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ABSTRACT

In the 1970s and 1980s, there was considerable interest in near-equatorial variability at periods of days

to weeks associated with oceanic equatorial inertia–gravity waves and mixed Rossby–gravity waves. At

that time, the measurements available for studying these waves were much more limited than today: most

of the available observations were from scattered island tide gauges and a handful of short mooring

records. More than a decade of the extensive modern data record from the Tropical Atmosphere Ocean

(TAO)/Triangle Trans-Ocean Buoy Network (TRITON) mooring array in the Pacific Ocean is used to

reexamine the internal-wave climate in the equatorial Pacific, with a focus on interpretation of the zonal-

wavenumber/frequency spectrum of surface dynamic height relative to 500 decibars at periods of 3–

15 days and zonal wavelengths exceeding 308 of longitude. To facilitate interpretation of the dynamic

height spectrum and identification of equatorial wave modes, the spectrum is decomposed into separate

spectra associated with dynamic height fluctuations that are symmetric or antisymmetric about the

equator. Many equatorial-wave meridional modes can be identified, for both the first and second baro-

clinic mode. Zonal-wavenumber/frequency spectra of the zonal and meridional wind stress components

are also examined. The observed wind stress spectra are used with linear theory of forced equatorial

waves to provide a tentative explanation for the zonal-wavenumber extent of the spectral peaks seen in

dynamic height. Examination of the cross-equatorial symmetry properties of the wind stress suggests that

virtually all of the large-scale equatorial inertia–gravity and mixed Rossby–gravity waves examined may

be sensitive to both zonal and meridional wind stress.

1. Introduction

Equatorially trapped inertia–gravity waves were first

identified in the ocean by Wunsch and Gill (1976)

through analysis of Pacific Ocean island tide gauge re-

cords. Peaks in the frequency spectra at periods of about

3, 4, and 5.5 days were found to be common to islands

over a large range of latitudes and longitudes. The os-

cillations at these periods were coherent with large-scale

equatorial winds, but the available frequency spectra of

winds showed either no peaks at these special periods or

peaks that were much broader than the oceanic peaks.

Furthermore, the coherence phase between wind and

sea level was found to have 1808 shifts near the oceanic

spectral peaks, as would be expected from a resonant

response. The peaks in the frequency spectrum of sea

level were thus interpreted as oceanic resonances forced

by the wind, and Wunsch and Gill showed that the dis-

tinct frequencies coincided with the modal-minimum

frequencies predicted by linear equatorial wave theory

for the lowest fewmeridionalmodes of baroclinicmode-1

inertia–gravity waves. They also showed that the lat-

itudinal dependence of the power in the peaks at each

period matched reasonably well with the latitudinal

dependence of the pressure variance predicted for lin-

ear, baroclinic mode-1 inertia–gravity waves with basin-

scale zonal wavelengths.

Equatorially trapped inertia–gravity waves and mixed

Rossby–gravity waves (MRG) have since been observed

in all of the major equatorial basins (e.g., Weisberg et al.
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1979; Luther 1980; Eriksen 1980; Ripa and Hayes 1981;

Eriksen 1982; Garzoli and Katz 1981; Chiswell et al.

1987; Weisberg and Hayes 1995; Gilbert and Mitchum

2001). Improvements on the analysis of Wunsch and

Gill (1976) have been attempted. Luther (1980) used

an expanded tide gauge dataset together with a more

extensive analysis of the Pacific Ocean wind field to

refine the results and arguments of Wunsch and Gill.

Eriksen (1982) used cotemporal tide gauge records

to estimate wavenumbers as well as frequencies. Using

simultaneous records from two instruments having

a zonal separation of about 300 km, Chiswell and

Lukas (1989) were able to identify several zonal-

wavenumber/frequency points along the MRG dis-

persion curve and two near the meridional mode-2

inertia–gravity wave dispersion curve of the first baro-

clinic mode.

Improvements over the analysis of Wunsch and Gill

(1976) have been only incremental because of in-

adequacies in the spatial and temporal distribution of

the available data. The error bars on the wavenumber

estimates of Eriksen (1982) and Chiswell and Lukas

(1989), for instance, were such that wavenumbers could

have been either positive or negative. Consequently,

some of the issues raised by Wunsch and Gill remain

unresolved.

One such issue is the question of why the elevated

energy levels were found near the frequency minima of

the various inertia–gravity wave modes. Wunsch and

Gill (1976) offered two hypotheses: first, that the ocean

preferentially resonates at the wavenumber-frequency

locus where the group velocity vanishes, or second, that

the atmospheric forcing is strongest on basin scales,

causing the oceanic response to be concentrated at small

zonal wavenumbers. Given the available data, the fre-

quencies predicted by the two hypotheses could not be

distinguished from each other, leading Eriksen (1982) to

estimate wavenumber–frequency spectra. However, the

limited dataset still did not allow any distinction be-

tween an enhanced response at the wavenumber of

vanishing group velocity and an oceanic response to

basin-scale winds.

The mathematical analysis of Wunsch and Gill (1976)

favored the low-wavenumber-forcing hypothesis as an

explanation for the peaks they observed. Nevertheless,

they suggested that onemight expect to find elevated sea

level variance at the wavenumber associated with van-

ishing group velocity, and this concept continues to be

popular. In a companion paper (Durland and Farrar

2012), we show that a more detailed examination of the

theoretical solutions suggests that we should not nec-

essarily expect to see an enhanced sea level response at

the wavenumbers associated with vanishing group

velocity. One goal of the present study is to investigate

Wunsch and Gill’s second hypothesis, that the charac-

ter of the equatorial inertia–gravity wave field is a

consequence of the large-scale nature of the wind

forcing, by developing amore detailed characterization

of the zonal-wavenumber/frequency spectra of dy-

namic height and wind stress in the equatorial Pacific

Ocean.

Another issue raised by the early investigations con-

cerns the extent to which baroclinic modes higher than

the first might contribute to near-equatorial variability

at periods of days to weeks. On theoretical grounds,

Wunsch and Gill (1976) suggested that contributions to

sea level variability from the higher modes should be

minimal, and indeed, all of the nontidal spectral peaks

that they observed could be explained by theoretical

solutions for the first baroclinic mode. Luther (1980)

detected a 7-day peak in sea level that coincided with the

minimum frequency of a second baroclinic mode, first

meridional mode inertia–gravity wave, but he ultimately

opted against this interpretation based on sparse in-

formation about the meridional variation of the signal’s

amplitude. Virtually all of the identifications of Pacific

Ocean inertia–gravity waves mentioned above were for

baroclinic mode 1. Using a gridded sea level product

made from satellite altimetry data, Shinoda (2010)

found relatively elevated power on the oceanic MRG

dispersion curves for both baroclinic mode 1 and baro-

clinic mode 2. This suggests that the more extensive

datasets now available may yield evidence of higher

baroclinic mode inertia–gravity waves that were not

detected previously.

The Tropical Atmosphere Ocean (TAO)/Triangle

Trans Ocean Buoy Network (TRITON) mooring array,

with its long, overlapping records from sites spanning

the Pacific Ocean, allows a markedly improved estimate

of the zonal-wavenumber/frequency spectrum of equa-

torial inertia–gravity waves and MRG in the Pacific.

In this paper, we use daily-average estimates of sur-

face dynamic height relative to 500 decibars (hereafter

‘‘dynamic height’’) and surface winds from the TAO/

TRITON array to estimate wavenumber–frequency

spectra of dynamic height and wind stress in the 3–15-day

period band. When compared to theoretical dispersion

curves, the dynamic height spectra show evidence for

resonant excitation of MRG and inertia–gravity waves

of meridional modes 1 through 3, for both baroclinic

mode 1 and baroclinic mode 2. Comparisons of the

meridional dependence of spectral energy density with

theoretical predictions support these interpretations.

Symmetry filtering even provides evidence that the 5-day

peak in the dynamic height spectrum contains roughly

equal contributions from baroclinic mode 1, meridional
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mode 1, and baroclinic mode 2, meridional mode 2;

modes of opposite cross-equatorial symmetry over-

lapping in the same portion of wavenumber–frequency

space. Some of the inertia–gravity wave spectral peaks

extend to zonal wavenumbers distinctly removed from

the dispersion curve minimum, calling into question the

necessity of a vanishing group velocity for producing the

elevated energy levels.

Wavenumber–frequency spectra calculated for zonal

and meridional wind stresses allow us to confirm and

refine two important inferences made by Wunsch and

Gill (1976) and Luther (1980). Over most of the period

range of interest, both the zonal and meridional winds

of the equatorial Pacific (88S–88N) are dominantly

symmetric about the equator, and the wavenumber

content is indeed concentrated in relatively narrow, low-

wavenumber bands. The symmetry of the winds about

the equator suggests that symmetric dynamic height

signals should be forced primarily by the zonal winds,

and antisymmetric dynamic height primarily by the

meridional winds (e.g., Wunsch and Gill 1976; Durland

and Farrar 2012), although we show that even small

amounts of asymmetry in the winds can complicate the

situation. Nonetheless, a simplistic comparison of the

oceanic and atmospheric spectra based on the assump-

tion that the wind field is perfectly symmetric about the

equator does show that the most energetic peaks in dy-

namic height generally occur at wavenumbers and fre-

quencies where the relatively energetic parts of the wind

stress spectrum overlap with the free oceanic modes that

can be resonantly excited.

While the meridional spacing of the TAO/TRITON

mooring array cannot adequately resolve the meridi-

onal structure of oceanic equatorial waves and is thus

not suitable for a detailed study of the forcing-response

relationship, the zonal-wavenumber resolution is suf-

ficient to demonstrate that vanishing zonal group ve-

locity is not a requirement of oceanic resonance and

that the wavenumber content of the resonance appears

to be largely determined by the wavenumber content

of the wind stress. The spectra also show strong evi-

dence for second baroclinic mode inertia–gravity wave

variability that has apparently not yet been observed

and identified as such. This is perhaps not surprising,

because the second baroclinic mode has oppositely

phased pressure extrema at the surface and 500-m

depth, making the surface dynamic height relative to

500 decibars a quantity that is almost perfectly

‘‘tuned’’ for detection of the second baroclinic mode

(section 2).

