barnacles were exposed to newly-532 

released nauplii under high-turbidity (Experimental) or low-turbidity (Control) conditions. 533 

Predation rates by adult barnacles on nauplii were lower in high-turbidity than in low-534 

turbidity conditions (ANOVA, p = 0.015). Triangles represent the means, boxes represent 535 

the median and standard error of the mean. Whiskers represent the minimum and 536 

maximum values. On average, 85.4% of nauplii in the turbidity treatment escaped 537 

predation, compared to 64.7% in the control treatment. 538 

 539 

 540 
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 544 
 545 
 546 
 547 
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 574 

 Rhode 
Island 

Rhode 
Island 

New 
Hampshire 

New 
Hampshire 

 Jan 11 2010 Jan 13 2010 Jan 31 2010 Feb 02 2010 
Skeletonema 4 3 5 5 

Beads 4 3 5 5 
Control 2 1 5 5 

 575 

Table 1 576 

 577 

578 



Turbidity triggers larval release 

 26 

 579 

 Rhode 
Island 

Rhode 
Island 

New 
Hampshire 

New 
Hampshire 

 Jan 11 2010 Jan 13 2010 Jan 31 2010 Feb 02 2010 

Probability 
under H0 

31.0% 3.2% 3.0% 4.1% 

Probability 
under H1 

24.0% 4.5% 3.0% 4.7% 

Probability 
under H1 with 

outlier removed 
18.0% 5.0% 3.0% 5.0% 

 580 

Table 2 581 

582 
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 583 

 Under H0 
Under H1 
Control 

Under H1 
Beads 

Under H1 
Diatoms 

Estimate of θ 0.0018 0.038 0.005 0.001 

Estimate of θ 
with outlier removed 0.006 0.042 0.0049 0.0051 

Estimated mean 
number of nauplii 
released per gravid 

adult 

165.67 22.81 203.08 195.08 

 584 

Table 3 585 

586 
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Electronic Supplement 1 616 
Data filtering method for the Massachusetts site 617 

 618 
The chlorophyll and turbidity raw data in Little Harbor, Massachusetts exhibited some 619 
unrealistically high values, probably caused by a piece of macroalga that wrapped itself 620 
around the instrument. Since the instrument sampled at a high frequency and not all of 621 
the data seemed to be contaminated, we devised an ad-hoc method for filtering out bad 622 
data. It proceeded in three steps: 623 
 624 

1. The instrument sampled once per second for 5 seconds every 5 minutes, so we 625 
computed the median for each of the 5-second sampling bursts. This eliminated 626 
bad data in situations when only some of the values in the sampling burst were 627 
contaminated (Fig 1b, 2b). 628 
2. To remove bad data in instances when the entire sampling burst was 629 
contaminated, we divided the sampling period into 2-hour bins, and we filtered 630 
the data in each bin as follows: we calculated the mean and standard deviation of 631 
the values in the 2-hour bin. If the standard deviation of the mean was equal to or 632 
greater than half of the mean, then we eliminated the highest 1/3 of values from 633 
the 2-hour bin (Fig 1c, 2c). 634 
3. Finally, we calculated the median values for each 1-hour bin, and those are the 635 
values that we used in our analyses (Fig 1d, 2d, Fig 3). 636 

 637 
638 
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Figure 1. The process of data filtration for chlorophyll measurements from Little Harbor, 673 
Massachusetts. (a) Raw chlorophyll data (b) Median values for each 5-second sampling 674 
burst (c) Results of filtering data in 2-hour bins. (d) Median values for each 1-hour bin. 675 
Note that the y-axis scale differs from the other three plots. 676 
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Figure 2. The process of data filtration for turbidity measurements from Little Harbor, 722 
Massachusetts. (a) Raw turbidity data (b) Median values for each 5-second sampling 723 
burst (c) Results of filtering data in 2-hour bins. (d) Median values for each 1-hour bin. 724 
Note that the y-axis scale differs among plots. 725 
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Figure 3. Raw turbidity and chlorophyll data are shown in gray dots. The black dots 736 
represent the data that have been processed via the filtering method described above. 737 
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Electronic Supplement 2 740 

