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ABSTRACT

The theoretical resonant excitation of equatorial inertia–gravity waves and mixed Rossby–gravity waves is

examined. Contrary to occasionally published expectations, solutions show that winds that are broadband in

both zonal wavenumber and frequency do not in general produce peaks in the wavenumber–frequency

spectrum of sea surface height (SSH) at wavenumbers associated with vanishing zonal group velocity.

Excitation of total wave energy in inertia–gravity modes by broadband zonal winds is virtually wave-

number independent when the meridional structure of the winds does not impose a bias toward negative or

positive zonal wavenumbers. With increasing wavenumber magnitude jkj, inertia–gravity waves asymptote

toward zonally propagating pure gravity waves, in which the magnitude of meridional velocity y becomes

progressively smaller relative to the magnitude of zonal velocity u and pressure p. When the total wave

energy is independent of wavenumber, this effect produces a peak in jyj2 near the wavenumber where group

velocity vanishes, but a trough in jpj2 (or SSH variance). Another consequence of the shift toward pure

gravity wave structure is that broadband meridional winds excite inertia–gravity modes progressively less

efficiently as jkj increases and y becomes less important to the wave structure. Broadband meridional winds

produce a low-wavenumber peak in total wave energy leading to a subtle elevation of jpj2 at low wave-

numbers, but this is due entirely to the decrease in the forcing efficiency of meridional winds with increasing

jkj, rather than to the vanishing of the group velocity. Physical conditions that might alter the above con-

clusions are discussed.

1. Introduction

Wunsch and Gill (1976, hereafter WG) stimulated the

field of equatorial oceanography with a demonstration

that spectral peaks at periods of 3–5 days in Pacific

Ocean tide gauge records could be interpreted as being

due to equatorially trapped inertia–gravity waves. In

what was one of the earliest observational validations

of linear equatorial wave theory applied to the oceans,

they showed that the latitudinal dependence of spectral

power in these peaks agreed reasonably well with the

theoretically predicted structures of the appropriate

meridional modes. They also showed that the peaks

fell near the minimum frequencies of the theoretical

modes—that is, the frequencies associated with van-

ishing zonal group velocity.

WG did not attempt wavenumber estimates, but they

suggested that it was physically reasonable to find en-

ergy accumulating at the wavenumber associated with

vanishing group velocity for free waves, where energy

cannot escape the generating region. They also pointed

out that their results were equally compatible with

SSH variability being excited at near-zero zonal wave-

numbers by basin-scale winds. For a given mode, the

relative difference in the frequencies predicted by these

two distinct hypotheses is at most 1.5% (WG). The short

sea level records did not allowWG to distinguish between

the two predictions, but their mathematical analysis sug-

gested that the latter of these hypotheses was the more

likely. Nevertheless, the association of oceanic resonances

with vanishing group velocity has lived on to the extent

that subsequent authors have stated or implied that we

might expect to find excess energy at the wavenumber of
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vanishing zonal group velocity and have cited WG as

the source of the expectation (e.g., LeBlond and Mysak

1978; Luther 1980; Garzoli and Katz 1981; Lin et al.

2008; Ferrari and Wunsch 2010).

The idea of excess energy accumulating at the wave-

number of vanishing group velocity is physically rea-

sonable, and in the summary we discuss some of the

conditions proposed by Luther (1980) under which this

might occur. The tenacity of the idea that such a physical

process was demonstrated theoretically by WG is some-

what curious, however, because it is not in fact what the

mathematics of WG predicted. In the analysis that led

them to expect excess energy in frequency spectra near

modal frequency minima, the resonant energy produced

by a broadband forcing spectrum was the same order of

magnitude everywhere along a free-wave dispersion

curve. It was only after the theoretical transfer function

was integrated over all wavenumbers to produce a fre-

quency spectrum that elevated energy was found near

the frequency minimum. The reason is simply that

when a dispersion curve has a local frequency extre-

mum, the wavenumber band containing points ‘‘near’’

the dispersion curve is broader near that extremum than

at other frequencies. This point had been brought out

previously by Longuet-Higgins (1965) and Blandford

(1966). Forcing that is broadband in wavenumber and

frequency can be expected to produce a peak in a fre-

quency spectrum at the frequency where a dispersion

curve parallels the wavenumber axis, but nowhere in any

of the above analyses can be found a prediction of ele-

vated energy in wavenumber–frequency space at the

locus of vanishing group velocity.

In spite of their prediction of a peak in the frequency

spectrum at a modal frequency minimum, WG found

that in the presence of broadband forcing the peak drops

off slowly with increasing frequency, causing it to be

skewed toward higher frequencies in a manner that did

not resemble the observations. This led to the prescient

observation that the oceanic peaks must be forced by

winds concentrated in a relatively narrow low-wavenumber

band: their other hypothesis. This prediction has been

borne out (e.g., Luther 1980; Farrar and Durland 2012),

and it appears that the locations of the spectral peaks in

equatorial sea level may owe more to the concentration

of equatorial wind energy in low wavenumbers than to

special characteristics of the vanishing-group-velocity lo-

cus (see Farrar and Durland 2012).

Because the classic paper by WG is often misin-

terpreted, we feel that it is important to revisit their

analysis for the sake of clarification. In addition, we find

that resonant solutions for meridional velocity (the

mathematically convenient proxy for equatorial wave

amplitude) reveal considerable wavenumber dependence

that is not captured by the order-of-magnitude solutions

of WG, and that the wavenumber dependence of wave

pressure (the appropriate proxy for SSH) is significantly

different from that of meridional velocity. Accordingly,

we examine in greater detail the wavenumber–frequency

dependence of resonant equatorial inertia–gravity and

mixed Rossby–gravity (MRG) waves in the presence of

broadband wind forcing. The goal is to understand the

wavenumber–frequency dependence of the equatorial

ocean’s tendency toward resonance, independent of the

wavenumber–frequency structure imposed by the wind.

Several idealized meridional structures for the wind

forcing are considered, but the forcing is considered to

be independent of wavenumber and frequency in all

scenarios.

We will use the theory of linear waves on a quiescent

background throughout the paper, as did WG. The the-

oretical work of McPhaden and Knox (1979) and the

observations of Farrar and Durland (2012) indicate that

the currents of the equatorial Pacific have only minor ef-

fects on the rest-state solutions for the high frequency

waves considered here. Section 2 reviews the linear theory

(following WG and Moore and Philander 1977, hereafter

MP), introducing notation and emphasizing points that

will facilitate later interpretations.

2. Equations and free-wave solutions

The nondimensional equations for a single baroclinic

mode on the equatorial b plane, Fourier transformed in

time t and the zonal dimension x, are as follows:

2ivu2 yy1 ikp52�u1X , (1)

2ivy1 yu1 py52�y1Y, and (2)

2ivp1 iku1 yy52�p . (3)

Length and time have been nondimensionalized by

the equatorial length and time scales, Le 5
ffiffiffiffiffiffiffiffiffi
c/b0

p
and

Te 5 1/
ffiffiffiffiffiffiffiffi
b0c

p
, where c is the high-frequency gravity wave

speed of the baroclinic mode and b0 is the meridional

gradient of the Coriolis parameter at the equator. Pres-

sure (p) is nondimensionalized by r0c
2, where r0 is the

mean water density. In the central equatorial Pacific,

typical values of Le and Te are 350 km and 1.4 days for

the first baroclinic mode, and 273 km and 1.9 days for

the second baroclinic mode. The x and t dependence

is ei(kx2vt), and y represents both the northward co-

ordinate and the Coriolis parameter. Eastward and north-

ward components of the current are u and y.

The momentum forcing terms, X and Y, are the pro-

jections of the vertical distributions of shear stress onto
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the baroclinic modal structure, and they are propor-

tional to the zonal and meridional wind stress, respec-

tively. We are only interested in relative amplitudes and

will generally consider X and Y to be O(1).

As pointed out byWG, the zonal wavenumbers of the

solutions we consider are much smaller than the me-

ridional wavenumbers, and the mean meridional wave-

number of a single meridional mode changes little over

the parameter space we consider. For a single merdional

and baroclinic mode, any scale-dependent parameteri-

zation of horizontal and/or vertical momentum diffusion

can thus be reasonably represented by a constant Ray-

leigh dissipation parameter �, which has been non-

dimensionalized by T21
e . We seek qualitative insight and

will not be concerned with the specific value of �, but

require only that � � v so that resonances are possible.

Based on the structures of the observed frequency

peaks,WGestimated that 0.05, �, 0.1. For our figures,

we use the lower of these values. The biggest deficiency

of (1)–(3) (also pointed out by Wunsch and Gill) is that

the Prandtl number is set to unity, which is physically

unrealistic for the oceans. As long as � remains small,

however, this does not detract materially from the

qualitative value of the solutions.

Reducing (1)–(3) to a single differential equation in y,

we have the following:

s[yyy 2 y2y1 (s22 k22 k/s)y]5syX1 kXy

1 i(s22 k2)Y , (4)

u5 i(s22 k2)21(syy2 kyy1sX), and (5)

p5 i(s22 k2)21(kyy2syy1 kX), where (6)

s[v1 i� . (7)

a. Free waves

Without dissipation and forcing (� 5 X 5 Y 5 0) and

with boundedness conditions as y / 6‘, the eigen-

values of (4) are the odd positive integers, yielding

a dispersion relation

Dm[v[v22k22k/v2(2m1 1)]5 0, m5 0, 1, 2, . . . ,

(8)

where Dm is the ‘‘undamped dispersion polynomial.’’

The eigenfunctions are the orthonormal Hermite func-

tions, cm(y) (defined in MP).