Some relevant theoretical background is reviewed in

section 2, and the data and methods are described in

section 3. Zonal-wavenumber/frequency spectra of

dynamic height and wind stress are presented and

compared in section 4, and the results are summarized in

section 5.

2. Theoretical background

The strong equatorial currents are known to have

a significant effect on the dispersion relations and

meridional structures of equatorial Rossby waves

(e.g., McPhaden and Ripa 1990; Chelton et al. 2003;

Durland et al. 2011), but less is known about the ef-

fects of the currents on the higher-frequency MRG

and inertia–gravity waves. The work that has been

done on these higher-frequency (and higher-phase-

speed) waves suggests that they are less sensitive to

the equatorial currents. The Doppler shift becomes

relatively less important with increasing phase speed,

and the modification of the background potential

vorticity gradient by the second meridional deriva-

tive of the mean currents, which has a large effect

on Rossby waves (Durland et al. 2011), presum-

ably has less of an effect on the inertia–gravity wave

dynamics.

In a 1.5-layer model, McPhaden and Knox (1979)

showed that the effect of the equatorial Pacific currents

on the dispersion relations of low-wavenumber MRG

and inertia–gravity waves was relatively small and

could be represented largely by a constant frequency

shift. The relative frequency change was a few percent

at most for the lower-frequency MRG, and even this

discrepancy might have been removed by a different

choice for the mean layer depth (which is a somewhat

arbitrary quantity in the presence of a complex current

system and equatorially trapped waves: see Durland

et al. 2011). McPhaden and Knox (1979) also found

that, although the meridional structures of the waves’

zonal velocity were distorted by the mean zonal cur-

rents, the meridional structures of the waves’ pressure

and meridional velocity were only minimally affected

(also see McPhaden 1990). We will therefore interpret

our results under the assumption that the dispersion

relations and meridional structures of the pressure

signals associated with low-wavenumber MRG and

inertia–gravity waves are reasonably well described by

linear theory. The viability of this assumption will be

tested by comparisons of the theoretical predictions

with the observations.

The dispersion curves and meridional structures

associated with a particular baroclinic mode are de-

pendent on the nonrotating gravity wave speed associ-

ated with that vertical mode through the vertical

eigenvalue problem (e.g., Moore and Philander 1977).

We estimated the gravity wave speeds for baroclinic
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modes 1 and 2 (Fig. 1) following Chelton et al. (1998),

but using the time-averaged, mapped hydrographic data

of theWorld Ocean Atlas (WOA) 2005 (Locarnini et al.

2006; Antonov et al. 2006). There are spatial and tem-

poral variations in the hydrographic structure of the

equatorial Pacific and the associated gravity wave

speeds, but we will use 2.8 m s21 (baroclinic mode 1)

and 1.7 m s21 (baroclinic mode 2) as nominal values

representative of the time-mean state of the central

equatorial Pacific.

The left panel of Fig. 2 shows the linear equatorial-

wave dispersion curves over a slightly broader zonal

wavenumber–frequency (k–v) range than the one we

will investigate, for baroclinic mode 1 and baroclinic

mode 2. To simplify subsequent discussions, we will use

an abbreviated notation to refer to the meridional and

baroclinic mode numbers that uniquely identify a par-

ticular equatorial wave mode; for instance, we will

identify baroclinic mode 2, meridional mode 0 as

bc2m0. The curves in the bottom left corner, at fre-

quencies less than about 0.03 cycles per day (i.e., pe-

riods longer than 30 days), are for the Rossby modes,

with which we will not be concerned. The curves that

have frequency minima (at the intersections with the

red curve) are for the various modes of inertia–gravity

waves (m 5 1, 2, 3, . . .), and the two curves with no

frequency extrema are for the MRG (m 5 0) of bar-

oclinic modes 1 and 2.

The right panel of Fig. 2 shows the latitudinal struc-

tures of the meridional velocity V(m)(y), zonal velocity

U(m)(y), and pressure P(m)(y) for unit-amplitude free

waves of baroclinic mode 1, meridional modes m 5
0 through 4, all calculated at k 5 0.1 The correspond-

ing structures for baroclinic mode 2 are compressed

toward the equator by about 20%. We retain the no-

tation of Durland and Farrar (2012) in which the pa-

rentheses around the mode number subscript indicate

a function of y (latitude) as opposed to a Hermite

expansion coefficient. In keeping with the common

convention (e.g., Moore and Philander 1977), V(m) is real

while U(m) and P(m) are imaginary. This just means that

the U(m) and P(m) structures seen in Fig. 2 are in phase

with each other and they lag the corresponding V(m)

structure by a quarter of a period. The vertical black

lines in the right panel are at the nominal latitudes of the

TAO/TRITONmoorings (88S, 58S, 28S, 08, 28N, 58N, and

88N)– the difficulty of using the TAO/TRITON mea-

surements to resolve the meridional structure of the

equatorial waves is apparent.

An important point to note in Fig. 2 is that for

odd numbered modes U(m) and P(m) are symmetric

about the equator while V(m) is antisymmetric. The

opposite is true for the even numbered modes: U(m)

and P(m) are antisymmetric while V(m) is symmetric.

Because we will analyze dynamic height (pro-

portional to pressure), we will use the symmetry of

P(m) as the designation of the wave symmetry: the

odd-numbered meridional modes are referred to as

being symmetric and the even-numbered modes as

antisymmetric.

A second important point illustrated in Fig. 2 is that

for P(m) at small wavenumbers, the local extrema

closest to the equator are larger than the more pole-

ward extrema. Consequently, for meridional modes

m # 4 the power in dynamic height variability (pro-

portional to jP(m)j2) is largely confined to within 78–88
of the equator. The power in the dynamic height signals

associated with these waves at the 88N and 88S TAO/

TRITON moorings will be small compared to the

power closer to the equator and away from zeros of

P(m) (see also profiles of jP(m)j2 in Figs. 9–10). The

structure of jP(m)(y)j2 is wavenumber dependent, but

the concentration of energy in the equatorward ex-

trema applies throughout the band of wavenumbers

examined here.

FIG. 1. Gravity wave speeds for (top) baroclinic mode 1 and

(bottom) baroclinic mode 2 in the equatorial Pacific. Buoyancy fre-

quency profiles and baroclinic mode eigenvalues were calculated as in

Chelton et al. (1998), but using the hydrographic data of the WOA

2005. Values calculated by Chelton et al. (1998) for mode 1 based on

WOA 1994 data are represented by thin contours in the top panel.

Dispersion curves in subsequent figures are based on c1 5 2.8 m s21

and c2 5 1.7 m s21, values typical of the central equatorial Pacific.

1 These waves are ‘‘unit amplitude’’ in the sense each mode is

normalized so that
Ð ‘
2‘ V

2
(m)(y) dy5 1, and the amplitudes of

U(m)(y) and P(m)(y) then follow from their relationship to

V(m)(y) in the governing equations; see. Durland and Farrar

(2012), Eqs. (9)–(11), (17), and (18).
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The proportionality between the amplitude of a reso-

nantly forced wave and the wind stress can be expressed

as (e.g., Durland and Farrar 2012)

p
(m)

(y)}

ð‘
2‘

tya(y)V(m)
(y) dy

2

ð‘
2‘

txs(y)U(m)
(y) dy, m odd, (1)

p
(m)

(y)}

ð‘
2‘

tys(y)V(m)
(y) dy

2

ð‘
2‘

txa(y)U(m)
(y) dy, m even. (2)

V(m)(y) and U(m)(y) are the meridional structures

of meridional and zonal velocity associated with

a unit-amplitude free wave (see Fig. 2 and footnote 1),

FIG. 2. (left) Theoretical dispersion curves for baroclinic mode 1 (solid black curves) and

baroclinicmode 2 (dashed black curves). TheMRG (m5 0) and the gravestmeridional modes of

inertia–gravity waves (m5 1 to 4 labeled) are labeled according to the notation used in the text;

for example, themode labeled ‘‘bc2m4’’ is baroclinic mode 2,meridionalmode 4. The black lines

clustered in the lower left are Rossby wave modes, and the straight black lines emanating from

the origin are Kelvin wave modes. The red line intersects the inertia–gravity dispersion curves at

the modal frequency minima, that is, at the points of vanishing group velocity. Dispersion curves

and structures are based on gravity wave speeds of 2.8 and 1.7 m s21 for baroclinicmodes 1 and 2.

(right) Themeridional structures ofmeridional velocity (blue), zonal velocity (red), and pressure

(black), formeridional modes 0–4 at zero zonal wavenumber for baroclinic mode 1. Note that the

meridional structures of pressure and zonal velocity of the MRGwave (bc1m0) are the same, so

the pressure curve is obscured for this mode. The structures for baroclinicmode 2 are similar, but

compressed toward the equator by about 20%. The vertical lines in the right panel are at the

nominal latitudes of the TAO/TRITON array: 88S, 58S, 28S, 08, 28N, 58N and 88N.
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while p(m)(y) is the pressure signal of the forced wave.

The equatorially symmetric and antisymmetric parts of

the meridional wind stress are tys and tya, respectively,

and the corresponding parts of the zonal wind stress are

txs and txa. The proportionality is wavenumber and

frequency dependent, but (1)–(2) express all of the

forcing dependence. Basically, the efficiency with which

the wind excites a particular oceanic mode depends on

the projection of the meridional structure of the wind

stress onto the meridional structure of the free wave’s

velocity. The symmetry properties of the free waves al-

low the separation of the forcing expressions for sym-

metric and antisymmetric oceanicmodes seen in (1)–(2):

symmetric modes (m odd) are forced by symmetric

zonal winds and antisymmetric meridional winds; anti-

symmetric modes (m even) are forced by symmetric

meridional winds and antisymmetric zonal winds.