Statistical model for testing the hypothesis that there is a difference in the larval 741 

release response of adult barnacles when exposed to one of three treatments 742 

 743 

 To begin with, consider a single experimental jar. Let m be the known number of 744 

barnacle adults and let y be the observed number of nauplii in the jar at the end of the 745 

experiment. An adult is not necessarily capable of producing nauplii, either because it 746 

had released the larvae prior to the start of the experiment, or because it does not respond 747 

to the experimental treatment. Let π be the unknown probability that an adult is gravid 748 

and receptive to the larval release cue being tested. We allow π to be different for each of 749 

the four experiments we conducted. 750 

 Under the model, the unknown number N of adults capable of producing nauplii 751 

has a binomial distribution with probability mass function given by: 752 

 753 

nmn

n
m

np −−







= )1()( ππ                       (1) 754 

 755 

where n is the number of adults that release larvae. 756 

Conditional on its being gravid and receptive to the larval release cue, we 757 

assumed that the number x of nauplii produced by a single adult follows a geometric 758 

distribution with probability mass function: 759 

 760 

xxp )1()( θθ −=      x = 0, 1, 2, …          (2) 761 
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 762 

with unknown parameter θ (0 < θ < 1). The geometric distribution is commonly used as a 763 

model for count data with a long upper tail. The mean and variance of x are (1 – θ) / θ and 764 

(1 – θ) / θ 2, respectively. 765 

 The total number y of nauplii observed inside a jar at the end of an experiment 766 

represents the sum of a random number N of independent and identically distributed 767 

geometric counts. The probability mass function of y is given by: 768 

 769 

∑
=

=
m

n
npnypyp

0

)()|()(                         (3) 770 

 771 
where p(y|n) is the conditional probability mass function of y given N = n, which can be 772 

shown to be negative binomial with scale parameter n and shape parameter θ.  The 773 

negative binomial probabilities required for the calculation of (3) were approximated by 774 

the method of Best & Gipps (1974).   775 

 The analysis proceeded using the basic model outlined above, allowing π to vary 776 

among the 4 experiments and with interest centering on testing the null hypothesis H0 that 777 

the geometric parameter p is the same for the three treatments (control, synthetic beads, 778 

and Skeletonema marinoi diatoms) against the alternative hypothesis H1 that it is not. We 779 

used the likelihood ratio (LR) test, which involved fitting the model under both H0 and H1. 780 

The LR test statistic is given by: 781 

 782 

Λ = 2 [log L1 – log L0]                             (4) 783 

 784 
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where L1 is the maximized likelihood value under H1 and L0 is the maximized likelihood 785 

value under H0. Under H0, Λ has an approximate chi-squared distribution with degrees of 786 

freedom given by the difference in the number of parameters under H1 and H0. In this 787 

case, there are 7 parameters under H1 (one geometric parameter for each treatment and 788 

one binomial probability for each of the four experiments), and 5 under H0 (one common 789 

geometric parameter and one binomial probability for each treatment). Thus, there are 790 

two degrees of freedom. 791 

 We repeated the entire analysis but omitted the outlier from the Skeletonema 792 

treatment, as this has undue influence on the results. We also used the LR test to test the 793 

null hypothesis that the geometric parameter is the same for the bead treatment and the 794 

Skeletonema treatment. 795 

 796 
 797 
 798 
 799 
Summary of variables involved in the statistical analysis of experimental data: 800 

m number of adult barnacles in a jar 
n number of adults that release larvae 
π unknown probability that an adult is gravid and receptive to a larval release cue 
N the unknown number of adults that are gravid and receptive to a larval release cue 
x number of nauplii produced by a single adult 
θ unknown shape parameter of the negative binomial distribution 
y total number of nauplii inside a jar at the end of an experiment 
Λ test statistic of the likelihood ratio test 
 801 
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