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Abstract—Task dataflow languages simplify the specification
of parallel programs by dynamically detecting and enforcing
dependencies between tasks. These languages are, however, often
restricted to a single level of parallelism. This language design is
reflected in the runtime system, where a master thread explicitly
generates a task graph and worker threads execute ready tasks
and wake-up their dependents. Such an approach is incompatible
with state-of-the-art schedulers such as the Cilk scheduler, that
minimize the creation of idle tasks (work-first principle) and
place all task creation and scheduling off the critical path. This
paper proposes an extension to the Cilk scheduler in order to
reconcile task dependencies with the work-first principle. We
discuss the impact of task dependencies on the properties of
the Cilk scheduler. Furthermore, we propose a low-overhead
ticket-based technique for dependency tracking and enforcement
at the object level. Our scheduler also supports renaming of
objects in order to increase task-level parallelism. Renaming is
implemented using versioned objects, a new type of hyperobject.
Experimental evaluation shows that the unified scheduler is as
efficient as the Cilk scheduler when tasks have no dependencies.
Moreover, the unified scheduler is more efficient than SMPSS, a
particular implementation of a task dataflow language.

I. INTRODUCTION

Task dataflow parallel programming languages facilitate the
construction of parallel programs with high performance by
leveraging a runtime scheduler that is aware of dependencies
between tasks. In a task dataflow language, each argument of a
task is labeled with a memory access mode, e.g. input, output
and the combined input/output dependencies. These labels
summarize the memory side-effects of the task on these argu-
ments as read-only, non-exposed read and write and read/write.
Hereby, the scheduler can dynamically track dependencies
between tasks, but it can also change the execution order
of tasks, while still respecting the dependencies. This is very
similar to how an out-of-order processor dynamically changes
the execution order of assembly instructions.

Task dataflow languages have multiple benefits: they in-
crease parallelism by tracking task dependencies dynami-
cally [1], [2], they create additional parallelism by renaming
memory objects [3] and they remove the sensitivity of algorith-
mic variations on processor architecture [4]. Task dataflow lan-
guages are currently investigated mostly in the context of high-
performance computing [1]–[3], [5], but the ideas have also
been applied to make parallel Java programs deterministic by
automatically infering memory footprints of tasks and tracking

the dependencies [6]. Applications that benefit from task
dataflow include irregular parallel algorithms such as Cholesky
decomposition [1], [3], algorithms with many cross-iteration
dependencies such as the Smith-Waterman algorithm [7] and
h264 video decoding [8].

Task dataflow languages are often restricted to a single
level of parallelism: a single master thread spawns tasks
but the tasks themselves cannot launch new tasks. As such,
these task dataflow languages are incompatible with recursive
fork/join languages such as Cilk [9], [10]. However, for many
algorithms it is well known how to extract all parallelism
efficiently and in these cases dependency tracking is pure
overhead.

In this paper, we present a unified language and scheduler
that simultaneously allows algorithms expressed in the task-
dependency and fork/join styles. Hereby, the programmer can
freely select the most appropriate programming style for each
algorithm in an application. Furthermore, this programming
model allows the construction of arbitrary parallel pipelines, a
construct that appears in emerging workloads [11] and is only
partially supported by Cilk.

The contributions of this paper are the following:
• We develop a scheduler that unifies work-first scheduling

with dependency-aware scheduling. The unified scheduler
necessarily violates some of the provably-good properties
of the Cilk scheduler, however, the scheduler retains
the good behavior of the Cilk scheduler when tasks
are specified without dependencies, or when such tasks
execute serially.

• We present versioned objects, a new type of hyperobject
that facilitates tracking task dependencies on the object
level. Versioned objects encapsulate the meta-data that is
necessary to track dependencies, as well as seamlessly
rename objects to increase task parallelism. While other
approaches limit versioning to a single level of data (e.g.
arrays without pointers), our approach allows versioning
of arbitrary data structures.

• We present a new and efficient mechanism for tracking
dependencies on objects. Our method uses tickets (sim-
ilarly to ticket-based locks [12]) to enforce the program
order of the C/C++ elision of the program.

• We demonstrate through experimental evaluation that our
unified scheduler is as efficient as the Cilk++ scheduler



1 typedef float (∗block t )[16]; // 16x16 tile
2 typedef versioned<float[16][16]> vers block t;
3 typedef indep<float[16][16]> in block t;
4 typedef inoutdep<float[16][16]> inout block t;
5
6 void mul add(in block t A, in block t B, inout block t C) {
7 block t a = (block t)A; // Recover pointers
8 block t b = (block t)B; // to the raw data
9 block t c = (block t)C; // from the versioned objects

10 // ... serial implementation on a 16x16 tile ...
11 }
12
13 void matmul(vers block t ∗ A, vers block t ∗ B,
14 vers block t ∗ C, unsigned n) {
15 for( unsigned i=0; i < n; ++i ) {
16 for( unsigned j=0; j < n; ++j ) {
17 for( unsigned k=0; k < n; ++k ) {
18 spawn mul add( (in block t)A[i∗n+j],
19 (in block t)B[j∗n+k],
20 (inout block t)C[i∗n+k] );
21 }
22 }
23 }
24 sync;
25 }

Fig. 1. Square matrix multiplication expressed in a language supporting
runtime tracking and enforcement of task dependencies.

when task dependencies are absent. Moreover, we demon-
strate that our scheduler is more efficient than SMPSS [3],
a proven task graph scheduler. Our scheduler supports
much finer-grain tasks than SMPSS, which allows more
task-level parallelism for the same problem size.