When the equatorial winds are symmetric about the

equator (tya 5 txa 5 0), the symmetric oceanic modes

(m odd) are forced only by the zonal wind stress, and the

antisymmetric oceanic modes (m even) are forced only

by the meridional wind stress. This greatly simplifies the

matter: we can make predictions about a particular

oceanic mode with knowledge of only one component of

the wind stress. When the wind stress field has sufficient

asymmetry about the equator, the situation becomes

more complicated. Consider an antisymmetric oceanic

mode forced by a symmetric meridional wind stress.

Suppose we now add an antisymmetric zonal wind stress

that is coherent with the meridional wind stress and

which projects equally efficiently onto the wave’s me-

ridional structure, but which has only 1/10th the power of

the meridional wind stress. One might be tempted to

ignore the small amount of power in the zonal wind

stress and consider the forcing to be essentially due to

a symmetric meridional wind stress. The amplitude of

the zonal wind stress, however, is roughly 1/3 that of the

meridional wind stress, and the addition of what appears

to be a relatively small amount of antisymmetric zonal

wind stress could lower the power in the resonant re-

sponse by over 50% or increase it by over 70%, de-

pending on the phase relations between tys and txa in (2).

When jtxaj2/jtysj2 (or jtyaj2/jtxsj2) is nonnegligible,

even rough quantitative predictions about the oceanic

resonances require that we have sufficient knowledge of

the meridional structure of the winds to carry out the

projections in (2) [or (1)]. We must also know the phase

relations between tx and ty. The limited meridional

spacing and extent of the TAO/TRITON data used here

prevents us from being able to make meaningful esti-

mates of the projections in (1) and (2). For now, we note

based on inspection of (1) and (2) that the ratios

jtxsj2/jtyaj2 and jtysj2/jtxaj2 can provide a rough measure

of the importance of zonal and meridional stress in

forcing the waves, assuming that the meridional struc-

tures of tx and ty project onto the structures of V(m)(y)

and U(m)(y) with equal efficiency.2 With the above ca-

veats in mind, some useful connections can still be made

between the observed variability in the winds and the

oceanic dynamic height (section 4e).

A final point to make regarding Fig. 2 is that, in con-

trast to the situation withP(m), themaximum amplitudes

of bothV(m) andU(m) are in the most poleward extrema.

Winds at the most poleward TAO/TRITON latitudes

(88S and 88N) are likely to be important in forcing me-

ridional modes 2 and higher for baroclinic mode 1, and

in forcing meridional modes 4 and higher for baroclinic

mode 2, even though the pressure signals of these modes

are much more tightly trapped to the equator.

Wewill draw comparisons between our results and the

sea level, or sea surface height (SSH), analyses of pre-

vious authors, and accordingly we note here that the

relation between SSH and dynamic height relative to

500 decibars depends on the baroclinic mode under

consideration. Using the eigenfunction calculations de-

scribed above (for estimating the gravity wave speed of

the baroclinic modes), we computed the ratio of surface

perturbation pressure (a proxy for SSH) to the differ-

ence in perturbation pressure between the surface and

500 m (a proxy for dynamic height relative to 500 deci-

bars) for baroclinic modes 1 and 2 (Fig. 3, top two

panels). This ratio gives a rough conversion factor for

estimating the SSH amplitude that would be expected

for a given amplitude of dynamic height relative to 500

decibars, if the baroclinic mode producing the dynamic

height signal is known. The ratio for mode 2 is less than

one and the ratio for mode 1 is greater than one,

meaning that, in comparison to SSH, measurements of

dynamic height relative to 500 decibars will enhance the

second mode and suppress the first mode. This can be

easily understood by noting that the vertical structure of

pressure for both modes has a maximum amplitude at

the surface, but the second baroclinic mode has anti-

phased extrema at the surface and 500 m, while the first

2 As the zonal wavenumber goes to infinity, the inertia–gravity

wave modes increasingly resemble pure, zonally propagating

gravity waves, and the amplitude of V(m) becomes small compared

to that of U(m). In this limit, the ratios jtxaj2/jtysj2 and jtyaj2/jtxsj2
have no special significance for the excitation of the waves– the

waves will only respond to tx, regardless of the strength of ty
(Durland and Farrar 2012). For MRG, this is also true as k / ‘,
but as k / 2‘, the waves only respond to ty. Within the wave-

number range considered here, the relative amplitudes of V(m)(y)

and U(m)(y) are comparable for both wave types, so the antisym-

metric part of the wind stress cannot be neglected a priori.
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baroclinic mode has pressure signals that are in phase at

the two depths. Thus, while the surface-pressure (or sea

level) signal of baroclinic mode 1 is larger than the dy-

namic pressure difference between the surface and

500 m (or dynamic height), the reverse is true for baro-

clinic mode 2. The bottom panel of Fig. 3 shows the ratio

of the amplitude of the baroclinic mode-1 SSH oscilla-

tion to the amplitude of the mode-2 SSH oscillation,

when the dynamic height amplitudes of the two modes

are equal. Throughout the equatorial Pacific, equivalent

dynamic height amplitudes for the two baroclinic modes

would imply roughly twice the amplitude, or four times

asmuch power, in the baroclinic mode-1 SSH signal as in

baroclinic mode 2.

3. Data and methods

a. Data

The spectral analysis presented here is based on

12 years (1997–2008 inclusive) of dynamic height esti-

mates from the TAO/TRITON mooring array, which

spans the equatorial Pacific waveguide with a nominal

longitudinal spacing of 158 (e.g., McPhaden et al. 1998).

All of the data used are from nine longitudes between

1568E and 958W (indicated in Fig. 4). We use the daily-

average estimates of the surface dynamic height relative

to 500 decibars provided by the TAO Project Office of

National Oceanic and Atmospheric Administration

(NOAA)’s Pacific Marine Environmental Laboratory.

The daily interval provides sufficient resolution for the

period range that we consider, and the space-time cov-

erage of the daily data retrieved by satellite telemetry is

better than that of the higher-frequency, internally re-

corded data, which are not always recovered. Salinity

is not typically measured on the TAO/TRITON moor-

ings, so the TAO Project Office used a climatological

temperature–salinity regression for each location and

depth to estimate salinity. In cases where temperatures

at 500-m depth were unavailable (e.g., instrument fail-

ure) and temperatures at 300-m depth were available,

temperatures at 500 m were estimated by a regression

analysis between available measurements from 300 and

500 m at that site. Further details of the dynamic height

estimation procedure are available on the TAO Project

Office web site (http://www.pmel.noaa.gov/tao/data_

deliv/dyn.html); Busalacchi et al. (1994) also provide

a discussion of the errors in dynamic height estimated

by this approach.

We also use wind measurements from the TAO/

TRITON surface buoys (also from 1997–2008) for in-

terpreting the observed variability in dynamic height.

The wind stress was estimated by application of the

Large and Pond (1981) bulk formula to the measured

winds, assuming neutral stability of the atmospheric

FIG. 3. Ratio of surface perturbation pressure to pressure dif-

ference between surface and 500 m for (top) baroclinic mode 1 and

(middle) baroclinic mode 2. This ratio is a good proxy for the ratio

of SSH amplitude to dynamic height amplitude for each mode and

can be used to compare the analysis of dynamic height to previous

analyses of SSH. (bottom) The ratio of mode-1 surface pressure to

mode-2 surface pressure when the two modes have equal pressure

anomalies relative to 500 m—this ratio gives (approximately) the

amplitude of a baroclinic mode-1 SSH signal relative to a baroclinic

mode-2 SSH signal when the two waves have equal amplitude in

dynamic height relative to 500 decibars.

FIG. 4. Availability of dynamic height data on 88S–88N for the

nine TAO/TRITON longitudes used in this study. Datapoints on

each latitude are represented by a different color dot, as indicated

in the legend. Numerous gaps of varying durations are apparent,

but data coverage is good overall. The black, dashed lines delineate

the time period used for analysis.
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boundary layer. Use of a stability-dependent drag co-

efficient requires coincident measurements of sea surface

temperature, air temperature, and humidity. Estimates of

wind stress made using the stability-dependent Coupled

Ocean–Atmosphere Response Experiment (COARE)

bulk flux algorithm (Fairall et al. 2003) are readily

available for the TAO/TRITON array (http://www.pmel.

noaa.gov/tao/oceansites), but the combined effect of the

data gaps in the various required parameters leads to

a marked reduction in the space-time coverage. We

performed our analysis with both versions of the wind

stress; the results were acceptably similar, but we judged

it preferable to use all of the available wind data and an

assumption of neutral stability in order to obtain better

statistical stability in the spectral analysis.

b. General discussion of methods

The particular types of spectral analysis used here are

modeled after an analysis of lower-frequency equatorial

waves (periods.20 days) by Farrar (2008) and previous

work (e.g., Wunsch and Gill 1976; Wheeler and Kiladis

1999; Roundy and Frank 2004). In particular, we will

estimate the zonal wavenumber-frequency spectrum at

each TAO/TRITON latitude and compute the latitudi-

nally averaged spectrum by averaging spectral estimates

from several latitudes (typically 58S, 28S, 08, 28N, and

58N). The main reason for doing this is that different

vertical andmeridionalmodes have differentmeridional

structures, so the zonal wavenumber–frequency spec-

trum at some particular latitude will be influenced in

a complicated way by both the overall energy in the

various modes and the meridional structure of those

modes. For example, if a particular meridional mode

had a zero crossing at the latitude under consideration,

that mode would make no contribution to the spectrum

at that latitude, even if the mode is more energetic than

all the others. We present the latitudinally averaged

spectrum in an attempt to provide a summary de-

scription of several modes at once. Given that the 28–38
meridional spacing of the TAO/TRITON moorings

cannot adequately resolve the meridional modal struc-

tures of baroclinic equatorial waves (especially higher

meridional and vertical modes), our latitudinally aver-

aged spectra are an imperfect representation of the true

latitudinal average. Averaging over a number of TAO/

TRITON latitudes is nonetheless beneficial for the

present purposes, because our interest is not in the true

latitudinal average but instead in identifying the modes

that are present and understanding how the amplitude

of a given mode is distributed in wavenumber and fre-

quency. The principal risk associated with the lack of

meridional resolution in this analysis is that the rela-

tive contribution of some modes to the latitudinally

averaged dynamic height variance will be over or un-

derestimated to the extent the TAO/TRITON latitudes

tend to coincide with extrema or nodes of those modes.