For later use in the forced solutions, we define a ‘‘unit

amplitude free wave’’ in terms of the amplitude of the

meridional velocity. Using capital letters to denote these

unit-amplitude solutions, the expressions for the wave

components are

V
(m)

(y)5cm(y) , (9)

U
(m)

(y, k)5
iffiffiffi
2

p
" ffiffiffiffiffiffiffiffiffiffiffiffiffi

m1 1
p

vm 2 k
cm11(y)1

ffiffiffiffiffi
m

p
vm 1k

cm21(y)

#
,

and (10)

P
(m)

(y,k)5
iffiffiffi
2

p
" ffiffiffiffiffiffiffiffiffiffiffiffiffi

m1 1
p

vm2 k
cm11(y)2

ffiffiffiffiffi
m

p
vm 1 k

cm21(y)

#
.

(11)

The subscript on vm indicates that it satisfies the dis-

persion relation of mode m for the given value of k.

When we wish v to be an independent variable and k to

be constrained by the dispersion relation, we will apply

the modal subscript to the wavenumber: (v, km). When

m 5 0, the last term on the right-hand-side (rhs) of (10)

and of (11) vanishes.

The parentheses around the mode number in the

subscripts of V(m), U(m), and P(m) indicate that these are

meridional modal structures (i.e., functions of y). This

notation will be used only for the wave components, and

it is intended to distinguish the y-dependent modal

structures from Hermite expansion coefficients that will

be introduced in the next section. It is important to note

that defining the relations (9)–(11) as ‘‘unit amplitude’’

is merely amathematical convenience becauseV(m)(y) is

the variable in which the mathematical problem was

posed, and it is the only wave-field variable expressible

in terms of a singleHermite function. For inertia–gravity

waves, the amplitudes of U(m) and P(m) grow mono-

tonically with increasing jkj, and forMRGwaves they do

so with increasing k; they do not remain O(1) even

though by definition they are still components of the

‘‘unit amplitude’’ free wave.

The Hermite functions are symmetric or antisym-

metric about y 5 0 depending on whether the mode

number is even or odd, and the symmetry about the

equator of U(m) and P(m) is opposite to that of V(m). We

will use the symmetry of P(m) as a proxy for the wave

symmetry, so odd numbered meridional modes are

considered symmetric and even numbered modes are

considered antisymmetric.

Unless otherwise noted, our analyses will be limited to

the wavenumber and frequency range jkj , 2.5, 0.35 ,
v , 4, which excludes the low-frequency Rossby wave

solutions of (8) and allows certain simplifications in the

expressions for resonant solutions. Larger zonal wave-

numbers would exceed the meridional wavenumbers of
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the low meridional modes, invalidating our use of a

constant dissipation parameter. In dimensional units,

the above range corresponds to wavelengths greater

than 8.0 degrees longitude and periods between 2.3 and

26 days for the first baroclinic mode in the central

equatorial Pacific. For the second baroclinic mode, these

limits are 6.2 degrees and 2.9–33 days. The wavenumber–

frequency range thus defined exceeds the one examined

by Farrar and Durland (2012) in a companion study

using daily-averaged data from the Tropical Atmosphere

Ocean (TAO)/Triangle Trans-Ocean Buoy Network

(TRITON) mooring array in the Pacific.

b. Comments on the free-wave dispersion relations

The dispersion diagrams for the MRG wave (m 5 0)

and the lowest four meridional modes of inertia–gravity

waves (m 5 1 through 4) are shown in the top panel of

Fig. 1. As the frequency increases, the dispersion curves

of all the inertia–gravity modes approach the asymp-

totes v 5 6k: the high-frequency gravity wave disper-

sion relations. These dispersion curves are similar to

those of Poincaré modes in a channel (e.g., Pedlosky

2003, Fig. 13.9), except that they are skewed by the beta

effect. The cutoff, or minimum frequency for a given

modevcm, and its associated wavenumber kcm locate the

point in wavenumber–frequency space where the group

velocity of mode m vanishes. The beta effect reduces

vcm slightly and shifts kcm off the k 5 0 axis toward

negative wavenumbers, as can be seen from the di-

mensional relation: kcm* 5 2b/2vcm* . The skewing of the

dispersion curve is most pronounced for the gravest

meridional mode (with lowest vcm).

The MRG wave has strictly eastward group velocity.

Its dispersion relation

k0 5v2 1/v (12)

asymptotes to v 5 k as k / ‘. The asymptote v 5 k is

the dispersion relation of the equatorial Kelvin wave

(labeled, following Matsuno 1966, as m 5 21), with

structure

V
(21) [ 0, and (13)

U
(21) 5P

(21) 5c0(y) . (14)

The v 5 2k asymptote satisfies the m 5 0 and m 5 21

dispersion relations for modes with westward group

velocity. These modes are inadmissible on the infinite b

plane because their p and u signals are unbounded. They

can exist in a more realistically bounded basin, but en-

ergy associated with them would be concentrated near

the poleward boundaries.

c. Comments on free-wave meridional structures

As the dispersion curve of an inertia–gravity mode

approaches an asymptote, one of the denominators on

the rhs of (10) and (11) approaches zero, and the as-

sociated term comes to dominate the wave component

structure: as k / 6‘, U(m) / 6P(m) and the meridi-

onal structure of both approaches cm61(y). Also, both

(maxyjU(m)
j/maxyjV(m)

j) and

(maxyjP(m)
j/maxyjV(m)

j)/‘ as jkj/‘ , (15)

where maxy refers to the meridional maximum at

a given k. With increasing jkj, the waves are asymp-

toting toward zonally propagating pure gravity waves

in which the wave particle trajectories align with

the phase propagation direction, V(m) is insignificant

relative to U(m), and the particle velocity in the di-

rection of propagation is proportional to and in phase

with the pressure. The tendency toward the above

limits is occurring even at small wavenumbers. It is

possible, for instance, for a peak in the wavenumber–

frequency spectrum of jV(m)j2 at the locus of vanishing
group velocity to be associated with a trough in the

spectrum of jP(m)j2 at the same location. Because the

dispersion curve of a given mode is skewed toward

negative wavenumbers, at any given frequency the

wave with westward group velocity is closer to the

gravity wave limit than the wave with eastward group

velocity.

In (15) it would be more realistic to think of the

wave meridional velocity decreasing as the wave ap-

proaches the gravity wave limit, rather than thinking

of the U(m) and P(m) amplitudes as increasing without

bound. Pegging the ‘‘unit amplitude’’ definition to

the amplitude of V(m), however, avoids unnecessary

mathematical complexities and is no problem as long

as we remember that it is just a mathematically useful

convention.

Figure 1 illustrates the wavenumber dependence of

U(m)(y) and P(m)(y) by displaying the meridional struc-

tures of the wave components for meridional mode 1 at

k 5 0 and at the positive and negative wavenumbers

associated with v 5 2.8. The important point to note is

that while the amplitude and meridional structure of

V(m) remain unchanged over all k, this is not true ofU(m)

and P(m). The structures of U(m) and P(m), including the

latitudes of their extrema and zero crossings, are func-

tions of wavenumber. The only meaningful definition

of ‘‘amplitude’’ for one of these variables that is con-

sistent for a single mode over all wavenumbers therefore

involves the integrated variance, fromwhich the amplitude
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at any latitude can be deduced for a given wavenumber.

We define

hjP
(m)

j2i[
ð‘
2‘

jP
(m)

j2 dy , (16)

and the orthonormality of the Hermite functions

gives

hjV
(m)

j2i5 1, and (17)

FIG. 1. (top) Dispersion curves for unforced MRG wave (m 5 0) and lowest four meridional modes of inertia–gravity waves. (bottom)

Meridional structures ofmeridional mode-1, unit amplitude free-wave components. The color of the box in a bottom panel corresponds to the

color of the dot on them5 1 dispersion curve in the top panel where thewave structures were calculated. In each bottompanel, the real part of

the meridional velocity is displayed in red, while the imaginary parts of the zonal velocity and pressure are displayed in blue and black,

respectively. Note that the structure and amplitude of the meridional velocity do not change with wavenumber. Both the structure and the

amplitude of zonal velocity and pressure are wavenumber dependent. Latitude has been scaled appropriately for baroclinic mode 1 in the

central equatorial Pacific. Equivalent structures for baroclinic mode 2 are compressed toward the equator by about 20%.
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hjP
(m)

j2i5 hjU
(m)

j2i5 1

2

"
m1 1

(vm2 k)2
1

m

(vm 1 k)2

#
.

(18)

In Fig. 2 we plot hjP(m)j2i/hjV(m)j2i as a function of

wavenumber for the lowest four meridional modes.

Because of (17), this is just hjP(m)j2i for the unit am-

plitude wave. We will retain the ratio notation as a

reminder, however, because this term will be used to

convert forced-wave solutions for meridional velocity

to solutions for pressure. As expected from (15),

hjP(m)j2i/hjV(m)j2i increases with increasing jkj, it in-

creases faster on the k , 0 branch, and the associated

asymmetry (due to the beta effect) decreases with in-

creasing mode number.

The MRG wave structure is

V
(0)(y)5c0(y), and (19)

U
(0)(y)5P

(0)(y)5
iffiffiffi
2

p vc1(y) . (20)

The meridional structures ofU(0) and P(0) do not change

with wavenumber, but the ratios (maxyjU(0)j/maxyjV(0)j)
and (maxyjP(0)j/maxyjV(0)j) increase monotonically with

increasing frequency, and hence with increasing wave-

number (rather than increasing jkj).