The remainder of this paper is organized as follows. Sec-
tion II gives an overview of our programming model. Sec-
tion III discusses how we track dependencies on memory
objects and how we create new versions of these objects.
Next, Section IV discusses our extension to a work-first sched-
uler. Section V experimentally validates that our scheduler is
competitive with state-of-the-art work-first and dependency-
aware schedulers. Finally, Section VI discusses related work
and Section VII concludes this paper.

II. PROGRAMMING MODEL

Figure 1 illustrates programming in our language. It is
assumed that the language contains parallelism control state-
ments as in Cilk: spawn expresses that a procedure call may
proceed in parallel with the caller and sync expresses that
the execution of a procedure should stall until all spawned
procedures have finished. We extend this however with the
notion of dependencies between tasks.

Dependencies are tracked at the object level. An object
must be declared as a versioned object in order to enable
dependency tracking. Versioned objects support automatic
tracking of dependencies as well as creating new versions
of the object in order to increase ask-level parallelism (a.k.a.
renaming [3]).

Dependency tracking is enabled on tasks that take particular
types as arguments: the indep, outdep and inoutdep types.
These types are little more than a wrapper around a versioned
object that extends its type with the memory access mode of

the task: input, ouput or input/output (in/out). The language
allows only to pass versioned objects to such arguments.

When spawning a task, the scheduler analyzes the signature
of the spawned procedure for arguments with a memory access
mode. If none of the arguments describe a memory access
mode, then the spawn statement is an unconditional spawn
and it has the same semantics as a Cilk spawn. Otherwise, the
spawn statement is a conditional spawn. The memory accesses
of the task are tracked and, depending on runtime conditions,
the task either executes immediately or it is queued up in a
set of pending tasks.

The sync statement in our language has the same semantics
as the Cilk sync statement: it postpones the execution of a
procedure until all child tasks have finished execution. Some
languages provide a conditional sync that postpones the exe-
cution of a procedure until all tasks operating on a particular
object are finished (e.g. the waiton clause in SMPSS [3]). We
have not yet defined the semantics of a conditional sync in our
language because we have no use for it in our benchmarks.
Such an extension would be quite straightforward.

We consider only situations where dependencies are tracked
between the children of a single parent procedure. Each dy-
namic procedure instance may have a task graph that restricts
the execution order of its children. This restriction allows
us to prove that all parallel executions compute the same
value as the sequential elision of the program [13].1 Note
that the sequential elision of the program always respects
the dependencies in the program: by deducing dependencies
from input/output properties, there can never be backward
dependencies in the sequential elision. Furthermore, by hav-
ing multiple independent task graphs in a program, we can
mitigate the performance impact of building the task graph in
serial fashion.

Our model allows arbitrarily mixing fork/join style and task
graph execution. The only problematic issue to allow this is
that we must take care when nesting task graphs, in particular
when passing versioned objects across multiple dependent
spawns. To make this work correctly, we must use distinct
metadata for every dependent spawn to track its dependencies
separately. This is detailed in Section III-F.

We assume that there is an implicit sync statement at the
end of every procedure. It should be clear to the reader that
the busy-leaves property of the Cilk scheduler is violated
when tasks execute out-of-order. The busy-leaves property
states that any created stack frame that has no left sibling
is currently operated on by a worker [14]. This property lies
at the basis of the provable time and space bounds of the Cilk
scheduler. We argue however that dependency-aware tracking
necessarily violates the busy-leaves property. Moreover, our
scheduler retains all the good properties of Cilk in the absence
of conditional spawns.

1Note that Cilk only guarantees the existence of a sequential elision. By
allowing locks and data races, different parallel executions may compute
different outcomes.



III. OBJECT VERSIONING AND DEPENDENCY TRACKING

In general, “hyperobjects are a linguistic mechanism that al-
low different branches of a multi-threaded program to maintain
co-ordinated local views of the same nonlocal variable” [15].
For instance, for a summing reducer hyperobject, a view is
simply a distinct allocated instance of the summing variable.
Threads that execute in parallel are assigned a distinct sum-
ming variable to operate on, such that races will not occur.
When the threads join, then the private summing variables are
reduced into a single variable. In this example, the reduction
function is simply addition.

In this work, we define versioned objects, a new type of
hyperobject that hides dependency tracking and renaming of
objects from the programmer. A versioned object combines
two pieces of information: the object metadata that tracks the
status of the object (tasks reading, writing, etc.) and a pointer
to dynamically allocated memory that holds an instance of the
object.

A. Automatic Renaming

The semantics of a hyperobject are defined by the actions
that the runtime system takes on fork and join points. For the
reducer, holder and splitter hyperobjects defined in [15], it is
typical that the parent procedure and the child procedure are
assigned a distinct view. These views are reduced into a single
view when the procedures join.