We will also use a simple filtering procedure to de-

compose the variability into motions that are symmetric

or antisymmetric about the equator (e.g., Yanai and

Murakami 1970; Zangvil and Yanai 1980; Tsai et al.

1992; Wheeler and Kiladis 1999; Farrar 2008). Though

our implementation of this procedure is slightly differ-

ent than previous ones we have seen (next subsection),

the basic idea of the filtering procedure is simply to add

(or subtract) signals from opposite latitudes about the

equator to cancel meridionally antisymmetric (or sym-

metric) contributions. Examination of the spectra of

these symmetry-filtered fields, together with theoretical

expectations about the symmetry properties of the var-

ious equatorial waves, can be useful for understanding

which equatorial wave mode is responsible for an ob-

served spectral peak, even if the observed modes do not

have the perfectly symmetric or antisymmetric meridi-

onal structures predicted by classical equatorial wave

theory (Farrar 2008).

Spectral analysis is clearly not the most direct way of

gleaning information on some other properties of

equatorial waves, such as their variability in time and

space. There is surely spatial and temporal variability in

the amplitude, propagation, and meridional structure of

particular wave modes. For example, Luther (1980)

showed that the amplitude of 3–5-day sea level oscilla-

tions was significantly lower at the Galapagos station

(east Pacific) andwest of theMarshall Islands than it was

in the central Pacific. Seasonal modulation of wave

amplitude seems likely, too. The results for a given

spectral band represent a composite wave, averaged

over time and longitude. As such, the spectral results

here may be viewed as a description of the ‘‘climatology

of equatorial waves’’ in the Pacific (using the termi-

nology of Roundy and Frank 2004). The variability of

equatorial waves in time and space is of interest, but it

will need to be addressed in a different study.

c. Methods

The in situ data from the TAO/TRITON array, going

back to the 1980s, make up a remarkable and un-

precedented dataset, but there are numerous data gaps

owing to the challenges of long-term deployments of

surface moorings at sea (e.g., instrument failure, moor-

ing failure, and fishing vandalism). The various data gaps

in time and depth lead to a large number of prolonged

(.10 days) gaps in estimates of dynamic height (which

involves a vertical integral over depth and thus requires

data from sensors at each depth). The time–longitude

dynamic height data coverage is shown in Fig. 4. Our
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choice of a particular method for estimating the zonal-

wavenumber/frequency spectrum was driven by a desire

to use as much of the data as possible, despite the data

gaps. The time period for this analysis (1997–2008, in-

clusive) was chosen because it is a time of relatively few

data gaps. We will first discuss how we estimated the

Fourier coefficients from longitude-time sections of data

on each latitude, before discussing symmetry filtering

and estimation of the zonal wavenumber–frequency

spectra.

If data were available with uniform spacing in time

and longitude, the most straightforward way of esti-

mating the zonal-wavenumber/frequency spectrum

would be to use a two-dimensional fast Fourier trans-

form (FFT) and standard spectral methods (e.g., Farrar

2008, 2011). The dynamic height sampling is not uniform

in time or longitude, primarily because of missing data,

but also because the longitudinal spacing of the TAO/

TRITONmoorings is not regular in theWestern Pacific.

If only ‘‘small’’ data gaps (i.e., gaps shorter than the

periods of interest) were present, it would be sensible to

interpolate across the gaps and proceed with an FFT-

based spectral estimate. We attempted this approach,

and obtained results consistent with the ones presented

below, but even with very aggressive interpolation

(i.e., interpolating gaps longer than one month and in-

terpolating across 308 gaps in longitude), we were only

able to obtain about three, 180-day longitude–time sec-

tions for analysis at each latitude (on average) from

more than 20 years of data.

Rather than discard so much hard-won data, we

opted to estimate the Fourier coefficients by fitting

sinusoids to the data in time and longitude using

a variant of least squares. In other words, we sup-

pose that each data point, hn, reflects contributions

from M zonally and temporally periodic waves (and

noise),

hn 5  �
M

m51

[am sin(kmxn 1vmtn)

1bm cos(kmxn1vmtn)]1 noise, (3)

where v and k are the angular frequency and zonal

wavenumber, x and t are longitude and time, and am and

bm are Fourier coefficients. Each v–k pair is assigned an

index m, and each longitude–time pair (i.e., each data

point) is assigned an index n. The fit is performed in-

dependently for each latitude.

We could equivalently write,

h5Ex1 n , (4)

where h is an N 3 1 vector of the dynamic height ob-

servations from each longitude and time, n is an a pos-

teriori estimate of the noise in the observations (i.e., n is

the model–data misfit), x is a 2M 3 1 vector of the

Fourier coefficients, and E is an N 3 2M matrix con-

taining columns of sin(kmxn 1 vmtn) and cos(kmxn 1
vmtn) evaluated at eachm (i.e., k–v pair) and n (i.e., the

longitude-time of each sample). The form of E and x is

given explicitly by Wunsch (1989). The number of

Fourier harmonics we have chosen to fit (described be-

low) is less than the number of data points, making the

inversion for x formally overdetermined. There are

many viable means by which to estimate the Fourier

coefficients– one could choose from methods like least

squares, maximum entropy, Gauss-Markov, singular

value decomposition, and Backus–Gilbert estimates,

among many others.

After experimentation with several methods for esti-

mating the Fourier coefficients in Eq. (4), we decided to

use the tapered least squares approach (e.g., Wunsch

1989, 1996). We made this choice because the results

were essentially the same regardless of the method used,

and the tapered least squares approach is a relatively

transparent and computationally efficient method that

allows for noise in the data. In its general form, the ta-

pered least squares approach is also known as ridge re-

gression (e.g., Draper and Smith 1998, pp. 387–400) or as

Tikhonov regularization (e.g., Aster et al. 2005, pp. 89–

118), and with the particular choice of tapering param-

eter used here (based on an expected signal-to-noise

ratio), the estimate could also be considered a Gauss-

Markov estimate (and hence an optimal one, in the

sense that it would have the smallest possible mean-

square error; e.g., Wunsch 1996), if the a priori statistics

of the Fourier coefficients and the noise met certain

conditions.3 The tapered least squares solution to

Eq. (4) is

x 5

 
ETE1

s2
n

D2
x

I

!21

ETh , (5)

3 These conditions are that the measurement noise be white and

the best-guess a priori estimate of the Fourier coefficients be one

that assigns them all equal value, with a sum of squares equal to the

expected dynamic height variance. The latter would correspond to

a white a priori spectrum, but with a very particular phase ar-

rangement. The dynamic height spectrum is not expected to be

white, so our estimate is not optimal, but we have chosen the ta-

pered least squares approach in part out of a spirit of agnosticism,

to avoid giving the impression that our expectations have influ-

enced the result.
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which minimizes the sum of squares,

J5nTn1
s2
n

D2
x

xTx . (6)

Minimization of the cost function J simultaneously

minimizes the solution variance (proportional to xTx,

the sum of squares of the Fourier coefficients) and the

mean square model–data misfit (proportional to nTn),

with a relative weighting, or tapering parameter, given

by s2
n/D

2
x. In the general implementation of tapered least

squares, the tapering parameter could be assigned any

value, but, in viewing the tapered least squares method

as a special case of theGauss–Markov theorem (Wunsch

1989, 1996), it is clear that the tapering parameter can be

considered to be an inverse signal-to-noise ratio (SNR),

expressing the relative variance of the measurement

noise and the squared Fourier coefficients. We thus

chose s2
n to be the expected noise variance, and based on

an expectation that Parseval’s relation should hold ap-

proximately, we chose D2
x to be the sample variance on

each latitude divided by the number of Fourier co-

efficients estimated.4 We took the standard deviation of

the noise (sn) in the daily-average dynamic height to be

0.5 cm. The results are almost completely insensitive to

the specific choice of s2
n/D

2
x, because the SNR is high.

Prior to estimation of the Fourier coefficients for each

latitude using Eq. (5), we performed some data pre-

processing. We first removed the time-mean dynamic

height at each location, which necessarily makes the

longitude–time mean at each latitude zero and also re-

moves the time-mean zonal structure (the most sub-

stantial trend in the data). It was at this point that we

computed the data variance on each longitude-time

section for specification of the SNR in the tapered least

squares problem formulation. We then tapered the

longitude-time sections to zero usingHann (i.e., squared

cosine) windows to reduce spectral sidelobes (e.g.,

Thompson 1971; Scargle 1982). Because we use only nine

TAO/TRITON longitudes, tapering the data records to

zero in longitude would eliminate about 22% (i.e., 2/9) of

the data, which is clearly unacceptable, so we instead

added fictitious, zero data at longitudes 158 east and west

of the array (i.e., we zero paddedwith one longitude point

on each side).After estimating the Fourier coefficients on

each latitude, we renormalized them so that the spectrum

would have the same total variance as the dynamic height

data did before the taper was applied.