3. Forced and damped solutions

The y-dependent variables in the forced Eq. (4) are

expanded in Hermite series:

(y,X ,Y)5 �
‘

m50

(ym,Xm,Ym)cm(y) . (21)

FIG. 2. Wavenumber dependence of the ratio of integrated pressure variance to integrated meridional velocity

variance for the free inertia–gravity waves, where the integration is over latitude; meridional modes 1–4. This ratio is

exactly the integrated variance of pressure for the ‘‘unit amplitude’’ wave because the integrated variance of me-

ridional velocity is 1 by definition for this wave. We retain the ratio designation to emphasize its use as a conversion

factor between forced solutions for meridional velocity and those for pressure. Theminimum falls between k5 0 and

the wavenumber associated with vanishing group velocity.
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Note that we are projecting the atmospheric structures

onto Hermite functions scaled to the oceanic defor-

mation radius. A given wind structure will thus have

different expansion coefficients for different oceanic

baroclinic modes.

The forced wave structures are represented by lower

case letters; for example,

y
(m)

(y, k,v)5 ym(k,v)cm(y) . (22)

As with the unit-amplitude free waves [(9)–(11)], the

parentheses about the subscript indicate a function of y,

while the subscript without the parentheses on ym in-

dicates a Hermite expansion coefficient.

With the application of (A1)–(A3) and a notation

similar to that of WG, (4) reduces to

ym 5Gm/Wm , (23)

whereGm is associated with the forcing terms on the rhs

of (4) and Wm with the dispersion related terms on the

left-hand-side (lhs) of (4). There is an arbitrariness to the

definitions of Gm and Wm: a common factor can be ap-

plied to both without changing the solution. We will show

later that a physically revealing way to define them is

Gm [
1ffiffiffi
2

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

m1 1
p

s2 k
Xm111

ffiffiffiffiffi
m

p
s1 k

Xm21

!
1 iYm , (24)

Wm [ [s32s(k21 2m1 1)2 k]/(s22 k2) , (25)

and we will call Gm the ‘‘forcing function’’ and Wm the

‘‘dispersion function.’’ The full transfer function from

atmospheric to oceanic Hermite components involves

the ratio ofGm andWm, but it is illuminating to examine

the terms separately (as WG did).

The solution process of WG is most easily demon-

strated with the alternative definitions used by WG,

which we will identify with script notation:

Gm [ (s22 k2)Gm, and (26)

Wm [ (s2 2k2)Wm . (27)

The latter of these terms was called the ‘‘dispersion

polynomial’’ by WG, and it is identical in form to our

undamped dispersion polynomial Dm in (8), with the

oscillation frequency v replaced by the complex fre-

quency s.

We will be concerned with power spectra:

jymj25 jGmj2=jWmj25 jGmj2=jWmj2 , (28)

and we note that the squared magnitude of the disper-

sion polynomial can be written

jWmj25D2
m 1 �2[3v41 6vk1 (k2 1 2m1 1)2]1O(�4) .

(29)

For ��v, jWmj2 is approximatelyminimized and jymj2 is
approximately maximized (achieving resonance) on the

undamped free-wave dispersion curve for mode m,

where Dm 5 0. We are looking for solutions where v 5
O(1), so our condition that � � v implies that � � 1.

a. Order of magnitude solutions of Wunsch and Gill

WG assumed randomized forcing, so that the fre-

quency spectrum at an arbitrary point in space is simply

an integral over all wavenumbers of the wavenumber–

frequency spectrum. For a representation of broadband

forcing, WG assumed that Gm was independent of

wavenumber and frequency, giving the following ex-

pression for the frequency spectrum:

S(v)[

ð‘
k52‘

jym(k, v)j2 dk5 jGmj2
ð‘
k52‘

1

jWmj2
dk .

(30)

At a given frequency, using the form (29) for jWmj 2 and
expanding D2

m in powers of wavenumber about a point

(v, km) on the dispersion curve allows (30) to be ex-

pressed as

S(v)5 jGmj2
ð‘
k52‘

1

�
4

n52

dn(k2 km)
n 1 d2

dk , (31)

where d is O(�). The expansion coefficients are

[d2, d3, d4]5 [(2vkm 1 1)2, 2v(2vkm 1 1),v2] . (32)

Only the wavenumber range where�4
n52dn(k2 km)

n #

O(�2) contributes substantially to the integral, so only

the lowest power of (k 2 km) needs to be considered.

The integral can thus be evaluated using the method of

residues. Near a general point on a dispersion curve

where v. vcm, d2(k2 km)
21 d2 factors into two simple

poles, each of O(�). One of the poles is captured by

the integration contour, producing an integral that is

O(�21). At the locus of vanishing group velocity, however,

(2vcmkcm 1 1) 5 0. The coefficients d2 and d3 vanish,

leaving a denominator of d4(k 2 km)
4 1 d2. This factors

into four simple poles, with the zero in each case being

O(�1/2). The residue at each pole is therefore O(�23/2), so

S(vcm)5 S(v.vcm)3O(�21/2) . (33)
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The frequency spectrum of meridional velocity at the

modal frequency minimum is larger than at higher fre-

quencies by a factor that is O(�21/2).

This is the essence of WG’s analysis predicting ele-

vated spectral energy at vcm. Note in (30)–(31) that

jWmj25 d25O(�2) everywhere along a dispersion curve.

The vanishing of d2 and d3 is due to the vanishing of

›Dm/›k at (vcm, kcm), that is, the fact that we are at a

modal frequency extremum. Having only the (k2 kcm)
4

term in the denominator means that the integrand re-

mains significant over a larger range of k than when the

denominator contains the (k 2 kcm)
2 term. The integral

at vcm is larger than at higher frequencies only because

the wavenumber band contributing to the integral is

largest when the dispersion curve is parallel to the k axis,

as illustrated in Fig. 3. This of course occurs at a fre-

quency extremum where the group velocity vanishes,

but it is not the result of a special enhancement of the

response at the locus of vanishing group velocity in

wavenumber–frequency space. Both Longuet-Higgins

(1965) and Blandford (1966) made this point in their

own ways. Neither demonstrated an enhancement in

response at the wavenumber–frequency locus of van-

ishing group velocity.

WG found that for reasonable values of �, the �21/2

enhancement of the frequency spectrum near vcm fell

off slowly with increasing frequency in the presence of

broadband forcing. The frequency peaks were thus

skewed toward higher frequencies, unlike the observed

peaks (see WG, Fig. 13). WG hence concluded that the

winds exciting the observed peaks must be concentrated

in a relatively narrow, low-wavenumber band, a conclu-

sion supported by Farrar and Durland (2012). This

conclusion did not depend on an enhancement of spec-

tral energy at the locus of vanishing group velocity in

wavenumber–frequency space.

b. More detailed solutions

The analysis of WG was only approximate to the order

of the dissipation parameter. Equations (24)–(29) show

that there is a wavenumber and frequency dependence to

jymj2 at resonance that is not captured by the order-of-

magnitude solution, and it is worth examining this struc-

ture in more detail. For each meridional mode, the im-

portant information is the wavenumber dependence of the

response at peak resonance, which occurs on the free-wave

dispersion curve. Restricting the calculations to points on

a dispersion curve simplifies the mathematics and facili-

tates the extraction of physical insight from the equations,

the focus of the next few subsections.

To better understand the final solution, we will

first consider the major components of the solution

separately: the forcing function Ĝm, the dispersion function

Ŵm, and the ratio of integrated pressure variance to in-

tegrated meridional-velocity variance hjp̂(m)j2i
�hjŷmj2i

(remember that hjy(m)j2i5 jymj2). Thehats on the variables
indicate that they are evaluated on themeridionalmode-m

dispersion curve. The final solutions we will consider are

the integrated meridional-velocity variance jymj2, the
integrated pressure variance hjp(m)j2i and the period-

averaged, meridionally integrated total-wave energyEm

(see MP):

Em [ (hjy
(m)

j2i1 hju
(m)

j 2i1 hjp
(m)

j 2i)=4. (34)

The variance in meridional velocity was the proxy for

equatorial wave energy used by WG. It is the most

convenient proxy because the mathematical problem is

formulated in terms of ym. The proper proxy for SSH

variance, however, is the pressure variance, and the free

wave solutions lead us to expect that its wavenumber

dependence may be quite different than that of jymj2 (e.g.,
Figure 2). Finally, the spectrum of the total wave energy

illustrates the wavenumber–frequency dependence of the

efficiency with which energy can be transmitted from the

atmosphere to a particular oceanic mode.

X and Y are independent of wavenumber and fre-

quency (‘‘broadband’’), and their phases at any partic-

ular (k, v) are independent of latitude. Note that

this is not identical to WG’s approach of keeping Gm

wavenumber- and frequency-independent [see (24) and

(26)]. The choice of ameridional structure for thewind that

will not predetermine the wavenumber-dependence of

the response is less obvious, and we will consider a few

FIG. 3. Conceptual conversion from wavenumber–frequency

spectrum to frequency spectrum. The integral over all wave-

numbers of the inverse-square dispersion polynomial is larger at

the modal frequency minimum than at higher frequencies because

the band of wavenumbers thatmake significant contributions to the

integral is largest at this frequency. Maximum resonance is found

on the free-wave dispersion curve where Dm 5 0.
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separate scenarios of meridional structure that provide

enough insight to draw some general conclusions. These

are shown in Fig. 4 and explained later.