The nature of versioned objects is however quite different. A
version can be valid across all newly spawned child procedures
and their children recursively, even if they have not been
spawned yet. Alternatively, the version has been superseded
by a new version and should not be used any more by newly
spawned children. As such, when a new version of an object
is created at a spawn statement, both parent and child will
reference this new version. This is necessary such that a new
version created on spawn of a task with an output dependency
on an object will be visible to a later spawned task with an
input dependency on the same object. The child continues to
use the new version, while the parent may replace it at a later
spawn statement.

After creating a new version, the old version will get out
of use gradually and will be cleaned up automatically by the
runtime system when the last thread that references the version
terminates.

We create new versions only for arguments accessed with
the output memory access mode. Moreover, there must exist
tasks in the system that read or write the associated object, but
that have not yet finished execution. In this case, renaming is
clearly advantageous.

B. Dependency Tracking with a Task Graph

In general, tracking dependencies between tasks requires
the storage of the full task graph. This is undesirable for two
reasons. First, the task graph has many nodes (one for each
task) and it must support an arbitrary number of incoming
and outgoing edges (dependencies) in each task. This implies
that quite expensive data structures must be used that require

multiple memory allocations per node. The edges in the task
graph have a double function: (i) to determine readiness
of tasks (absence of incoming edges) and (ii) to wake-up
dependent tasks (by traversing all outgoing edges). Second,
updating the task graph is expensive in terms of locking
because every task involved in the update must be locked in
order to correctly orchestrate between multiple threads that
update the task graph. Furthermore, tasks that have already
moved to per-worker ready queues may have to be locked,
temporarily inhibiting their execution.

In this work, we present an alternative organization of the
task graph. Instead of explicitly storing all edges, we use a
ticketing system to correctly sequence tasks that operate on
the same objects. The ticketing system bears some similarity
to ticket locks [12] however, we use only the sequencing
properties of the mechanism, which is known as fairness for
locks.

Our organization of the task graph simplifies the major
operations on the task graph such as task enqueueing, task
dequeueing, task readiness check, checking conditions for
renaming, etc. It also allows to wake-up ready tasks with
little overhead, however retrieving a ready task is slightly more
complicated in this system. Our experimental evaluation shows
that we can hide the latency of retrieving a ready task off the
critical path.

C. Ticket Locks

A ticket lock consists of two counters: a global counter and
a next counter. The system works similarly to how tickets work
at a butcher’s store: new clients take the next ticket one-by-
one, each of them incrementing the next counter. The global
counter is advertised and shows the ticket of the client that is
currently served. When serving a client is finished, the global
counter is incremented by one to indicate whose turn is next.
The tickets place all clients in a virtual queue where the order
of the clients in the queue is defined by the numbers on their
tickets.

Ticket locks are implemented using atomic increments of
the next counter. When multiple threads are competing to ac-
quire a lock, the hardware will sequence the atomic increments
of all threads in a particular order. It is guaranteed by the ticket
lock that threads are served in this order. This fairness property
is one reason why they are used in the Linux kernel [16]. It
is this property that we are interested in.

D. Tickets for Task Parallelism

Because ticket locks strictly order all tasks, we present two
extensions that allow to extract parallelism from a task graph.
First, we allow that multiple tasks wait on the same ticket,
allowing them to execute in parallel. Second, we use two sets
of ticket counters to separately track readers and writers of the
object.2 Task parallelism is exposed by synchronizing on one
or two tickets, depending on how a task accesses the associated
object.

2There is one set of reader and writer counters per object. Furthermore,
every new version of an object gets a new set of reader and writer counters.



enqueue ready? dequeue

input ++R.next
w := W.next w = W.global ++R.global

output

if R.next != R.global or
W.next != W.global
then
rename()

endif
++W.next

true ++W.global

in/out r := R.next++
w := W.next++

r = R.global
and w = W.global

++R.global
++W.global

Fig. 2. Reader and writer ticket actions for enqueuing and dequeueing a
task and for checking readiness. The operations shown concern one accessed
object per task. They are repeated for all arguments of a task, using each
respective argument’s R and W tickets. The w and r tickets are stored in the
task descriptor.

Figure 2 summarizes the operations on the tickets. The R
tickets track readers while the W tickets track writers. Each
ticketing system has two counters as before: a next counter
and a global counter.

When enqueueing a task, the task is registered in the
reader set, the writer set or both, depending on whether the
task accesses the object in input, output or in/out mode.
Furthermore, the next reader and/or writer tickets are copied to
bookmark the order of the task in the sequence of all readers
or all writers.

For instance, tasks with an input dependency are strictly
ordered in the readers set as the next reader counter is
incremented in the enqueue operation and the global reader
counter is incremented in the dequeue operation. However,
such tasks are not dependent on other tasks in the readers
set. They can start execution as soon as all prior writers have
finished. Thus, they register in the reader set but wait on a
ticket from the writers set. Hereto, the next writer ticket is
copied (not incremented) and the task will be ready to execute
when the global writer counter equals the tasks writer ticket.

In a similar vein, tasks with an output dependency are
strictly ordered in the writers set. They are always ready to
execute due to renaming. Tasks with an in/out dependency
are strictly ordered with respect to both readers and writers.
Note that we chose not to rename objects in case of an in/out

dependency because the benefits in terms of task parallelism
are not clear. It is however straightforward to extend the system
described here.