A key choice to be made in formulating the problem

posed in Eq. (4) is the choice of frequencies and zonal

wavenumbers at which estimates of the Fourier co-

efficients are sought. In principle, one could attempt to

estimate the Fourier coefficients for any zonal wave-

number and frequency, but the record length and sam-

ple spacing (and data gaps) limit the spectral resolution

that can be attained. We invested substantial effort in

assessing the resolution of the time-longitude sampling

and the sensitivity of our results to the frequencies and

zonal wavenumbers used in E and settled on the follow-

ing, commonsense choice of uniformly spaced frequen-

cies and zonal wavenumbers. With the 1-day average

dynamic height data used here, the shortest resolvable

period is two days, so themaximum frequency included in

the fit is vmax 5 2p/2 days. With most of the TAO/

TRITON array having a zonal spacing of 158 of longitude
(Fig. 4), the shortest wavelength that wewill attempt to fit

is 308 (i.e.,kmax5 2p/308). The remaining choices concern

the fundamental harmonics that determine the spacing in

wavenumber and frequency. The longest zonal wave-

length that we could reasonably expect to resolve is equal

to the zonal extent of the array (1098), but we actually

chose to use a slightly longer fundamental wavelength

(1358, or Dk 5 2p/1358) as a compromise that minimizes

spectral sidelobes because it is a multiple of the most

common zonal spacing (158) and nearly fits the zero-

padded zonal domain (1398) (serving to make the dis-

crete sinusoids nearly orthogonal). The consequence of

using a fundamental wavelength longer than the data

array is a slight decrease of statistical independence

between adjacent wavenumber bands, as also happens

when the spectrum is computed for a uniformly spaced,

zero-padded or tapered record using an FFT. The highest

frequency resolution that we could reasonably expect is

one cycle per record length (12 years), but, to limit the

size of the matrix inversion in Eq. (5), we chose a funda-

mental frequency of 1/6-years (i.e., Dv 5 2p/6-years).

Using twice as large a fundamental frequency should be

similar to computing a two-band average of the spectrum

estimated with the smaller fundamental frequency. The

frequencies and wavenumbers used in the fit thus span

wavenumbers of 6kmax with a spacing of Dk and fre-

quencies of 0 to vmax with a spacing of Dv. With this

choice of frequencies and wavenumbers, each latitude

4 Parseval’s theorem states that, for uniformly spaced samples,

the integrated spectral power equals the variance of the data. This

result relies on the orthogonality of sinusoids with the usual Fourier

frequencies on a uniform sampling grid, but sinusoids on an ir-

regular grid are not in general orthogonal, so Parseval’s theorem

does not generally hold for a spectrum estimated from gappy data.

In addition, a key premise of the tapered least squares method is

that there is noise in the data and that a solution that represents all

of the variance in the data is thus undesirable. Nonetheless, given

our reasonably good SNR, we view an acceptable solution as one

that has about the same amount of variance in the spectrum as in

the raw data.
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has about three timesmore data points than spectral bands,

making the fit formally overdetermined. After computing

the spectrum, we averaged over 13 frequency bands to

further increase the degrees of freedom and statistical re-

liability of the estimate.

Given an estimate of the Fourier coefficients, the power

spectral density can be expressed

Cm 5 (2p)2
ha2m 1b2mi
2DkDv

(7)

where the angle brackets indicate averaging over lati-

tude and/or frequency, Dk and Dv are the wavenumber

and frequency bandwidth, and the factor of two in the

denominator yields the mean square of the sine and co-

sine components (a2m and b2m). For the averaging indicated

by angle brackets, most results shown are averaged over

blocks of 13 frequency bands and over five latitudes (58S,
28S, 08, 28N, and 58N); the main exception is when spec-

tral density is compared at different latitudes, in which

case no latitudinal averaging is done. The factors of 2p

are included so that the power spectral density is given

in units of dynamic-centimeters squared per cycle-per-

day per cycle-per-degree (not in radians). We have not

included data from 88S and 88N in the averages because

the spectral power in dynamic height is expected to be

relatively low at these latitudes for all modes of interest

(see Section 2 and Fig. 2). Including data from these

latitudes would only serve to lower our signal-to-noise

ratio.

One approach for examining motions that are sym-

metric or antisymmetric about the equator (e.g., odd and

even numbered equatorial modes) is to filter the data for

cross-equatorial symmetry by adding or subtracting data

from opposite latitudes about the equator. Doing this in

the time–space domain with the TAO/TRITON data is

not desirable, as it would nearly double the number of

missing data, but, given estimates of the Fourier co-

efficients at opposite latitudes, the spectrum of symme-

try filtered dynamic height can be expressed

C6
m(y)5 (2p)2

h[am(1y) 6  am(2y)]21  [bm(1y) 6  bm(2y)]2i
4DkDv

(8)

where use of the minus sign, for example, yields the

spectrum of equatorially antisymmetric variability formed

from latitudes y8 from the equator. Normalization by a

factor of four, rather than by the factor of two used in

Eq. (7), has no special significance, but it ensures that

the average of the symmetric and antisymmetric spectra

equals the average of the spectra computed from the two

latitudes separately. Note that this convention has the

effect of doubling the spectral density when the signal is

either purely symmetric or purely antisymmetric about

the equator. For example, when the variability is purely

symmetric,C1
m 5 2Cm.C

1
m evaluated only on the equator

is always twice the value ofCm evaluated on the equator,

because the antisymmetric part is zero there by definition.

A formal estimate of the error in the estimated Fourier

coefficients is a natural part of the tapered least squares

solution [e.g., Wunsch 1989, his Eq. (11b)]. Our primary

interest here is not in the error of the Fourier coefficients

themselves, but in the error of their mean square, i.e., in

the power spectral density [Eqs. (7) or (8)]. We can es-

timate the random spectral error by noting, in analogy

with the usual error estimates for Fourier spectra, that

if the input data (e.g., dynamic height) were a normally

distributed random variable, the linear estimate of the

Fourier coefficients would also be random and nor-

mally distributed, so their mean-square value would fol-

low a chi-square distribution, with percentage confidence

intervals for the spectral density following directly (e.g.,

Bendat and Piersol 2000, p. 98). We take a reasonable,

but somewhat optimistic, estimate of the number of de-

grees of freedom for each estimated Fourier coefficient to

be the ratio of the number of data points to the number of

Fourier coefficients estimated. Because of the different

data gaps at the different latitudes, the estimated number

of degrees of freedom per Fourier coefficient varies be-

tween latitudes; it was 1.5 6 0.05 for all latitudes on 58S
to 58N,while estimates at 88S and 88Nwere lower (1.0 and

1.4). Taking spectral errors from different latitudes and

frequency bands to be independent, the total number of

degrees of freedom for the estimate in a single band [i.e.,

Eq. (7)] will be increased in proportion to the number of

latitudes times the number of bands averaged. For ex-

ample, for the spectrum shown in Fig. 5 (section 4), 13

frequency bands and five latitudes were averaged, so the

spectrum was estimated to have 195 degrees of freedom

(’1.5 3 2 3 13 3 5). This estimate of the degrees of

freedom is clearly optimistic, but we have found the re-

sulting confidence intervals to be a useful measure of the

statistical uncertainty, and we note that the stated 95%

confidence intervals would be about the same size as 90%

confidence intervals if the estimated number of degrees

of freedom were reduced by 30%. Note that adjacent

frequency and wavenumber bands are not independent

because of the tapering and zero padding, but spectral
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bands separated by a few points in wavenumber or fre-

quency can be considered independent.

4. Results

a. Dynamic height spectra

Thepower spectral density of dynamic height, averaged

over the 58S–58N part of the TAO/TRITON array, has

spectral peaks that coincide with the dispersion curves of

several distinct equatorial modes (Fig. 5). Recall our ab-

breviated notation for meridional and baroclinic mode

numbers (section 2): baroclinic mode 2, meridional mode

1, for example, is referred to as ‘‘bc2m1.’’ We see spectral

peaks on the dispersion curves for bc1m0, bc2m0, bc2m1,

bc1m2, bc1m3, and near 5-day periods, where the dis-

persion curves of bc1m1 and bc2m2 overlap. There is

also a suggestion of elevated spectral power near higher

modes (e.g., bc1m4).

Taking advantage of the symmetry properties of lin-

ear waves, we can gain further confidence in the mode

identification by calculating separately the spectra of

dynamic height fluctuations that are symmetric or anti-

symmetric about the equator (Fig. 6). The spectral peaks

in these symmetry-filtered spectra agree with expecta-

tions from linear theory. In the antisymmetric spectrum

(Fig. 6, right panel), the peaks for the antisymmetric

modes bc1m0, bc2m0 and bc1m2 are enhanced relative

to the background, while the peak for the symmetric

mode bc2m1 has vanished. Spectral levels in the anti-

symmetric spectrum remain elevated near 5-day periods,

suggesting that the antisymmetric mode bc2m2 con-

tributes to the peak seen in the unfiltered spectrum near

5-day periods. In the symmetric spectrum (Fig. 6, left

panel), the 7-day peak associated with the symmetric

mode bc2m1 (near 0.15 cpd) is enhanced relative to the

background, andwe seeweak peaks near 3.5 and 4.5 days,

apparently associated with the symmetric modes bc1m3

and bc2m3. We also see elevated spectral levels in the

symmetric spectrum near 5 days (0.2 cpd), suggesting that

the dynamic height variance at 5-day periodsmay contain

roughly equal contributions from the symmetric mode

bc1m1 and the antisymmetric mode bc2m2.

The symmetric–antisymmetric identification is facili-

tated by examination of the logarithm of the ratio of the

symmetric spectrum to the antisymmetric spectrum

(Fig. 7). This quantity expresses the relative magnitude

of symmetric and antisymmetric variability; for example,

a value of10.3 means that the symmetric power exceeds

the antisymmetric power by a factor of 100.3 ’ 2. One

virtue of presenting the symmetry-filtered spectra this

way is that, because the logarithm of the ratio is identical

to the difference of the logarithms, displaying a confi-

dence interval is relatively straightforward, so that one

can easily assess whether there is a statistically signifi-

cant difference between symmetric and antisymmetric

energy.5 There is a statistically significant preference for

meridionally symmetric dynamic height fluctuations

near the theoretically symmetric Kelvin waves (bc1 and

bc2), bc2m1, bc2m3, and bc1m3 modes (Fig. 7). There is

a statistically significant preference for antisymmetric

FIG. 5. Wavenumber–frequency power spectrum of surface dy-

namic height relative to 500 dbar, averaged over 58S–58N (from

TAO/TRITON moorings at 58S, 28S, 08, 28N and 58N). Solid black

and dashed black curves are the theoretical dispersion curves for

baroclinic modes 1 and 2, respectively, as in Fig. 2. The estimated

95% confidence interval is shown next to the color scale—a dif-

ference in spectral density of about 3.5 contours can be considered

statistically significant. The elevated spectral levels near the free-

wave dispersion curves suggest a resonant oceanic response.