The panels in the top rows of Figs. 5–8 show the

wavenumber–frequency spectra of hjy(m)j2i, hjp(m)j2i and
Em for the lowest four meridional modes of inertia–

gravity waves under the various forcing scenarios. These

panels are primarily illustrative, and the wavenumber

dependence for each of these variables at peak reso-

nance is plotted in the bottom row of each figure. The

squared forcing function jĜmj2, the inverse squared

dispersion function jŴmj22, and the conversion from

meridional velocity variance to pressure variance

hjp̂(m)j2i
�hjŷ(m)j2i are shown in the middle row. The latter

two terms depend only on mode number and not on the

forcing, but we show them in all the figures to simplify

the visual interpretation of how the various terms con-

tribute to the final spectra. Figures 9 and 10 have the

same format as Figs. 5–8, but are for the MRG waves.

For reference to an observable range of wave-

numbers, the dashed vertical lines in each panel of the

bottom two rows in Figs. 5–8 mark the nominal Nyquist

wavenumbers of the TAO/TRITON array (61 cycle

per 308 longitude), nondimensionalized for baroclinic

modes 1 and 2. Baroclinic mode 2 is represented by the

lines closer to k 5 0.

1) FORCING FUNCTION AT RESONANCE

On the inertia–gravity wave dispersion curves,

v2
m2k252m111k/vm/

8><
>:
2m as k/2‘

2(m11/2) as k/0

2(m11) as k/‘

.

(35)

Likewise,

vm 1 k/m/vm as k/ 2‘, and (36)

vm 2 k/ (m1 1)
�
vm as k/‘ . (37)

On the dispersion curves, it is thus always true that

s22 k2 5 (v2
m 2 k2)[11O(�)] . (38)

As long as � � m/vm, we can also write

s6 k5 (vm 6 k)[11O(�)] . (39)

Having limited ourselves to v , 3.5 and using � 5 0.05

for our sample calculations, the above condition holds

well for most of the domain.

Over the wavenumber–frequency range we are con-

sidering then, the forcing function at resonance can be

written as

Ĝm 5
1ffiffiffi
2

p
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

m1 1
p

vm 2 k
Xm111

ffiffiffiffiffi
m

p
vm 1 k

Xm21

!
1iYm1O(�) .

(40)

Comparing (40) with (9) and (10), we see that on the

dispersion curve, the forcing function is simply the

projection of the zonal forcing’s meridional structure

onto that of the unit-amplitude free-wave’s zonal ve-

locity, combined with the projection of the meridional

forcing’s meridional structure onto that of the unit-

amplitude free-wave’s meridional velocity:

Ĝm 5 i[hV
(m)

Yi2 hU
(m)

Xi]1O(�) . (41)

The negative sign in (41) is merely a reflection of the 908
phase difference between U(m) and V(m) combined with

FIG. 4. Meridional structures of idealized symmetric and anti-

symmetric forcing scenarios: (top) structures with constant Hermite

expansion coefficients, Xs 5Ys 5 1:5�‘
n50c2n(y) (solid curve), and

Xa 5Ya 5 1:5�‘
n50c2n11(y) (dashed curve); (middle) lowest-order

approximations to large-scale symmetric and antisymmetric forcing

structures,Xs5 1 (solid curve) andXa5 y/2 (dashed curve). In each

panel, latitude is scaled appropriately for baroclinic mode 1. (bot-

tom) Lowest six Hermite expansion coefficients for Xs 5 1 (boxes)

and Xa 5 y/2 (crosses).
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FIG. 5. Response of lowest 4 oceanic meridional modes to meridional winds with meridional structures

characterized by constantHermite expansion coefficients (top panel, Fig. 4). Symmetric oceanic meridional

modes (m odd) are forced by the antisymmetric Ya 5 1:5�‘
n50c2n11(y). Antisymmetric oceanic modes (m

even) are forced by the symmetric Ys 5 1:5�‘
n50c2n(y). (top) Wavenumber–frequency spectra of log base

10 of (left to right) meridional velocity jymj2, integrated pressure hjp(m)j2i and total wave energy Em.

(middle) Wavenumber dependence of contributions to resonance solutions, calculated on the free-wave

dispersion curves (atmaximum resonance). (left to right) the squared forcing function jĜmj2 [see (40)–(41)],
the inverse squared dispersion function jŴmj22 [see (46)] and the ratio of integrated squared pressure to

integrated squared meridional velocity hjp̂(m)j2i
�jŷmj2 [see (17)–(18)]. (bottom)Wavenumber dependence

of the spectra in the top row, calculated on the free-wave dispersion curves (atmaximum resonance). (left to

right) jŷmj2, hjp̂(m)j2i and Êm. Mode numbers are as labeled in the middle left panel. Dashed vertical lines

show the nominal Nyquist wavenumbers of the TAO/TRITON array (61 cycle per 308 longitude) for
baroclinic modes 1 and 2 (nearest k 5 0).
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FIG. 6. Response of lowest four oceanic meridional modes to zonal winds with meridional structures characterized

by constant Hermite expansion coefficients (top panel, Fig. 4). Symmetric oceanic meridional modes (m odd) are forced

by the symmetric Xs 5 1:5�‘
n50c2n(y). Antisymmetric oceanic modes (m even) are forced by the antisymmetric

Xa 5 1:5�‘
n50c2n11(y). Figure format as in Fig. 5.
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FIG. 7. Response of oceanic modes 1 and 3 to zonal winds that are uniform in latitude: Xs 5 1 (middle panel, Fig. 4). Figure format as

in Fig. 5.
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FIG. 8. Response of oceanic modes 2 and 4 to antisymmetric zonal winds: Xa 5 y/2 (middle panel, Fig. 4). Figure format as in Fig. 5.
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the 908 phase difference between the way that X and Y

force y(m).

Our choice of form for Gm makes the modal forcing

term (41) analogous to the forcing of an energy equation

formed directly from the nontransformed versions of

(1)–(3) and integrated over the meridional domain:

›t
hu2 1 y2 1p2i

2
52›xhupi2 2�

hu21 y21 p2i
2

1 huXi1 hyYi . (42)

In (42), the dependent variables are physical variables

rather than their wavenumber–frequency transforms,

and the projections huXi and hyYi contain the wave

amplitude as well as structure, so the correspondence

between (42) and (41) is not exact. The analogy moti-

vates our choice of form for the forcing function, how-

ever, and (41) distills the important information about

the relative forcing efficiency of zonal and meridional

winds, as well as the effects of various meridional struc-

tures of the winds. It also clearly represents the physical

principle that energy is only added to a moving system

by forcing in the direction of motion.

Taking advantage of the equatorial symmetries of the

free-wave components, (41) can be decomposed into

Ĝ2n5 i[hV
(2n)Ysi2 hU

(2n)Xai]1O(�), and (43)

Ĝ2n11 5 i[hV
(2n11)Yai2 hU

(2n11)Xsi]1O(�),

n5 0, 1, 2, . . . , (44)

where Ys and Ya are the symmetric and antisymmetric

parts of the meridional forcing, and similarly for the

zonal forcing. An antisymmetric oceanic mode (Ĝ2n) is

forced by symmetric meridional winds and antisym-

metric zonal winds, while a symmetric oceanic mode

(Ĝ2n11) is forced by symmetric zonal winds and anti-

symmetric meridional winds.

WG postulated that the equatorial Pacific winds were

dominantly symmetric about the equator, and the anal-

ysis of TAO/TRITON wind measurements by Farrar

and Durland (2012) confirms this for the wavenumber–

frequency band of interest. As is evident in (43) and

(44), however, it is not so much the symmetry of the

individual wind components that matters as the ratio of

the symmetric part of one component to the antisym-

metric part of the other. In the 8–17-day period band

containing first and second baroclinic mode MRG

waves, for instance, Farrar and Durland (2012) show

that, although both zonal and meridional wind stresses

are dominantly symmetric, the antisymmetric zonal wind

stress can actually exceed the symmetric meridional wind

stress. Estimation of the relative efficiency of the two

projections in (43) requires knowledge of both the rel-

ative amplitudes of V(0) andU(0) (which can be deduced

from Figs. 9–10) and the Hermite structure of the wind

stress components, which was beyond the scope of

Farrar and Durland’s (2012) analysis. At first approxi-

mation however, it appears that both the zonal and

meridional winds can contribute to the excitation of the

MRG waves, in spite of the dominant symmetry of each

component.

Furthermore, even relatively small amounts of energy

in the antisymmetric part of the wind stress could have

significant effects on the resonant energy. Let us assume,

for instance, that the two projections in (44) are equally

efficient, but that jXsj2/jYaj2 5 10, a degree of symmetry

that is exceeded in only a small portion of thewavenumber–

frequency space analyzed by Farrar andDurland (2012).

IfXs andYa are coherent, elementary algebra shows that

depending on the phase relations between the two com-

ponents, jĜ2n 1 1j 2 could be as much as 50% lower or

70% higher than the estimate we would get by consid-

ering only the dominantly symmetric part of the wind

stress (Xs). An analogous conclusion follows for

Ĝ2n. Accordingly, we will consider the response to both

symmetric and antisymmetric forcing, with the recog-

nition that while the former is likely to be more impor-

tant for the excitation of inertia–gravity waves in the

Pacific, the latter should not be neglected.

(i) Idealized meridional structures of wind stress

As is clear from (41), a detailed analysis of the exci-

tation of all modes requires full knowledge of the me-

ridional structure of the wind stress in addition to its

wavenumber–frequency dependence. In this work we

will consider a few idealized meridional profiles, but

they will provide an intuitive foundation for under-

standing the excitation by more general structures. The

focus throughout is on the mode-by-mode wavenumber

dependence.