E. Example
Figure 3 shows the operation of the tickets for enqueueing a

sequence of tasks with input, output and in/out dependencies.
The tickets for the readers and writers conceptually order all
readers and writers, respectively, in queues. We draw these
queues to help understand the mechanism, but note that these
queues are not stored in the program. Solid edges from a
position in a queue to a task show that the task holds the
corresponding ticket. Dashed edges show the tickets that a
task is waiting on, i.e. the global counter must reach the ticket
value pointed to.

Task T0 has an output dependency. Because the next reader
counter equals the global reader counter (there are no pending
tasks that access the object), the object is not renamed. T0 is
inserted at the head of the writers list. It is ready to execute.
For the sake of the argument, we assume that it remains
executing while additional tasks are spawned.

Task T1 has an input dependency on the object. Thus, it is
inserted in the readers set (solid edge) and it copies the next
ticket from the writers set (dashed edge). This ticket will equal
the global writer ticket when T0 finishes execution. As such,
the tickets reflect that T1 is dependent on T0.

Similarly, task T2 has an input dependency and the same
actions are taken. Because both T1 and T2 wait only on T0
to finish execution, they may execute simultaneously.

The next task, T3, has an in/out dependency. It is inserted
in both the readers and writers set (solid edges) and it grabs
the next ticket from both sets (dashed edges). This is because
task T3 has to wait on all prior writers (to satisfy read-after-
write dependencies) and it has to wait on all prior readers (to
satisfy write-after-read dependencies). It may appear that T3
is not waiting explicitly on T1. Note however that the global
reader counter can be increased by two positions only if both
T1 and T2 execute.

Task T4 has again an input dependency. It is inserted in the
readers set and it copies the next ticket from the writers set.
This ticket indicates that it must wait on T3 to finish execution.

If a task T5 with an output dependency arrives now, then a
new version of the object written to will be created to increase
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Fig. 3. An example of dependency tracking by means of tickets. The writers and readers queues are shown on the left and right, respectively. The solid
edges indicate that a task holds a particular ticket from a queue. The dashed edges indicate that a task must wait until the global counter reaches a particular
ticket. In practice, this means that the task waits on the task holding the previous ticket in the queue. This way, all inter-task dependencies are reconstructed.
One can see that all dependencies in this task graph are covered by the tickets.



1 // Assume same typedefs as Figure 1
2
3 void child (inout block t A) {
4 vers block t A child( A ); // introduces fresh metadata
5 // task graph computation on A ...
6 ...
7 sync;
8 }
9

10 void parent() {
11 vers block t A;
12 ...
13 spawn child(A);
14 ...
15 sync;
16 }

Fig. 4. Example of nested task graph execution. Both the parent and child
procedures spawn tasks with dependencies that are tracked on the same object.

task parallelism. A new set of counters is allocated for this
version and the process starts from scratch with zero tickets
as if T5 is the first task to access the object.

F. Nested Task Graphs

Our scheduler allows arbitrary nesting of fork/join paral-
lelism and task graph parallelism. Also, task graphs may be
arbitrarily nested. The latter requires some care, in particular
with handling the object metadata in order to track depen-
dencies correctly. Figure 4 shows an example where a parent
procedure spawns tasks with dependencies and the procedure
child, one of its children, also computes on the passed object
using task dependencies.

To satisfy the model where all executions compute the
same task graph, it is important to correctly order the tasks
dependent on child with respect to the tasks spawned by
child. Hereto, we create new reader and writer counters in
the procedure child, such that we can track dependencies in
the parent task graph independently from the dependencies on
the same object in the child task graph. This is sufficient to
implement the intended model. Allocation of new metadata is
effected by the construction of a new versioned object at line 4
in Figure 4. The constructor of the versioned object copies
back the data to the original version (used in the parent) in
case the object was renamed during the execution of the child
task graph.

IV. A UNIFIED WORK-FIRST/TASK GRAPH SCHEDULER

One of the often recurring programming idioms in the
context of Cilk programs is to solve a problem by recur-
sively splitting it in smaller sub-problems, resulting in a
procedure call tree, typically built from recursive procedure
calls. Eventually, the sub-problems are small enough to be
treated as indivisible units of work, called the leaf tasks. The
parallelization strategy applied by Cilk is to split the call graph
as few times as possible. Consequently, the call tree is split at
the top, as many times as is necessary to split off a piece of
work for every thread. Splitting off a piece of work is effected
by work stealing.

Cilk’s strategy has the practical consequence that most of
the procedure spawns are executed serially. This property
follows from the work-first principle: it is generally better to
execute a spawned procedure immediately than it is to create
a task descriptor, enqueue it, dequeue it and execute it. (The
work-first principle is an improvement of Cilk-5 [10] over
Cilk-3 [9].)

A. Cilk Runtime Data Structures

The Cilk runtime maintains several data structures to control
the execution of a Cilk program: the (extended) spawn deque,
stack frames and full frames (Figure 5). We refer the reader
to [15] for a thorough discussion of the internals of the
Cilk-5/Cilk++ scheduler. Our discussion deviates slightly on
elements that are particular to our implementation.