5 The confidence interval displayed in Fig. 7 is for judging

whether there is a statistically significant difference in symmetric

power and antisymmetric power at a particular wavenumber and

frequency, which is done by using the confidence interval to de-

termine whether the value plotted is bounded away from zero (i.e.,

whether the ratio of the symmetric spectrum to the antisymmetric

spectrum is significantly different from 100 5 1). The upper and

lower confidence intervals are each about 2.5 contour intervals, so

any values in the figure that are three contour intervals away from

zero represent a statistically significant symmetry preference.
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dynamic height fluctuations near the theoretically anti-

symmetric MRG (bc1m0 and bc2m0) and the bc1m2

mode. There is also a suggestion of an antisymmetric

preference near the bc2m4 and bc1m4 dispersion curves

at 3.8 and 3 days, although the preference is not signifi-

cant at 95% confidence.

The strong 5-day peak, seen in both the symmetric and

antisymmetric spectra, is not evident in Fig. 7 because of

the nearly equal amounts of symmetric and antisym-

metric spectral energy density. There is a preference for

meridionally symmetric variability on the bc1m1 disper-

sion curve near the larger positive wavenumbers, where

this dispersion curve separates from that of antisymmet-

ric mode bc2m2. The interpretation that the 5-day peak

contains two distinct modes is further supported by an

examination of the spectral power as a function of lati-

tude, which we carry out in the next subsection.

b. Meridional structures

The relatively sparse latitudinal spacing of the TAO/

TRITON array does not lend itself to a clear identifica-

tion of themeridional structure of highmeridionalmodes,

but it is worth examining the latitudinal dependence of

the 5-day peak, which lies on the dispersion curves of two

low meridional modes of opposite symmetry. The total,

symmetric, and antisymmetric spectra were calculated for

each of the TAO/TRITON latitudes (88S, 58S, 28S, 08,
28N, 58N and 88N). The spectra were averaged over the

wavenumber–frequency box shown in the right panel of

Fig. 8 and plotted against latitude in the three left-hand

panels. Superimposed on the top two panels is the theo-

retical meridional structure of the squared pressure fluc-

tuation (‘‘P2(y)’’) for a symmetric bc1m1 wave at k 5 0,

the central wavenumber of the averaging box. The theo-

retical structure is scaled, somewhat arbitrarily, to have a

maximum value 1.2 times that of the largest spectral

density estimate in this wavenumber–frequency band.

The squared pressure structure of the antisymmetric

mode bc2m2 is superimposed on the bottom-left panel,

similarly scaled. Although the mooring array cannot ad-

equately resolve themeridional structure of thewaves, the

meridional variations in spectral levels of the symmetric

and antisymmetric signals are consistent with the theo-

retical structures of the symmetric bc1m1 and antisym-

metric bc2m2 modes, giving support to the interpretation

that both modes are present near 5-day periods.

The 5-day peak was identified in tide gauge records

by Wunsch and Gill (1976) and Luther (1980) as the

FIG. 6. Symmetry-filtered wavenumber–frequency power spectra of surface dynamic height relative to 500 dbar,

averaged over 58S–58N (from TAO/TRITON moorings at 58S, 28S, 08, 28N and 58N). (left) Spectrum of symmetric

dynamic height variations. (right) Spectrum of antisymmetric dynamic height variations. The solid and dashed curves

are the theoretical dispersion curves for baroclinic modes 1 and 2, respectively, as in Fig. 2. In each panel, the red

curves indicate theoretical dispersion curves of modes that have the same symmetry as the filtered spectrum. The

estimated 95% confidence interval is shown next to the color scale in each panel.
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symmetric mode bc1m1, based in part on examination of

the sea level spectrum as a function of latitude, which

showed good agreement with the theoretical structure of

bc1m1. The meridional structure of the total dynamic

height spectrum in this band (upper-left panel of Fig. 8)

does not resemble the structure of bc1m1, but this re-

inforces our interpretation that the antisymmetric en-

ergy in dynamic height is likely due to bc2m2. As noted

in section 2, when dynamic height relative to 500 deci-

bars is converted to SSH, any baroclinic mode-2 energy

should be attenuated by roughly a factor of 4 relative to

baroclinic mode-1 energy. If the peak in the antisym-

metric spectrum is due to baroclinic mode 2, then the

meridional variation of the total SSH spectrum should

look more like the middle left-hand panel, in agreement

with the SSH analyses of previous authors.

Figure 9 shows the meridional structures of the dy-

namic height spectrum (without symmetry filtering) at

the wavenumbers and frequencies where the dispersion

curves of the lowest five meridional modes (MRG and

four lowest inertia–gravity modes) cross the k 5 0 axis,

for both baroclinic modes 1 and 2. (Each spectral esti-

mate shown is an average over the 13 frequency bands

and two wavenumber bands nearest to the wavenumber

and frequency where the dispersion curve crosses k5 0.)

Figure 10 shows the structure of the symmetric or anti-

symmetric spectra at the same wavenumbers and fre-

quencies, with the symmetric or antisymmetric spectra

being chosen for display depending on the theoretical

symmetry of each mode. The higher meridional modes

cannot be resolved by the TAO/TRITON array, and

measurements at individual latitudes become more sen-

sitive to slight shifts in the meridional structure. Never-

theless, the agreement between the observed variability

and the theoretical wave structures is reasonably good in

all cases except bc1m3, near 3.5 days. The agreement with

the theoretically symmetric meridional structure for this

mode is no better for the symmetric spectrum (Fig. 10)

than for the total spectrum (Fig. 9).We speculate that this

band may contain contributions from another theoreti-

cally symmetricmodewith a nearby dispersion curve (i.e.,

bc2m5), making the symmetry filtering ineffective for

isolating the bc1m3 mode.

c. Wavenumber content of the oceanic variability

In addition to the identification of second baroclinic

mode inertia–gravity wave variability and the consis-

tency checks with linear theory via symmetry filtering,

the other major novelty of Figs. 5–7 is their depiction of

the wavenumber content of the oceanic spectral peaks.

The wavenumber limits of the plots are the nominal

Nyquist wavenumbers of the TAO/TRITON array (61

cycle per 308 longitude), and the free-wave dispersion

curves are near their minimum frequency throughout

this wavenumber range. Nevertheless, it is possible to

make some important observations, particularly with re-

spect to meridional modes 1 and 2, for which the wave-

number at the frequency minimum (locus of vanishing

group velocity) is themost distinctly removed from k5 0.

For meridional mode 1, the spectral power in both

baroclinic modes (1 and 2) remains high across most of

the resolvable wavenumber band (Fig. 6, left panel). For

meridional mode 2, the spectral power in both baroclinic

FIG. 7. Base-10 logarithm of the ratio of symmetric dynamic

height spectrum to the antisymmetric dynamic height spectrum

(again, using data from 58S–58S), equivalent to the log of symmetric

powerminus the log of antisymmetric power. At wavenumbers and

frequencies where this quantity is positive, the symmetric power

exceeds the antisymmetric power; for example, where the quantity

contoured equals 0.3, the symmetric power exceeds the antisym-

metric power by about a factor of two (i.e., 100.3’ 2). The solid and

dashed curves are the theoretical dispersion curves for baroclinic

modes 1 and 2, respectively, as in Fig. 2, with red curves indicating

theoretically symmetric modes and blue curves indicating theo-

retically antisymmetric modes. The estimated 95% confidence in-

terval is shown next to the color scale: values that are about 2.5

contour intervals away from zero represent a statistically significant

symmetry preference. A clear symmetry preference that agrees

with theoretical expectations is seen over most of the spectrum,

with the main exception being near 5-day periods (0.2 cpd), where

two dispersion curves of opposite symmetry overlap.

1872 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 42



modes is more confined to small wavenumbers (Fig. 6,

right panel). There is a weak spectral peak near the fre-

quency minimum of bc1m1 (e.g., Fig. 6, left panel), but it

is only about 10%higher than the power level acrossmost

of the rest of the wavenumber band, which is not a sta-

tistically significant difference. For bc1m2 and bc2m2

(Fig. 6, right panel), the spectral peaks are at the smallest

resolvable negative wavenumber, which is less negative

than the wavenumber associated with vanishing group

velocity. However, again the difference between the

spectral power at these peaks and that at the vanishing-

group-velocity wavenumbers is not significant with 95%

confidence. For bc2m1 (Fig. 6, left panel), the spectral

peak is actually at a positive wavenumber, noticeably re-

moved from the vanishing-group-velocity wavenumber.

The power at this peak is higher than at the vanishing-

group-velocity wavenumber with 95% confidence. The

presence of significant spectral power and even spectral

peaks at locations on the dispersion curves associated

with nonnegligible group velocity suggests that any

oceanic preference for enhancing resonant energy at

the locus of vanishing group velocity is not the domi-

nant mechanism for setting the wavenumber of the

spectral peaks. We have left for last the obvious pres-

ence of enhanced spectral energy density on the MRG

dispersion curves, which have no loci of vanishing group

velocity. The MRG group velocity at vanishing wave-

number is several times that of the inertia–gravity waves,

yet we see evidence of strong variability in both baroclinic

modes near k5 0. The remaining question is whether the

locations of the oceanic peaks can be explained by the

wavenumber content of the wind forcing.

d. Wind stress spectra

Keeping in mind the expected correspondence be-

tween wind components and oceanic modes seen in (1)

and (2), we show in Fig. 11 the wavenumber–frequency

spectra for the symmetric and antisymmetric parts of the

zonal wind stress (txs and txa) and the symmetric and

antisymmetric parts of themeridional wind stress (tys and

FIG. 8. (left; top to bottom) The latitudinal dependence of the total, symmetric, and antisymmetric spectral energy

density near the 5.2-day spectral peak (in the zonal wavenumber/frequency band indicated in the right panel). Red

error bars are estimated 95% confidence intervals. Black curves are the theoretical meridional structure of pressure

variance [‘‘P2(y)’’], with (top) the theoretically symmetric first baroclinic, first meridional mode (‘‘bc1m1’’) and

(bottom) the theoretically antisymmetric second baroclinic, second meridional mode (‘‘bc2m2’’). (right) The power

spectral density of dynamic height, without symmetry filtering and averaged over 58S–58N (same as Fig. 5), with

a black box to indicate the zonal-wavenumber/frequency band used for the meridional structure plots in the left

panels. The decomposition of the total spectrum into symmetric and antisymmetric contributions suggests that the

5.2-day spectral peak has contributions from both modes.
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tya). In light of the expected importance of higher-latitude

wind forcing (Section 2), these spectra are averaged over

88S–88N. Also shown are dispersion curves for atmo-

spheric equatorial waves with a 30-m equivalent depth

(magenta lines), a value near the center of the equivalent-

depth range identified by Wheeler and Kiladis (1999) in

a study of convectively coupled atmospheric equatorial

waves using outgoing (top-of-atmosphere) long-wave ra-

diation measurements.