Any particularmode can be forced by only oneHermite

component of the meridional winds [see (40)]. The

detailed meridional structure of the meridional wind

thus affects the relative amplitudes of the various oce-

anic modes but is irrelevant to the wavenumber de-

pendence of a single mode’s response.We saw in section

2c that U(m) asymptotes toward cm11(y) as k / ‘ and

toward cm21(y) as k / 2‘, with a mix of the two

Hermite functions at small wavenumbers. There are

thus two Hermite expansion coefficients of X that con-

tribute to the excitation of a single mode, with one

dominating at large positive wavenumbers and the other

dominating at large negative wavenumbers. In the spirit

of broadband forcing then, our first choice is a wind
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FIG. 9. Response of oceanic MRG wave to symmetric meridional winds with Hermite expansion coefficient Y0 5 1.5.

Figure format as in Fig. 5.
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structure for which the Hermite expansion coefficients

are all equal, so that the k-dependence of the U(m)

structure has a minimal effect on the k-dependence of

the resonance amplitude. This choice also distributes the

meridionally integrated variance equally among the

Hermite components of the wind stress, providing a

qualitative complement to the broadband specification

in zonal wavenumber and frequency. The top panel of

Fig. 4 shows the resulting symmetric and antisymmetric

structures.

The atmospheric length scales are typically larger

than the oceanic ones (e.g., Wheeler and Kiladis 1999;

Farrar and Durland 2012), and a reasonable lowest or-

der approximation across the oceanic equatorial wave-

guide is to assume that the symmetric winds are uniform

with latitude (an assumption used by WG) while the

antisymmetric winds vary linearly with latitude. Ac-

cordingly, our second choice of idealized wind profiles is

Xs5 1 andXa5 y/2, shown in the middle panel of Fig. 4.

The effects of the symmetric and antisymmetric wind

components will be considered separately, so the rela-

tive amplitudes of these choices do not matter; each is

simply chosen to be O(1).

Over the oceanic waveguide, the difference between

the symmetric profiles in the top and middle panels of

Fig. 4 is not great (true also for the difference between

the two antisymmetric profiles). Nevertheless, we will

see that the subtle differences will have a noticeable

effect on the response to zonal winds because the

Hermite expansion coefficients of the structures in the

middle panel depend on the mode number. The lowest

six of these coefficients are shown in the bottom panel

of Fig. 4. ForXs 5 1, the Hermite coefficients decrease

with increasing mode number, so that compared to the

constant Xm case, we expect the projection hU(2n)Xsi
to be relatively larger at negative wavenumbers where

U(2n) is closer to c2n21 than at positive wavenumbers

whereU(2n) is closer to c2n11. The situation is reversed

for Xa 5 y/2. The expansion coefficients increase with

increasing mode number, so we expect hU(2n11)Xai
to be relatively larger at positive than at negative

wavenumbers.

(ii) Forcing by Ym 5 1.5

Figure 5 shows the solutions for forcing by purely

meridional winds having the structures associated with

constant Hermite expansion coefficients (Fig. 4, top

panel). The symmetric oceanic modes (m odd) are ex-

cited by the antisymmetric Ya 5 1:5�‘
n50c2n11(y), and

the antisymmetric oceanic modes (m even) are excited

by the symmetric Ys 5 1:5�‘
n50c2n(y). When the forc-

ing consists only of broadband meridional winds, we

can see in (41) that the forcing function will not depend

on wavenumber because the structure and amplitude of

V(m) do not. The choice of constant Hermite co-

efficients for the structure of the wind, combined with

the ortho-normal property of the Hermite functions

means that the forcing function also will be identical

for all modes. This is seen in the middle row, left panel

of Fig. 5, where the k-independent forcing functions

of all four modes overlay each other. Because V(m)

is equal to a single Hermite function, Ĝm will be k-

independent under broadband forcing for any merid-

ional structure of Y. A structure other than that used

for Fig. 5 will only result in different amplitudes for

different modes. The relative k dependence of any of

the solutions in Fig. 5 for any particular mode would

not be changed, so we do not need to consider other

meridional structures for Y. Figure 5 tells us everything

we need to know about the response of modes 1 to 4

individually to broadband meridional winds, symmetric

or antisymmetric.

(iii) Forcing by Xm 5 1.5

Figure 6 shows the response to purely zonal winds

with the meridional structures shown in the top panel of

Fig. 4. The symmetric oceanic modes (m odd) are ex-

cited by the symmetric Xs 5 1:5�‘
n50c2n(y), and the

antisymmetric oceanic modes (m even) are excited by

the antisymmetric Xa 5 1:5�‘
n50c2n11(y). In contrast to

the effects of meridional winds, the form of (41) together

with our knowledge of the wavenumber dependence

of U(m) makes it clear that under broadband zonal winds,

the forcing function will be wavenumber dependent.

The magnitude of Ĝm increases with increasing jkj,
as the amplitude of U(m) does, and this is shown in the

middle row, left panel of Fig. 6. There is a minimum in

jĜmj2 near k5 0 that is most pronounced for the lowest

meridional mode, and there is a skewing of the ampli-

tude toward negative wavenumbers, which is also most

pronounced for the lowest mode. This is because the

amplitude ofU(m) increases faster with increasing jkj for
negative wavenumbers because of the beta-skewing of

the dispersion curves, as we saw in Section 2c.

(iv) Forcing by Xs 5 1 and Xa 5 y/2

The response of symmetric modes 1 and 3 to uniform

zonal forcingXs 5 1 is shown in Fig. 7, and the response

of antisymmetric modes 2 and 4 to the antisymmetric

forcing Xa 5 y/2 is shown in Fig. 8. As expected, the

decrease in the Hermite coefficients with increasing

mode number for Xs 5 1 increases the skew in jĜmj2
toward negative wavenumbers, particularly for mode 1

(Fig. 7, middle row, left panel). The increasing Hermite

coefficients of Xa 5 y/2 result in jĜmj2 structures for

modes 2 and 4 that are slightly skewed toward positive
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wavenumbers (Fig. 8, middle row, left panel). The im-

portant thing is that for all of the zonal forcing scenarios

considered, there is a minimum in the forcing function

near k 5 0 because the waves asymptote toward pure

gravity waves as jkj / ‘, increasing the magnitude of

the projection hUmXi.
2) DISPERSION FUNCTION AT RESONANCE

At resonance (i.e., on a dispersion curve), the dis-

persion function is

Ŵm 5 i�

 
2v2

m 1 k/vm

v2
m 2 k2

!
1O(�2) . (45)

The O(�2) term comes from the real part of Ŵm, so the

inverse squared magnitude is

jŴmj22 5 �22

 
v2
m 2 k2

2v2
m 1 k/vm

!2

1O(1). (46)

For inertia–gravity waves jk/vmj, 1, so the denominator

will clearly have a minimum near the minimum modal

frequency vcm, producing a peak in jŴmj22 near the lo-

cus of vanishing group velocity. The exactminimumof the

denominator is shifted to a slightly more negative wave-

number by the k/vm term, but (v2
m 2 k2)2 [which varies

only between (2m)2 as k/2‘ and (2m1 2)2 as k/ ‘,
see (35)] acts oppositely. The peaks in jŴmj22 are thus

found at kcm , k , 0 and the peak widths are skewed

slightly toward positive wavenumbers. The asymmetries

about k 5 0 are subtle for mode 1 and decrease rapidly

with increasingmode number. The dispersion function is

of course independent of forcing, and the middle panel

of the middle row in Fig. 5 shows the wavenumber de-

pendence of jŴmj22 for modes 1–4. These structures

are repeated where appropriate in Figs. 6–8, but they are

not different in those figures.

3) y AT RESONANCE

(i) Meridional forcing

The jŷmj2 solutions are simply the product of jĜmj2 and
jŴmj22 [see (23)]. For the case of meridional forcing, the

wavenumber dependence of jŷm j2 is determined solely

by the dispersion function, with a pronounced peak

between k 5 kcm and k 5 0, and a slight skewing of the

peak width toward positive wavenumbers (left panel,

bottom row, Fig. 5).

(ii) Zonal forcing

In the case of zonal forcing, the jŷmj2 peaks are at-

tenuated somewhat by the minima in jĜmj2 near k 5 0.

When Xm is constant with mode number, the slight

skewing of jĜmj2 toward negative wavenumbers acts in

opposition to the slight skewing of jŴmj22 toward

positive wavenumbers, and jŷmj2 is nearly symmetric

about its peak (left panel, bottom row, Fig. 6).WhenX is

uniform in latitude, the strong skewing of jĜmj2 toward
negative wavenumbers produces skewing of both the

peak location and the peak width of jŷm j2 toward neg-

ative wavenumbers (left panel, bottom row, Fig. 7). For

Xa 5 y/2, the peak in jŷmj2 falls very near k 5 0, with

a slight skewing of the the peak width toward positive

wavenumbers. In all the cases we have examined, the

meridional velocity variance (jŷmj2) does show a maxi-

mum that is at least near the locus of vanishing group

velocity in wavenumber–frequency space. To see what

this means in terms of SSH variability and the total wave

energy, we now look at the conversion from y(m) to p(m)

and u(m).

4) u AND p SOLUTIONS

On the free-wave dispersion curves, the forcing terms

on the rhs of (5) and (6) areO(�) relative to the resonant

y terms. At resonance, then, we can disregard the forcing

terms and derive expressions for u(m) and p(m) in terms

of y(m) that are fully analogous to (10) and (11), with vm

replaced by s. For completeness sake, we will be a bit

more careful and note that (5) and (6) seem to indicate

that u and p are resonant on the asymptotes v 5 6k,

even if y is not. Were we to proceed as above for the

modal definitions over the larger wavenumber–frequency

space, each individual meridional mode would show not

only a resonance on the appropriate inertia–gravity

wave dispersion curve, but also a (u(m), p(m)) resonance

on v 5 6k. This would show up in the wavenumber–

frequency spectra of individual modes, for instance in

the top rows of Figs. 5–8. There are two issues here.