Stack frames, as in sequential C/C++ programs, store vari-
ables local to a procedure invocation as well as temporaries
and control information, e.g. to link the procedure back to the
caller. On top of this information, Cilk stack frames store a
small number of control variables.

Some frames are accessible by multiple worker threads. As
such, they contain additional fields to control multi-threaded
actions. Full frames contain all the information of a stack
frame, as well as a lock, a continuation to proceed the
execution of a frame by a different worker, a join counter
and a list of child frames, which is implemented by a pointer
to the first child and pointers to the sibling frames.

All frames link together in a tree, where the root of the tree
corresponds to the main procedure of the program (Figure 5).
This tree is also known as a cactus stack. This tree is, in fact,
a part of the complete procedure call tree. It is a snapshot of
the procedure instances that are currently active.

Full frames are always located near the root of the call tree,
while stack frames appear near the leafs of the call tree. In
fact, Cilk maintains the following invariants: (i) the parent of
a full frame is a full frame, and (ii) a stack frame has at most
one child and this child is a stack frame.

Every worker thread operates on its own set of frames,
which are organized as spawn deques of call stacks. A worker
pushes stack frames on the front of its spawn deque as it
executes new procedure instances and it pops them as they
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Fig. 5. The Cilk runtime data structures for two worker threads.



finish execution. The organization of the spawn deque is
however distinct from the stack used in sequential C/C++
programs in two ways. First, the spawn deque is organized
by call stacks. Frames created for normal procedure calls are
appended to the same call stack as their parent. Frames created
on procedure spawns are inserted in a new call stack. Second,
other workers may steal call stacks from the back of the spawn
deque when they run out of work. It is not possible to add call
stacks to the back of the spawn deque.

Cilk separately maintains a current call stack, which is the
call stack currently operated on. The current call stack can
never be stolen by another worker. The extended spawn deque
consists of the current call stack and the spawn deque.

The oldest frame on an extended deque is always a full
frame. All other frames are stack frames. Moreover, every
stack frame belongs to a single extended deque. Frames that do
not belong to any extended deque are necessarily full frames.

B. Cilk Runtime Actions

The Cilk runtime manages the extended spawn deques when
executing a procedure call and its return, when executing
a procedure spawn and its return and when executing a
sync statement. We only provide a very short description.
Furthermore, we make abstraction of the organization of a
spawn deque by call stacks. It complicates the discussion but
bears no importance to the contributions of this paper. Full
details can be found in [15].

When executing a procedure call or spawn, a new stack
frame is allocated and pushed on the extended spawn deque.
When executing a return from a call, the frame from which
the return leaves is either a full frame or a stack frame.
If it is a stack frame, then it is popped from the extended
spawn deque and execution continues in its parent, which is
guaranteed to belong to the same extended spawn deque. If the
frame being left is a full frame, then it is necessarily the top
frame on the extended deque. The frame is popped, leaving
the extended deque empty. The worker continues by executing
an unconditional steal of the parent frame.

When executing a return from a spawn, we again make the
distinction between a stack frame and a full frame. If the frame
where the return leaves from is a stack frame, then the frame
is popped and execution resumes in the parent. If the frame
where the return leaves from is a full frame, then it is again
the top frame of the extended deque. The frame is popped,
leaving the extended deque empty. The worker continues by
executing a provably-good steal of the parent frame.

If a sync statement is executed inside a stack frame, then the
runtime system does nothing. Otherwise, the current frame is
a full frame and the scheduler will perform a counter-intuitive
provably-good steal on the frame itself.

Cilk implements multiple stealing actions. Provably-good
stealing and unconditional stealing try to continue the execu-
tion of the program in the most sensible way by continuing the
execution on a frame that is a direct ancestor of the last frame
executed. In contrast, random work stealing occurs when the
worker has no good idea about what frame to execute next.
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Fig. 6. The Cilk runtime data structures extended with pending frames. The
pending frames are procedure instances that have not yet executed. Therefore,
they can be stored more compactly than full frames.

In random work stealing the worker randomly selects a
victim worker to steal a call stack. Random selection of a
victim is repeated until a victim is found with a non-empty
deque. The oldest call stack is removed from the deque of
the victim and every stack frame on it is converted to a
full frame. For every such frame, the frame is added to its
parent’s children list and the join counter of the parent frame is
incremented. Similarly, the oldest frame in the extended spawn
deque is converted to a full frame and its parent’s children
list and join counter are updated. Finally, the runtime system
executes a resume-full-frame action on the youngest frame that
was stolen.

In a provably-good steal, if the join counter of the stolen
frame is zero and no worker is working on the frame (it lives
outside the spawn deques), the runtime system executes a
resume-full-frame action on the frame. Otherwise, the runtime
system performs random work stealing.

Unconditional steals occur when returning from a procedure
call. In this case, the runtime system executes a resume-full-
frame action on the frame. The resume-full-frame action on a
frame pushes the frame on the worker’s extended deque and
executes its continuation.

C. Extensions for Task Graph Scheduling

Dependency-aware scheduling requires additional data
structures to maintain a list of pending frames. Pending frames
are created upon conditional spawns where the dependencies
are not satisfied when the spawn statement executes. Pending
frames live outside the spawn deques because there is no
worker that is executing them. Therefore, pending frames are
necessarily full frames.