Both tx and ty show a ridge of spectral power centered

near k 5 21 cycle per 758–908 longitude (planetary

wavenumber 4–5). The most energetic part of the me-

ridional wind stress spectrum is found where the atmo-

spheric MRG dispersion curve crosses this ridge. The

zonal wind stress has an additional ridge of spectral power

at positive wavenumbers that follows the dispersion curve

of the atmospheric Kelvin wave, and we will refer to this

ridge as such. Although there is some frequency de-

pendence of the spectral power along all of the ridges, the

prominent peaks found in the oceanic spectra are not

evident in the atmospheric spectra (as noted by Wunsch

and Gill 1976, and Luther 1980). The spectral power in

the ridges falls off with increasing frequency at periods

shorter than about 4 days.

The atmosphere, with no clearly defined upper

boundary, cannot support vertically standing modes

as the ocean can, so the comparatively diffuse spectral

ridges are to be expected (e.g., Philander 1978). Still, the

apparent utility of the 30-m equivalent depth for de-

scribing the distribution of energy in surface wind stress

suggests that the surface wind signals are related to the

heavily studied atmospheric convectively coupled equa-

torial waves (e.g., Wheeler and Kiladis 1999). The txs
ridge paralleling the Kelvin wave dispersion curve is even

FIG. 9. Latitudinal dependence of the dynamic height spectrum (red error bars) in

wavenumber–frequency bands corresponding to the point where the theoretical dispersion

curves cross k 5 0 (i.e., zero zonal wavenumber). (left) The meridional variations in spectral

power near theoretical dispersion curves for the first baroclinic mode, and the associated

theoretical meridional structure of pressure variance for each mode is shown with black lines.

(right) As in the left panels, but for the second baroclinic mode. The error bars represent the

estimated 95% confidence interval. In all panels, the vertical axis is in units of dynamic-cm2 per

cycle-per-day per cycle-per-degree.
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more pronounced when the atmospheric spectra are

averaged over the more equatorially confined range of

58S-58N (not shown), and the ridge exists only in the sym-

metric spectrumof zonal wind stress; both facts support the

interpretation of this variability as Kelvin waves.

Both tx and ty are dominantly symmetric over the

wavenumber-frequency range of interest (cf. left and right

panels of Fig. 11). We saw in (1)–(2), however, that for the

purpose of assessing the importance of symmetry in

the forcing, a better diagnostic than the symmetry of

an individual component is the ratio jtxsj2/jtyaj2 or

jtysj2/jtxaj2 (Fig. 12). Of the places where the atmospheric

spectral ridges cross dispersion curves of oceanic modes

that could be excited, only at the intersection of the at-

mospheric Kelvin wave with the bc2m1 oceanic curve

(near 0.15 cpd) does the ratio of spectral power in the

symmetric part of the wind stress (jtxsj2) to the power in

the corresponding antisymmetric part (jtyaj2) exceed 10

(just barely). As discussed in section 2, the power in the

response can be sensitive to even this small amount of

antisymmetric forcing. At other locations for the inertia–

gravity modes, the ratios are about 6 or less, meaning that

the amplitudes of the symmetric components of the wind

stress are notmore than about 2.5 times the amplitudes of

the relevant antisymmetric components. Throughout the

MRG wavenumber-frequency range, the amplitudes of

tys and txa are nearly equal. With ratios this low, the

antisymmetric stress component could make a significant

contribution to, or even dominate, the net forcing, de-

pending on how the symmetric and antisymmetric wind

FIG. 10. Latitudinal dependence of the symmetry-filtered dynamic height spectra (red error

bars) in wavenumber–frequency bands corresponding to the point where the theoretical dis-

persion curves cross k5 0 (i.e., zero zonal wavenumber). (left) Themeridional variations in the

symmetry-filtered spectral power near theoretical dispersion curves for the first baroclinic

mode, with the symmetric power being shown for theoretically symmetric modes (i.e., oddm),

and the antisymmetric power being shown for theoretically antisymmetric modes (i.e., evenm).

The associated theoretical meridional structure of pressure variance for each mode is shown

with a black curve. (right) As in the left panels, but for the second baroclinic mode. The error

bars represent the estimated 95%confidence interval. In all panels, the vertical axis is in units of

dynamic-centimeters squared per cycle-per-day per cycle-per-degree.
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FIG. 11. Symmetry-filtered wavenumber–frequency spectra of (top) zonal wind stress and (bottom) meridional

wind stress, averaged over 88S–88N (from TAO/TRITONmoorings at 88S, 58S, 28S, 08, 28N, 58N and 88N): (top left)

symmetric zonal wind stress txs; (top right) antisymmetric zonal wind stress txa; (bottom left) symmetric meridional

wind stress tys; and (bottom right) antisymmetric meridional wind stress tya. The solid black and dashed black curves

are the theoretical dispersion curves for oceanic baroclinic modes 1 and 2, respectively, as in Fig. 2. Magenta curves

represent the dispersion relations of atmospheric equatorial waves for an equivalent depth of 30 m (after Wheeler

and Kiladis 1999).
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stress components project onto the equatorial wave

structures [(1)–(2)].

A full understanding of the relative importance of

antisymmetric and symmetric forcing requires evalua-

tion of the projections in (1) and (2), which we cannot

presently do given the marginal meridional resolution

of the TAO/TRITON array. We can make a rough

comparison between forcing and response based on the

simplifying assumption of total symmetry of the forcing,

which we do in the next section. In doing so, however, we

must keep in mind that we do not really have all the

information we need, and it is reasonable to expect

discrepancies.

e. Forcing-response comparisons based on symmetric
forcing

Figure 13 shows contours of normalized symmetric

wind stress spectra superimposed on the oceanic spectra

that they would be expected to excite: zonal stress with

the symmetric dynamic height spectrum (left panel) and

meridional stress with the antisymmetric dynamic height

spectrum (right panel). Within any frequency band

containing elevated oceanic spectral power, we are in-

terested in the relation between the wavenumber con-

tent of the oceanic spectrum and that of the appropriate

symmetric wind stress component. For display purposes

then, we divide the spectral density of wind stress at each

frequency by the average spectral density at that fre-

quency and refer to the result as the normalized wind

stress spectrum. This allows for fewer contours and less

clutter in the plots, while capturing the basic pattern of

wavenumber dependence in the forcing at any given

frequency. The normalized wind stress spectra are con-

toured at levels of 0.8, 1.2, and 1.8, so these contours

indicate the wavenumber where the spectral density is

80%, 120%, and 180% of the average spectral density

for each frequency band.

The qualitative agreements seen in Fig. 13 are rea-

sonable given our uncertainty about the meridional

projections of wind stress onto wave velocities and the

degree of asymmetry in the wind. The double ridge in

txs spans most of the resolvable wavenumber band at

FIG. 12. (left) Base-10 logarithm of the ratio of the symmetric zonal wind stress spectrum to the antisymmetric

meridional wind stress spectrum (jtxsj 2/jtyaj 2). At very high values of this ratio (exceeding 10, at least), the symmetric

dynamic height variability would be expected to be driven primarily by symmetric zonal winds. At values around one,

the antisymmetricmeridional winds are strong enough to be just as important as the symmetric zonal winds in driving

symmetric dynamic height variability. (right) Base-10 logarithm of the ratio of the symmetric meridional wind stress

spectrum to the antisymmetric zonal wind stress spectrum (jtysj 2/jtxaj 2). In analogy with interpretation of the left

panel, high values indicate that symmetric component of the meridional wind stress should be driving the anti-

symmetric dynamic height response, and values around one indicate that the antisymmetric component of the zonal

stress is also important.
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periods longer than about 5 days (0.2 cpd), and the

spectral peaks in the two oceanic modes expected to be

excited by these winds, bc2m1 and bc1m1, also span

most of the wavenumber band (left panel, Fig. 13). In

contrast, the peaks for the antisymmetric oceanic modes

bc2m2 and bc1m2 are somewhat more narrowly con-

fined, like the single tys ridge. These latter oceanic peaks

appear displaced toward positive wavenumbers relative

to the tys ridge, but in the case of bc1m2, the peak

in jtysj2 is also displaced from the center of the ridge

(Fig. 11, bottom left panel), and in both cases txa is large

enough to influence the response. With the exception of

the peak on bc1m0 near themost negative wavenumbers

(12 days period, 0.085 cpd), the bc1m0 and bc2m0MRG

peaks fall within the wavenumber range of the most

energetic part of the tys ridge.

Where the atmospheric Kelvin wave dispersion curve

crosses the bc2m1 dispersion curve near 0.15 cpd, the

ratio jtxsj 2/jtyaj 2 exceeds 10 and the assumption of

purely symmetric forcing is at its best. Our estimates of

the peak locations for both the oceanic and atmospheric

spectra are at the same wavenumber and frequency near

this crossing, although the confidence intervals are large

enough that either peak could actually lie in nearby

wavenumber or frequency bands. The strong peak in the

positive-wavenumber part of the oceanic spectrum spans

wavenumbers for which the group velocity of bc2m1

ranges from 17%–35% of the Kelvin wave speed. This is

perhaps the strongest evidence that the oceanic peaks are

determined more by the atmospheric spectrum than by

the condition of vanishing group velocity for the oceanic

modes. The correspondence between the tys ridge and

the peaks in the MRG waves, with group velocities ap-

proaching 50%of the correspondingKelvin-wave speeds,

further supports this view.