First, we must determine whether there truly are (u, p)

resonances on v56k, as hinted at by (5) and (6) and by

the fact that these asymptotes satisfy the dispersion re-

lations of theKelvin wave and the two spurious solutions

noted in Section 2b. Second, any resonance that does

occur on v 5 6k should be expressible as a separate

entity rather than being lumped together with the res-

onance expressions of other modes.

In the appendix, we show that most of the apparent

resonances on v 5 6k are artifacts of our separation

into individual meridional modes. In the case of zonal

forcing, most of the Xm-related terms cancel with ym-

related terms on the asymptotes when the modes are

summed. On v5 k, the only term remaining represents

the Kelvin wave resonance with the X0c0 forcing term.

On v 5 2k, there is a resonance of u, y, and p only at

v5 1/
ffiffiffi
2

p
. This is the point at which the MRG wave
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dispersion curve crosses v52k, so this is really part of

the MRG wave resonance. Under meridional forcing,

y is O(�) relative to the forcing on v 5 6k, so the ap-

parent resonance in u and p only brings these terms up

to O(1) relative to the forcing (i.e., they are not reso-

nant). Representations for u(m) and p(m) which are valid

over the entire domain and which suppress the spuri-

ous resonances are given in (A17) and (A18). These

equations were used to generate the relevant panels in

Figs. 5–8.

5) u(m), p(m) AND Em AT RESONANCE

At resonance, the forcing-related terms in (A17)–

(A18) can be neglected because ym isO(�21) there.With

the restriction previously imposed that vm 6 k beO(1),

the relations between (u(m), p(m)) and y(m) are then

identical to the relations between the free wave com-

ponents (U(m), P(m)) and V(m) given in (10)–(11), with

the modal amplitude ym inserted as a multiplicative

factor on the rhs of each equation. Neglecting higher

order terms,

hjp̂
(m)

j2i=hjŷ
(m)

j2i5 hjP
(m)

j2i=hjV
(m)

j2i (47)

[see(17), (18), and Fig. 2],

hjp̂
(m)

j2i5 jĜmj2jŴmj22hjP
(m)

j2i=hjV
(m)

j2i , (48)

hjû
(m)

j2i5 hjp̂
(m)

j2i, and (49)

Êm 5 jĜmj2jŴmj22[11 2hjP
(m)

j2i=hjV
(m)

j2i]=4. (50)

(i) Meridional forcing

The trough in hjp̂(m)j2i
�hjŷ(m)j2i at low wavenumbers

(Fig. 5, middle row, right panel) almost balances the low-

wavenumber peak in hjŴ(m)j22i, so meridional forcing

produces a very subtle maximum in hjp̂(m)j2i at low

wavenumbers (Fig. 5, bottom row, middle panel). The

associated maximum in Êm is more pronounced. Over

the wavenumber band resolvable by the TAO/TRITON

array, hjp̂(m)j2i is essentially flat, and the peak in Êm

would probably not be detectable.

(ii) Zonal forcing

Under zonal forcing, the increase in both Ĝm and

hjp̂(m)j2i
�hjŷ(m)j2i with increasing jkj produces a mini-

mum in hjp̂(m)j2i at low wavenumbers for all scenarios.

When Xm is constant there is a slight preference for the

negative wavenumbers (middle panel, bottom row, Fig.

6). WhenX is uniform in y, the preference for excitation

of hjp̂(m)j2i at negative wavenumbers is pronounced in

mode 1 and more subtle in mode 3 (Fig. 7, bottom row,

middle panel). Under Xa 5 y/2 forcing, there is a slight

preference for positive wavenumbers (Fig. 8, bottom

row, middle panel).

The combination of the low wavenumber peak in

hjŷ(m)j2i and the low wavenumber trough in hjp̂(m)j2i
under zonal forcing produces an energy profile [Êm(k)]

with neither peak nor trough at low wavenumbers in all

scenarios (Figs. 6–8, bottom row, right panel). In the

constant Xm scenario (Fig. 6), Êm is very nearly inde-

pendent of both wavenumber and mode number. In the

uniform X scenario (Fig. 7) there is a more noticeable

preference for negative wavenumbers, particularly in

mode 1, and forXa5 y/2 forcing (Fig. 8), Êm increases in

the positive wavenumber direction.

The important points are that zonal forcing produces

minima in hjp̂(m)j2i at low wavenumbers, and near

k-independence in Êm when the Hermite coefficients

of X are constant. Other meridional structures of X

produce predictable skews of these general structures

toward negative wavenumbers whenXm11,Xm21 (e.g.,

Xs5 1) and toward positive wavenumbers whenXm11.
Xm21 (e.g., Xa 5 y/2).

Near the limits of our wavenumber range, the zonal

wavenumbers become as large as the meridional wave-

numbers of the lowmodes, and we can no longer neglect

the influence of zonal wavenumbers on the dissipation

parameter. The increasing trend in Êm seen in the bottom-

right panels of Figs. 7 and 8 would not continue as shown

beyond the displayed wavenumber range. Amore realistic

parameterization of dissipation would increasingly atten-

uate the resonant energy as the zonal length scales become

increasingly shorter.

6) FORCING EFFICIENCY AND THE

INERTIA–GRAVITY WAVE TRANSFER

FUNCTION

For descriptive purposes, we will use the term ‘‘effi-

ciency’’ to reflect the response-to-forcing ratios seen in

our mode-by-mode solutions. We have separated the

resonant solutions into several parts, but we must re-

member that the separation was partially arbitrary, and

the full transfer function from wind forcing to a partic-

ular oceanic resonance involves the product of these

parts [e.g. (50)]. Under broadband meridional forcing,

the part we have called the ‘‘forcing function’’ (Ĝm) is

wavenumber independent, while under broadband zonal

forcing, jĜmj grows monotonically with increasing jkj.
Because Ĝm is the only ‘‘part’’ of our solution that de-

pends on the forcing, it is tempting to conclude that the

efficiency of meridional forcing is independent of wave-

number, while the efficiency of zonal forcing increases

with increasing jkj as the waves asymptote toward pure
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gravitywaves. This is not the best interpretation, however,

because the magnitude of the inverse dispersion function

(jŴmj21) decreases monotonically with increasing jkj,
independently of the forcing, and this is as much a part of

the resonant response as the forcing function.

Imposing constant Hermite expansion coefficients on

the meridional structure of the wind is not quite the

same as imposing wavenumber independence in Fourier

space, but we have seen that it has a similar effect. Be-

cause U(m) asymptotes toward a cm21 structure as k /
2‘ and toward a cm11 structure as k / ‘, constant
Hermite expansion coefficients for the zonal forcing X

reduce the ‘‘bias’’ toward either positive or negative wave-

numbers in the projection hU(m)Xi. When jĜmj2 5
jhU(m)Xij2 is multiplied by the other components of the

energy solution (50), each with its own slight asymmetry

in k, the constant Hermite spectrum forces a total wave

energy Êm that is nearly independent of wavenumber and

meridional mode number (with a very slight increase to-

ward negative wavenumbers: Fig. 6, bottom right panel).

We conclude that when the zonal winds are broad-

band in wavenumber and frequency, and the meridional

structure of the wind has a ‘‘white’’ Hermite spectrum

(Xm5 a constant), the efficiency with which zonal winds

excite total wave energy in meridional modem is, to first

approximation, independent of zonal wavenumber.

Because jĜmj increases with increasing jkj for zonal

winds but remains constant for meridional winds, we

conclude that under analogous conditions the efficiency

with which meridional winds excite total wave energy in

mode m decreases with increasing jkj. The difference

in the wavenumber dependence of Êm between Figs. 5

and 6 is only due to the difference in the wavenumber

dependence between hV(m)Yi and hU(m)Xi. The low-

wavenumber peak in Êm under broadband meridional

forcing (Fig. 5, bottom right panel) is therefore not the

consequence of a vanishing group velocity, but is simply

due to the decreasing importance of y in the wave struc-

ture with increasing jkj, which decreases the ability of

the meridional winds to excite the waves.

The fact that wavenumber independence of the exci-

tation efficiency is represented by a ‘‘forcing function’’

that increases with increasing jkj is largely due to our

convention for the ‘‘unit amplitude’’ free wave. Nor-

malizing this wave by a wavenumber-dependent ampli-

tude of U(m) rather than the amplitude of V(m) might

have been more desirable physically, but the clarity of

the results would likely have been lost in the added

mathematical complexity.

We can consider the virtually constant Êm displayed in

the bottom right panel of Fig. 6 to be a generic broad-

band transfer function from wind stress to oceanic mode

m, from which we can deduce, at least qualitatively, the

solutions for the other wind structures. Because of the

known relation between U(m), P(m) and V(m), we know

that the wavenumber independence of Êm implies a low-

wavenumber peak in jŷmj2 and low-wavenumber troughs

in hjp̂(m)j2i and hjû(m)j2i, with the peak being more pro-

nounced than the troughs. A meridional structure of X

for which the Hermite expansion coefficients decrease

with increasing mode number skews all of the above

features toward negative wavenumbers, while a struc-

ture for which the expansion coefficients increase with

increasing mode number skews the features toward

positive wavenumbers. We have shown a few generic

meridional structures for which the tendency of Xm

is consistent from mode to mode, but for a particular

meridional modem, all that matters is the relative sizes of

the two componentsXm11 andXm21. When the forcing is

due to broadbandmeridional winds, the skewing does not

apply, but the decreasing forcing efficiencywith increasing

jkj produces a low-wavenumber peak in Êm, a corre-

spondingly sharper low-wavenumber peak in jŷmj2, and
barely noticeable low-wavenumber peaks in hjp̂(m)j2i
and hjû(m)j2i. The zonal-wavenumber and frequency

content of nonbroadband winds can then be imposed

directly on the above structures.