To support dependency-aware scheduling, we add to each
full frame a list of pending frames (Figure 6). We will explain
later how this list is organized. Also, stack frames and full
frames are extended to store the tickets that tasks acquire,
wait on and release.3

The actions taken by the runtime system are modified
as follows. On a conditional procedure spawn from a stack

3Stack frames need such information in order to acquire tickets when the
stack frame is converted to a full frame.



frame, the spawned procedure is executed as if it were an
unconditional spawn, because we track only dependencies
within the scope of a single parent frame. In this case, the
parent and its children are executing serially.

On a conditional procedure spawn executed from a full
frame, we acquire all objects passed as an argument with a
memory access mode. If all objects are ready, then a new stack
frame is allocated and it is pushed on the worker’s extended
spawn deque. The worker continues by executing the spawned
procedure. Otherwise, if not all objects are ready, then a new
pending frame is created and it is stored in the pending list
of the parent. The worker continues with the execution of
the parent, immediately after the spawn statement. Note that,
during this process, the parent never becomes stealable by
another worker because the child frames are not pushed on
the spawn deque. Hereby, we can efficiently generate pending
frames.

On a return from a conditional spawn that leaves a stack
frame, we perform no additional actions because the spawn
is executed as if it were an unconditional spawn. On a
return from a conditional spawn that leaves a full frame, all
acquired objects are released, potentially waking up pending
frames. The extended spawn deque is now empty. The worker
continues with a provably-good steal of the parent of the frame
that was finished.

Actions for unconditional spawns and calls and the corre-
sponding returns are unmodified from the original scheduler.
The main difference in the scheduler is in the implementation
of the stealing algorithms.

Random work stealing is modified in two ways. First, when
a stack frame is converted to a full frame, we check if it
has been created by a conditional spawn. If so, then all
objects passed to arguments with dependency attributes are
now acquired. These objects must be ready because we track
only dependencies between the children of a common parent
and in this case, the parent has only one child.

Second, we introduce a new steal situation. In particular, if
random stealing selects a victim that has only one call stack
on its extended deque, then we investigate the parent of the
top frame on the victim’s deque. If this parent does not belong
to any spawn deque (which means its execution is stuck in a
sync statement), then we perform a steal-ready-child action
on the parent frame. This effectively steals a sibling of the top
frame of the victim’s deque.

Note that we only attempt a steal-ready-child action when
the parent has reached a sync statement. In other cases, we
prefer to retry random stealing until the worker is found whose
extended deque contains the parent frame.4 The baseline
random stealing actions are sufficient to move the parent
frame to the thief’s extended deque. Continuing the execution
of the parent in this case has the advantage that additional
pending frames are created, increasing the scope of out-of-
order execution. Moreover, it is possible that the parent frame

4Or, random stealing identifies a victim that is executing a different branch
of the computation. This could be a part of the program unrelated to out-of-
order execution of tasks, or it could be a different out-of-order section.

executes spawn statements that are immediately executable.
Provably-good stealing of a frame still resumes the frame

if the join counter is zero. Otherwise, if the frame (which is
full) has pending children, we perform a retrieve-ready-child
action on the frame.

The steal-ready-child action locates a ready frame in the
pending list. Because we lazily maintain the pending list
and because we do not separately maintain a list of ready
frames, the steal-ready-child action must necessarily traverse
the pending list in serial fashion. Note however that this action
is performed only when the parent has already arrived at a
sync statement. As such, all pending frames in this out-of-
order execution phase have been generated and the phase is
progressing towards its end. The list will thus shrink rapidly,
speeding up the search. Moreover, once a ready task has been
located this way, the scheduler will perform a retrieve-ready-
child action as the result of returning from the spawned task
on a full frame. This effectively bypasses the expensive steal-
ready-child operation.

The retrieve-ready-child action locates a ready frame in
the pending list. In contrast to the steal-ready-child action,
this action is executed after an out-of-order task has finished
execution. Because finishing tasks wake up other tasks, it is
now possible to start the search in the pending list from a
position that is near ready frames. We organize the pending
list in such a way that this search completes successfully very
quickly, as described shortly below.

If either of the actions above finds a ready child in the
pending list, the runtime system then executes a resume-full-
frame action on the frame. Note that objects have already been
acquired when the pending frame was created. If no ready
child can be located in the pending list, then the runtime
system performs random work stealing. The unconditional
steal action is unmodified. Note that the runtime system has
been carefully designed such that serial execution of a pro-
cedure with conditional spawns proceeds without introducing
important overhead. This is a consequence of applying the
work-first principle to dependency-aware scheduling.

D. Organization of the Pending List

Frames in the pending list are organized by their depth in the
task graph. The depth of a task T is defined as the maximum
length of a path of dependent tasks in the task graph that ends
in T. Tracking the depth of a task is fairly simple while the
information is sufficient to quickly retrieve ready tasks.