The weak peak in the symmetric oceanic spectrum

near the bc1m3 dispersion curve (about 0.3 cpd) appears

to be centered on a local minimum of the txs spectrum

(Fig. 13, left panel). This appearance in Fig. 13, however,

is due in part to the atmospheric Kelvin wave ridge that

FIG. 13. (left) Symmetric dynamic height spectrum (colors; as in Fig. 6), with contours of the normalized symmetric

zonal wind stress spectrum overlaid (heavy lines). (right) Antisymmetric dynamic height spectrum (colors; as in Fig.

6), with contours of the normalized symmetric meridional wind stress spectrum overlaid (heavy lines). The ‘‘nor-

malized symmetric wind stress spectra’’ are the same as the wind stress spectra shown in the left panels of Fig. 11,

except that the spectral density at each frequency has been divided by the average spectral density at that frequency

to allow a graphical representation of the variation of spectral levels with wavenumber using only a few contours; the

contour levels for the normalized wind stress spectra are at 80% (white), 120% (black), and 180% (gray) of the

wavenumber-averaged spectral density. The oceanic equatorial-wave dispersion relations for baroclinic modes 1 and

2 are indicated by black and red solid and dashed lines, with red being used for the symmetry that is supposed to be

excited.
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hasmost of its power in the near-equatorial latitudes and

hence has a minimal effect on the bc1m3 mode. An in-

spection of the U(3) structure in the right panel of Fig. 2

shows that, of the wind measurements available from

the TAO/TRITON array, bc1m3 should respond most

strongly to symmetric zonal winds at 88S and 88N,

slightly less strongly to winds at 58S and 58N, and hardly

at all to the more equatorially confined winds. A spec-

trum of txs estimated using only the wind stress at 88S
and 88N (not shown) does not exhibit a minimum at the

location of the bc1m3 peak.

The largest discrepancy between the comparisons of

Fig. 13 and our expectations for the correspondence of

wind stress and oceanic resonances is the strong peak on

the bc1m0 dispersion curve near the negative Nyquist

wavenumber, where the power in tys is falling off. It is

possible that other forcing mechanisms contribute to

the oceanic spectrum, and this could be one example.

Nevertheless, the qualitative comparison made under

the simplifying (but only marginally valid) assumption

of purely symmetric forcing provides a reasonably satis-

fying degree of success in matching the wavenumber

content of the oceanic peaks to the wavenumber content

of the wind stress. More work is needed to better define

the oceanic variance driven by fluctuating winds, but a

more detailed assessment will require wind measure-

ments with meridional resolution sufficient to estimate

the projections in (1)–(2).

5. Summary

A long data record from the TAO/TRITON mooring

array was analyzed to allow a more detailed assessment

of the spectra of dynamic height relative to 500 decibars

and wind stress in the equatorial Pacific at periods of 3–

15 days. In the dynamic height spectra, elevated spectral

density is found on or near the dispersion curves pre-

dicted by linear theory for the lowest 3–4 meridional

modes of baroclinic modes 1 and 2. The baroclinic mode

2 variability had not been identified in studies of SSH

variability, but it shows up clearly in the TAO/TRITON

dynamic height data. The reference depth (500 m) is

below the first zero crossing and near the second extre-

mum in the vertical structure of perturbation pressure

for baroclinic mode 2, so the surface dynamic height

signal of this mode is amplified relative to the surface-

pressure and SSH signals. The meridional resolution of

the TAO/TRITON array is limited, but the meridional

dependence of dynamic height variability within the

spectral peaks generally agrees well with the predictions

of linear theory. Filtering the variability with respect to

its equatorial symmetry also produces good agreement

with linear theory. The spectral peaks associated with

a particular symmetry (symmetric or antisymmetric) are

enhanced or eliminated in accord with expectations

from linear equatorial-wave theory. The symmetry fil-

tering proved particularly helpful in examination of the

spectral peak near 5-day periods, which had been iden-

tified in frequency spectra of SSH variability as a baro-

clinic mode 1, meridional mode 1 wave (Wunsch andGill

1976; Luther 1980). The symmetry-filtered spectra sug-

gest that the dynamic height signal at this period con-

tains roughly equal contributions from the symmetric

baroclinic mode 1, meridional mode 1, and the anti-

symmetric baroclinic mode 2, meridional mode 2. As

suggested by previous authors (e.g., Wunsch and Gill

1976; Luther 1980), we find that both the zonal and

meridional winds within 88 of the equator are domi-

nantly symmetric about the equator and concentrated

in low-wavenumber bands in the 3–15-day period

range.

In general, we find spectral peaks in dynamic height

where the spectral ridges in the wind stress cross the

dispersion curves of the free oceanic modes. Some

understanding of the connection between the patterns

of forcing and response in wavenumber-frequency

space is gained via the expedient of considering the

winds to be purely symmetric about the equator. There

are discrepancies, and we show that despite the domi-

nantly symmetric winds, there is almost nowhere in the

wavenumber-frequency range of interest where the pos-

sible contributions of the asymmetries in thewinds can be

ignored. The only exception is where the atmospheric

Kelvin wave ridge crosses the dispersion curve of the

baroclinic mode 2, meridional mode 1 oceanic wave, and

in this case the estimates of peak energy in the oceanic

variability and the atmospheric Kelvin wave ridge are

indeed found at the same wavenumber.

Other mechanisms could of course contribute to the

equatorial variability at periods of 3–15 days and zonal

wavelengths exceeding 308, but the agreement between

the patterns in the atmospheric and oceanic spectra,

when considered in light of the limits of the information

available to us from the TAO/TRITON array, suggests

that direct wind forcing be examined in more detail be-

fore resorting to alternate explanations for the oceanic

variability.

Our results do not support the expectation of finding

elevated dynamic height or sea level variance at the

wavenumber and frequency of vanishing group velocity,

unless the wind stress happens to fluctuate strongly at

those wavenumbers and frequencies. The results do sup-

port the prediction of Wunsch and Gill (1976) that the

frequency spectra they observed were likely produced

by atmospheric forcing confined to low-wavenumber

ridges, narrow enough to limit the oceanic response to
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frequencies not too far removed from the modal minima.

Our results also confirm the prediction of Wunsch and

Gill that the atmosphericwavenumber ridgesmust also be

wide enough for the MRG response to be spread across

a wide band of frequencies, in order to account for the fact

that they did not see distinct peaks from these waves in

frequency spectra. It is remarkable that the qualitative

nature of the wavenumber–frequency spectrum of the

wind stress, complete with upper and lower bounds on the

widths of the wavenumber ridges, was inferred from

scattered tide gauge records.

A thorough analysis that includes the effects of asym-

metries in the forcing will require measurements with

meridional spacing and extent sufficient for estimating

the meridional projection of the wind stress components

onto the meridional structure of velocity for the mode in

question, as shown in (1)–(2). We expect that satellite

scatterometer and altimeter data will allow a more de-

tailed investigation of the relationship between the wind

field and the oceanic response, and one purpose of the

present study is to provide a baseline of information at

relatively high frequencies with which to compare anal-

yses of satellite data. In any case, the spectra shown here

present an interesting qualitative picture: the equatorial

Pacific Ocean appears to be somewhat like a tightly

strung guitar– details of the forcing aside, it rings at the

frequencies (and zonalwavenumbers) of its freemodes of

oscillation.
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waves at the Galápagos Islands. J. Geophys. Res., 86, 6509–6516.
Roundy, P. E., and W. M. Frank, 2004: A climatology of waves in

the equatorial region. J. Atmos. Sci., 67, 2105–2132.

Scargle, J. D., 1982: Studies in astronomical time series analysis. II.

Statistical aspects of spectral analysis of unevenly spaced data.

Astrophys. J., 263, 835–853.

Shinoda, T., 2010: Observed disperion relation of Yanai waves and

17-day tropical instability waves in the Pacific Ocean. SOLA,

6, 17–20.
Thompson, R. O. R. Y., 1971: Spectral estimation from irregularly

spaced data. IEEE Trans. Geosci. Electron., GE-9, 107–110.

Tsai, P., J. O’Brien, and M. Luther, 1992: The 26-day oscillation

observed in the satellite sea surface temperature measurements

in the equatorial western Indian Ocean. J. Geophys. Res., 97,

9605–9618.

Weisberg, R. H., and S. P. Hayes, 1995: Upper ocean variability on

the equator in the Pacific at 1708W. J. Geophys. Res., 100

(C10), 20 485–20 498.

——, A. Horigan, and C. Colin, 1979: Equatorially trapped

Rossby–gravity waves in the Gulf of Guinea. J. Mar. Res.,

37, 67–87.

Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled

equatorial waves: Analysis of clouds and temperature in the

wavenumber–frequency domain. J. Atmos. Sci., 56, 374–399.

Wunsch, C., 1989: Sampling characteristics of satellite orbits.

J. Atmos. Oceanic Technol., 6, 891–907.
——, 1996: The Ocean Circulation Inverse Problem. Cambridge

University Press, 458 pp.

——, and A. Gill, 1976: Observations of equatorially trapped waves

in Pacific sea level variations. Deep-Sea Res., 23, 371–390.
Yanai, M., and M. Murakami, 1970: Spectrum analysis of sym-

metric and antisymmetric equatorial waves. J. Meteor. Soc.

Japan, 48, 331–346.

Zangvil, A., and M. Yanai, 1980: Upper tropospheric waves in

the tropics. Part I: Dynamical analysis in the wavenumber–

frequency domain. J. Atmos. Sci., 37, 283–298.

NOVEMBER 2012 FARRAR AND DURLAND 1881