Our focus has been on the wavenumber structure of

individual modes, but it should be remembered that any

zonal wind in the proper wavenumber–frequency range

excites more than one inertia–gravity mode because

the U(m) are not mutually orthogonal. For example, a

broadband wind with structure X 5 c2(y) 1 c4(y) will

excite inertia–gravity mode 3 with very little wave-

number dependence for total wave energy. It will also

excite mode 1 with increasing efficiency as k / ‘ and

mode 5 with increasing efficiency as k / 2‘. The ten-

dencies of these latter two modes combine to reduce the

wavenumber dependence of the total oceanic wave en-

ergy excited byX, but a more detailed analysis is beyond

the scope of the present work.

c. The forced MRG wave

The m 5 0 dispersion polynomial as defined in (8)

vanishes along the spurious dispersion curve v 5 2k,

but this root cancels with part of the v2 2 k2 term in the

denominator of the dispersion functionW0. The forms of

the forcing function and dispersion function for the

MRG wave are

G05 iY01
1ffiffiffi

2
p

(s2 k)
X1, and (51)

W05s2
1

s2 k
. (52)
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Within our chosenwavenumber–frequency range (s2 k)5
(v 2 k)[1 1 O(�)], so on the MRG wave dispersion

curve, (51)–(52) reduce to

Ĝ05 iY01
vffiffiffi
2

p X1[11O(�)]

5 i[hV
(0)Yi2 hU

(0)Xi]1O(�), and (53)

Ŵ05 i�(11v2)1O(�2) . (54)

As with the inertia–gravity waves, V(0) [ c0(y) is in-

dependent of wavenumber in form and amplitude, so

the part of the forcing function due to broadband me-

ridional winds is independent of wavenumber. The lat-

itudinal dependence ofU(0) and P(0) does not depend on

wavenumber, so X1 is the only Hermite coefficient of

X that contributes to the forcing function. Their ampli-

tudes, however, increase monotonically with increasing

frequency [see (19)–(20)], and hence wavenumber [see

(12)]. Consequently, the zonal forcing function and

(hjp̂(0)j2i
�hjŷ(0)j2i) increase monotonically with in-

creasing wavenumber (rather than with increasing jkj),
as the wave asymptotes toward a pure gravity wave.

1) MERIDIONAL FORCING

The inverse-squared magnitude of the dispersion

function drops off rapidly with increasing frequency

(and wavenumber), so jŷ0j2 does also when the winds

are meridional (Fig. 9, bottom row, left panel). The in-

crease in (hjp̂(0)j2i/hjŷ(0)j2i) with increasing wavenumber

creates a strong pressure maximum near k 5 0 in the

presence of symmetric meridional winds (Fig. 9, bottom

row, middle panel). It is worth noting that this en-

hancement of the resonant energy in the pressure signal

occurs near vanishing wavenumber where the group

velocity of the MRG wave is significant. It also bears

little relation to the k-dependence of the total wave

energy, which follows jŷ0j2 and drops off rapidly and

monotonically with increasing wavenumber (Fig. 9, bot-

tom row, right panel).

2) ZONAL FORCING

Figure 10 shows the response to forcing by antisym-

metric zonal winds, where the amplitude of X1 was

chosen equal to that of Y0 in Fig. 9. The increase in Ĝ0

with increasing wavenumber creates a maximum in jŷ0j2
at k 5 0, and results in both hjp̂(0)j2i and Ê0 increasing

monotonically with increasing wavenumber (Fig. 10,

bottom row).

A comparison of the bottom–middle panels of Figs. 9

and 10 shows that X1 5 1.5 and Y0 5 1.5 excite roughly

the same magnitude of pressure variance near the pos-

itive Nyquist wavenumber of the TAO/TRITON array.

At k 5 0, X1 5 1.5 excites roughly half the pressure

variance of Y0 5 1.5, and at the negative Nyquist wave-

number this ratio drops to roughly one quarter because of

the decreasing relative importance of U(1) to the MRG

wave structure as k / 2‘.

4. Summary

We have had two main goals in this article, the first

being to demonstrate that in the presence of broadband

forcing of the equatorial oceans, the wavenumber–

frequency loci of vanishing group velocity (kcm, vcm) are

not places where we should necessarily expect elevated

inertia–gravity wave energy, particularly not in pressure-

related measurements such as sea level or dynamic height.

The order-of-magnitude analysis of WG does not predict

more resonant energy at (kcm, vcm) than at any other

wavenumber along a dispersion curve, in spite of occa-

sional claims to the contrary. TheO(�21/2) enhancement

that WG predicted at vcm relative to higher frequencies

in a frequency spectrum results from the larger wave-

number band that contributes at vcm to the k-integral of

the wavenumber–frequency spectrum.

Going beyond order-of-magnitude solutions, the ef-

ficiency with which broadband zonal winds excite total

wave energy in a particular inertia–gravity mode is vir-

tually wavenumber independent when the meridional

structure of the wind has a ‘‘white’’ Hermite spectrum

(Xm 5 a constant). The nearly constant Êm(k) is asso-

ciated with a peak in meridional velocity variance

and a trough in pressure variance at low wavenumbers,

simply because y becomes progressively less important

to the wave structure with increasing jkj. When the

meridional structure of the zonal winds is such that the

Hermite expansion coefficients (Xm) decrease with in-

creasing mode number (as with meridionally uniform

winds), the above structures are skewed toward negative

wavenumbers.WhenXm increases with increasingmode

number (as with winds that depend linearly on latitude),

the structures are skewed toward positive wavenumbers.

By contrast, the efficiency with which meridional winds

excite total wave energy in the inertia–gravity modes falls

off rapidlywith increasing jkj, as y becomes a progressively

less important component of the waves. Total-wave-

energy peaks at low wavenumbers under meridional

forcing are the consequence of this effect rather than of

vanishing group velocity. Relative to the zonal forcing

response, the low-wavenumber peak in meridional ve-

locity variance is enhanced under meridional forcing.

The pressure variance exhibits a weak maximum at low

wavenumbers under meridional forcing, but within the

wavenumber band resolvable by the TAO/TRITON

array, it is virtually wavenumber independent.
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FIG. 10. Response of oceanic MRG wave to antisymmetric zonal winds with Hermite expansion coefficient X1 5 1.5.

Figure format as in Fig. 5.
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Although their analysis did not address an isolated

forcing region, WG did suggest that in such a region it is

physically reasonable to expect a vanishing group ve-

locity to produce an enhancement of resonant energy.

Energy can escape the forcing region when the group

velocity does not vanish but accumulates when the

group velocity does vanish. We agree with this point

under the proper conditions and with certain caveats.

Locally, the resonant energy will be a balance of the

energy input by the forcing, the energy dissipation

(proportional to the wave energy) and the energy flux

divergence of the wave field itself. When the group ve-

locity vanishes, this latter term does also, and the reso-

nance can grow to its full potential. When the group

velocity does not vanish, the energy flux divergence can

reduce the resonance amplitude, but this term depends

as much on the gradient of the energy density as it does

on the group velocity. In the case of a single sinusoid

of uniform amplitude, the energy flux is equal to the

period-averaged energy density times the formal group

velocity (e.g., MP), but there is no gradient of the

period-averaged energy density. The energy flux diver-

gence thus vanishes regardless of the value of the group

velocity. An isolated forcing patch will produce a spec-

trum of wavenumbers with fixed phase relations and

in general, a nonzero energy density gradient. We can,

however, imagine a case where the gradient is small

enough that locally the energy flux divergence for a

given group velocity remains small compared to the

dissipation, and local reduction of the resonant energy

is therefore minimal. Basin-scale forcing of the Pacific,

with maximum amplitude in midbasin and diminishing

amplitude toward the boundaries, might provide such a

scenario.

A simple application of Parseval’s Theorem shows

that globally there is no reduction of resonant energy

even in the case of isolated forcing, unless we account

for special energy sinks not included in our model. The

problem as we have formulated it is linear, and the

wavenumber–frequency spectrum of the response de-

pends only on the magnitudes of the wavenumber–

frequency components of the forcing. In the case of

localized forcing there are specific phase relations between

the wavenumber components, but the wavenumber–

frequency spectrum and hence the domain-integrated

energy remains the same as if the phases were ran-

domized and the solution consisted of uncorrelated

pure sinusoids, each with no energy flux divergence.

Physically, this just means that, if the resonant energy

is reduced locally in an isolated forcing region because

of a nonvanishing group velocity, the lost energy will

still be found within the domain, but ‘‘downstream’’ of

the forcing region.