To track the depth of a task, we extend the metadata of
each versioned object with a depth field. Each new version
of an object is assigned depth zero. Also, full frames are
extended with a depth field. The depth of objects and tasks
is updated when objects are acquired. When a task acquires
objects passed with access modes input and in/out, then the
depth of the task is computed as the maximum depth of
the passed objects. Moreover, for objects passed with access
modes output and in/out, the depth of the objects is updated
as the newly computed depth of the task, plus one. Using the
depth of each task, we organize the pending list as a list of



TABLE I
PERFORMANCE RESULTS FOR BENCHMARKS FROM THE CILK SUITE.

Serial Cilk++ Unified
Benchmark Input TS T1 T16 TS/T16 T1 T16 TS/T16

cholesky 3000x3000 sparse matrix, 16x16 blocks 10.10 10.09 0.65 15.53 8.85 0.65 15.53
fft 16M data points 11.97 14.09 0.96 12.46 12.34 0.90 13.30
heat 4Kx4K grid, 100 time steps 35.66 36.48 4.19 8.51 35.95 4.25 8.39
lu 4Kx4K matrix, 16x16 blocks 40.21 38.69 2.10 19.14 34.23 2.14 18.78
rectmul 4Kx4K dense matrices 64.64 65.61 3.44 18.79 69.55 3.92 16.48
spacemul 4Kx4K dense matrices 64.41 62.67 3.32 19.40 65.92 3.82 16.86
strassen 4Kx4K dense matrices 45.18 48.05 5.18 8.72 45.33 5.10 8.85
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Fig. 7. Scalability graphs for the Cilk benchmarks.

lists. Pending frames are added to the end of the list for their
depth. The steal-ready-child action scans the whole pending
list, starting with the least depth. It is most likely that a ready
frame is found with a small depth.

The retrieve-ready-child action tries to locate a ready child
in the list after another task in the list has finished. If the
finished task has a depth D, then it can wake-up only tasks
with depth D′ > D. On the other hand, the action in the
graph occurs at level D, so this is also a good level to search.
Consequently, we search depths D and D+ 1 first and resort
to a scan of all levels if this fails.

This organization works very well because testing readiness
of a task is extremely simple. It consists of little more than
loads and compares of ticket values. Furthermore, it puts the
overhead in work stealing rather than in task spawning and
the common steal action is well optimized.

V. EVALUATION

We implemented our unified scheduler as a C++0x library
that provides spawn and sync (although with a function call

syntax) as well as versioned objects and the memory access
types. We use the type introspection facilities of C++0x to
analyze the signature of spawned procedures for arguments
with memory access modes. Our implementation of the cactus
stack differs from that of Cilk-5 in the sense that spawned
procedures actually execute on the cactus stack whereas Cilk-5
stores only the data on it that is live across a spawn statement.
This is effected by direct manipulation of the stack pointer
using inline assembly code. Our system knows only one code
version per procedure whereas Cilk-5 uses a micro-scheduled
version to resume frames after a steal and a nano-scheduled
version that is optimized for serial execution [10].

We experimentally validate the performance of our unified
scheduler by comparing its performance to the Cilk++ and
SMPSS schedulers. Hereto, we use a set of benchmarks
distributed with Cilk and a set of benchmarks distributed with
SMPSS. In each case, algorithms are blocked and we retain
the original block sizes. We scale up to the problem size to
match the performance of current processors.

The experimentation machine contains 4 quad-core AMD



Opteron 8350 HE processors clocked at 2GHz and runs the
Ubuntu 9.10 operating system. We compile our scheduler
using gcc 4.6, we use the Cilk++ compiler which is based
on gcc 4.2.4 and we use SMPSS 2.3, which uses a custom
compiler. We compute speedups relative to the serial elision
of the benchmarks, which we compile using gcc 4.6. In each
case, the optimization level is set to -O4. We use GotoBLAS2
(rev. 1.13) [17] for the implementation of BLAS kernels, when
required by the benchmarks.

A. Comparison to Cilk++

Table I shows the Cilk benchmarks that we use in this
study, together with some performance metrics. Figure 7 shows
scalability graphs for the Cilk++ scheduler and our unified
scheduler. The graphs show the speedup compared to the serial
elision of the Cilk++ programs. These results show that the
performance of our unified scheduler is quite comparable to
Cilk++.

In the cases of rectmul and spacemul, the performance with
the Cilk++ scheduler scales better than linear. We suspect that
this is due to NUMA effects, as these benchmarks allocate
and initialize memory in parallel, distributing it across mul-
tiple NUMA nodes. The other benchmarks perform initialize
memory sequentially.

B. Comparison to SMPSS

Table II and Figure 8 show the performance of SMPSS and
the unified scheduler on the SMPSS benchmarks. The unified
scheduler gives comparable performance to SMPSS on 3 out
of 5 benchmarks. It outperforms SMPSS on jacobi, which has
very fine-grained tasks (32-word copy). Furthermore, SMPSS
suffers performance anomalies when executing transpose with
a high thread count. We will show next that SMPSS does
not admit as fine-grain tasks as the unified scheduler, which
explains the poor results for SMPSS above.

C. Fork/Join vs. Task-Dataflow Style

In this section we compare the fork/join style of program-
ming to the task-dataflow style. We have created a matrix
multiplication benchmark in both styles based on the Cilk
rectmul benchmark and using BLAS dgemm in the leaf tasks.