The group velocity becomes important, of course,

when it can transport energy to special regions of en-

hanced dissipation or modal scattering, such as lateral

boundaries or changes in bathymetry. Luther (1980,

p. 175), noted the likelihood of baroclinic-mode scat-

tering as waves propagate out of the deep, relatively flat

abyssal basin of the central Pacific, and of meridional-

mode scattering when the waves reflect from the eastern

and western boundaries (e.g., Moore 1968; MP). Both of

these mechanisms could drain energy from the wind-

forced modes, and the importance of such mechanisms

merits further study. As previouslymentioned, however,

a very gradual decline in wind stress and resonant energy

toward the boundaries could mitigate the impacts of

such sinks by reducing the energy flux divergence in the

presence of nonvanishing group velocity while simul-

taneously reducing the energy flux into the scattering

regions. Farrar and Durland (2012) for instance, show

some spectral peaks in oceanic energy at wavenumbers

near kcm, and other equally energetic peaks at wave-

numbers distinctly removed from kcm. It is not possible

to determine from their analysis whether these latter

peaks might have been partially attenuated by the

nonvanishing group velocity, and this possibility also

merits further study.

Finally, we emphasize that although the specific locus of

vanishing group velocity may not be particularly special in

thewavenumber–frequency domain, themodal frequency

minimum associated with vanishing group velocity does

have special significance for physical space, for the simple

reason that a wider band of wavenumbers is available for

resonant excitation at this frequency than at any other.

When the forcing is narrow-banded in wavenumber this

special significance is diminished or lost.

The datasets now available from satellite altimetry

and scatterometry open up new opportunities to pursue

the investigations suggested above and to develop a

more complete understanding of how the equatorial

ocean is responding to winds in the 3–20-day period

range. The second major purpose of this paper, then,

has been to review and refine the mathematical frame-

work within which such analyses can be carried out,

while establishing the baseline wavenumber–frequency

dependence of the oceanic response to generic forcing,

as predicted by linear theory.
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APPENDIX

Suppression of Spurious Resonance

a. Raising and lowering operators for Hermite
functions

(y2 d/dy)cm 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(m1 1)

p
cm11, m5 0, 1, 2, . . . ,

(A1)

(y1 d/dy)cm5

�
0, m5 0,ffiffiffiffiffiffiffi
2m

p
cm21, m5 1, 2, 3, . . . ,

and

(A2)

(y22 d2/dy2)cm 5 (2m1 1)cm . (A3)

b. Real and spurious resonances in u and p onv56k

Equations (5) and (6) make it appear that resonances

in u and p can occur on v 5 6k, particularly in the

presence of zonal forcing. If expressions for u(m) and

p(m) are derived from our expression for y(m) by ignoring

the X terms in (5)–(6), such resonances do in fact show

up in the wavenumber–frequency spectra of each mode

m. We show here that most of these resonances vanish in

the sum of all modes. They are thus artifacts of our

modal separation that can be removed by properly dis-

tributing the forcing components among the expressions

for the individual meridional modes.

In what follows, we will retain the lowest-order term

associated withX and also that associated withY even if

these two terms are different orders of �, so that we can

envision the effects of meridional and zonal forcing in-

dependently. Only terms that are O(�21) relative to the

forcing are resonant. Terms that areO(1) or smaller are

part of the background (the nonresonant forced response).

Using the Hermite expansion of y, (5) and (6) can be

expressed as 
u

p

!
5

i

s22k2

( 
s

k

!
X1 �

‘

m50

ym

"
(s1k)

ffiffiffiffiffiffiffiffiffiffiffiffi
m11

2

r
cm11

6(s2k)

ffiffiffiffiffi
m

2

r
cm21

#)
, (A4)

where the upper and lower signs in 6 apply to u and p

respectively, and c21 [ 0.

On v 5 k, (24), (25) and (A4) are

Gm5 i

(
Ym 2 �21

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

2

r
Xm111O(�)

#)
, (A5)

Wm 5 i�21(m1 1)1O(1), and (A6)

p5 u5 (2�)21

�
X1 �

‘

m50

Gm

Wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(m1 1)

p
cm111O(�)

�
.

(A7)

Incorporating (A5) and (A6), (A7) becomes

p5 u5 �
‘

m50

Ymffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(m1 1)

p cm11

1 (2�)21

�
X2 �

‘

m50

Xm11cm11

�
(A8)

5 �
‘

m50

Ymffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(m1 1)

p cm111 (2�)21X0c0 . (A9)

The term containing Ym is O(1) and is therefore not

resonant. Only the X0c0 component of X produces

a resonance on v 5 k: the resonant Kelvin wave.

On v 5 2k we have

Gm 5

8>>>><
>>>>:

i

�
Ym 2 �21

� ffiffiffiffiffi
m

2

r
Xm211O(�)

��
, m$ 1

iY01
1

2
ffiffiffi
2

p
v
X11O(�) , m5 0

(A10)

Wm 5

(
i�21m1O(1) , m$ 1

(v2 1/2v)1 i�(11 1/4v2)1O(�2) , m5 0

(A11) 
u

p

!
5 (2�)21

"
6X6 �

‘

m51

Gm

Wm

ffiffiffiffiffiffiffi
2m

p
cm21

1 i�
G0ffiffiffi
2

p
W0

c11O(�)

#
. (A12)

We have retained the �G0/W0 term in (A12) because we

will see that it can become dominant at v5 1/
ffiffiffi
2

p
. Sub-

stituting (A10) and (A11) into (A12) produces 
u

p

!
56�

‘

m51

Ymffiffiffiffiffiffiffi
2m

p cm216(2�)21

�
X2 �

‘

m51

Xm21cm21

�

1
i

2
ffiffiffi
2

p G0

W0

c1 (A13)

56�
‘

m51

Ymffiffiffiffiffiffiffi
2m

p cm211
i

2
ffiffiffi
2

p G0

W0

c1 . (A14)

The first term on the rhs of (A14) is O(1), and we can

see from (A10) and (A11) that the second term is
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also O(1) when 2v2 2 1 5 O(1). When 2v2 2 1 5 0,

however,

y05G0/W0 5 �21(2Y02 iX1)/3 (A15)

and p5 u5 iy0c1/(2
ffiffiffi
2

p
) . (A16)

Hence, u, p and y are resonant on v 5 2k only at

v5 1/
ffiffiffi
2

p
. This is the frequency at which theMRGwave

dispersion curve intersects v 5 2k, and indeed (A15)

and (A16) exhibit the MRG wave structure. We have

not found a resonance unique to v 5 2k but merely

have located one point on the MRG wave resonance

curve. In short, the only resonance peculiar to v56k is

the Kelvin wave resonance, which is excited by theX0c0

component ofX on v5 k, and in which u and p (but not

y) are resonant.

Using the insights revealed above, definitions for the

forced modal structures of u and p that do not exhibit

spurious resonances on v 5 6k are

u
(m)

(y)

5 i

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

2

r
ym

s2 k
1

s

s22 k2
A(k,v)Xm11

#
cm11(y)

1 i

� ffiffiffiffiffi
m

2

r
ym

s1 k
1

s

s22 k2
B(k,v)Xm21

�
cm21(y) ,

(A17)

p
(m)

(y)

5 i

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 1

2

r
ym

s2 k
1

k

s22 k2
A(k,v)Xm11

#
cm11(y)

2 i

� ffiffiffiffiffi
m

2

r
ym

s1 k
2

k

s22 k2
B(k,v)Xm21

�
cm21(y) .

(A18)

In (A17) and (A18),

(A,B)5

�
(0, 1) on v52k

(1, 0) on v5k ,
(A19)

FIG. A1. Suppression of spurious resonances. Wavenumber–frequency spectra for inertia–gravity mode 1 forced by X 5 1 when the

forcing terms in (A18) are (left) not included and (middle) included. (right) Transect through the previous two panels at v 5 1.8 (hor-

izontal lines in left two panels). Displayed is hjp(1)j2i vs k when the forcing terms in (A18) are (solid) included and (dashed) not included.

Also shown are the wavenumber dependencies of (solid) A(k, v) and (dashed) B(k, v) at v 5 1.8.
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A$ 0 and B$ 0 for all (k,v) , (A20)

and A1B5 1 for all (k,v) . (A21)

Using the definitions (A17)–(A21), Eqs. (5) and (6)

can be rewritten in terms of the discrete forced modes:

u(y)5
is

s22 k2
AX0c0(y)1 �

‘

m50

u
(m)

(y) , (A22)

p(y)5
ik

s22 k2
AX0c0(y)1 �

‘

m50

p
(m)

(y) . (A23)

The resonant Kelvin wave is now obvious as a separate

expression, and u(m) and p(m) are resonant only on the

free-wave dispersion curve of mode m $ 0. There is no

resonance on v 5 2k aside from the MRG wave reso-

nance where the MRG wave dispersion curve crosses

this line at (k,v)5 (2 1/
ffiffiffi
2

p
, 1/

ffiffiffi
2

p
).

The specifications (A19)–(A21) do not defineA andB

uniquely, but there is little value in seeking precise

definitions if our focus is on the resonant solutions.A(k,v)

must vanish at v52k, with an associated valley that is at

least as wide as the spurious resonance peak at v 5 2k.

The same is true of B(k,v) in the neighborhood of v5 k.

Other than that, A and B act on terms that are O(�)

relative to the resonances andwe are not concernedwith

their precise values. For the sole purpose of avoiding

spurious v56k resonances in the formal definitions of

the individual modes, a simple choice is sufficient:

A5 [11 expf26(12 k/v)2g2 expf26(11 k/v)2g]=2,
(A24)

B5 [12 expf26(12 k/v)2g1 expf26(11 k/v)2g]=2.
(A25)

The difference between including and not including the

forcing terms in (A18) can be seen in Fig. A1, where we

show wavenumber–frequency spectra for the pressure

signal of mode 1 when the terms are not included (left

panel) and included (center panel). The right panel

shows a transect through the left two panels at v 5 1.8,

together with the wavenumber dependence of A and B

at that frequency.
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