Figure 9 shows performance measurements for a varying
number of threads and for block sizes of 16x16, 32x32 and
64x64. The task-dataflow style is very sensitive to the block
size. The performance of SMPSS derails for fine-grain leaf
tasks on 16x16 blocks. Performance is bad even on a single
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Fig. 8. Scalability graphs for the SMPSS benchmarks.

thread. This is caused by a very high constant overhead in
the runtime. There are also performance anomalies on 32x32
blocks. Performance is, however, good for a 64x64 block size.

The unified scheduler also has performance deficiencies
on 16x16 blocks but it behaves much better than SMPSS.
Note that the single-thread performance on 16x16 blocks is
comparable to the performance of Cilk++ on 16x16 blocks.
In other words, performance overhead related to dependency
tracking is successfully avoided by the design of our scheduler.

Matrix multiplication in the task-dataflow style reaches

TABLE II
PERFORMANCE RESULTS FOR BENCHMARKS FROM THE SMPSS SUITE.

Serial SMPSS Unified
Benchmark Input TS T1 T16 TS/T16 T1 T16 TS/T16

cholesky 8Kx8K dense matrix, 32x32 blocks 27.80 28.16 1.95 14.25 27.46 2.00 13.90
jacobi 4Kx4K dense matrix, 32x32 blocks 3.48 6.27 7.01 0.49 3.73 3.14 1.10
matmul 4Kx4K dense matrices, 64x64 blocks 184.98 180.53 9.73 19.01 174.09 9.67 19.12
lu 3200x3200 sparse matrix with 32x32 blocks 7.18 7.47 0.52 13.80 7.21 0.59 12.16
transpose 256Kx256K dense matrix with 64x64 blocks 2.74 3.91 1.96 1.39 2.83 1.24 2.20
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Fig. 10. Performance of pipelined programs.

minimal execution of 0.697 for a block size of 64x64 at 14
threads (Unified). The fork/join style leads to a 18% lower
execution time of 0.573 for a block size of 64x64 at 16 threads
(Cilk++). While it has been motivated that the task-dataflow
style admits higher parallel performance [1], [3], we believe
that it should be possible to pick the best idiom for every
algorithm in an application.

Furthermore, our unified scheduler shows much more stable
behavior across block sizes than SMPSS. Consequently, it is
much easier to tune the block size based on a limited number
of performance measurements. The peformance anomalies of
SMPSS, for instance, would obstruct autotuning.

D. Parallel Pipelines

Task dataflow languages simplify programming of parallel
pipelines [18], a construct that occurs in emerging work-
loads [11]. Pipelines have scalable parallelism when instan-
tiations of at least one of the pipeline stages may execute
in parallel. Cilk++ allows the pipeline construct only in
limited form: 3-stage pipelines with a serial, a parallel and
a serial stage (in that order) can be constructed using reducer
hyperobjects. Two-stage non-parallel pipelines are a special
case of these. The unified programming model allows pipeline
parallelism with an arbitrary number of serial and parallel
pipeline stages.

Figure 10 shows the performance of pipeline parallelism
in bzip2 and hmmer. For bzip2, we use the code provided
by Cilk Arts [19]. The Cilk++ version uses hyperobjects to

implement the final serial stage, while the unified version
uses task dependencies. Both versions obtain a comparable
speedup. The hmmer code is taken from the SPEC CPU2006
integer suite. In this case, the last pipeline stage is a reduction
operation. We show two versions on the unified scheduler: one
where the last pipeline stage is implemented by means of a
lock and one where it is implemented by task ordering. The
latter case is more restrictive in terms of parallelism, but the
results show that, for two or more threads, both versions obtain
comparable results. The Cilk++ version also uses locks but it
is somewhat slower, a consequence of building on an older
version of the gcc compiler which performs less aggressive
optimization of the inner loops of the benchmark.

VI. RELATED WORK

Several task dependency aware languages and schedulers
have been described in the recent literature, e.g. SuperMa-
trix [4], StarPU [5], SMPSS [3], CellSS [20]. All of them
detect inter-task dependencies at runtime by comparing mem-
ory accesses made by tasks. Similar to OpenCL [21], StarPU
allows name-based dependency tracking between tasks. This
allows the programmer to explicitly state dependencies be-
tween tasks, irrespective of their memory side-effects.

To the best of our knowledge, all schedulers cited above
explicitly maintain the task graph. While this approach is
sensible, it turns out that it is expensive in terms of locking
tasks. In contrast, we designed a scheduler that avoids such
overheads, although we have to pay a small price when
recovering ready tasks.

SMPSS looks up object metadata by means of a hash table
that is indexed with the starting address of an object [3]. As
such, metadata lookup and renaming are completely invisible
to the programmer, but the hash table lookup implies runtime
overhead. StarPU, on the other hand, requires that the pro-
grammer registers the objects used in dependency tracking [5].
The runtime system returns a descriptor that contains the
object metadata. Tasks must reference this descriptor to enable
dependency tracking. This sytem removes runtime overhead
related to looking up object metadata. Our system has similar
benefits to StarPU as the metadata always resides with the
object, although our language provides a better abstraction.

Some systems require that the complete memory footprints
of tasks are specified. This facilitates off-loading tasks on
accelerator processors such as the Cell processor [20], [22]
and GPUs [23]. In [2], tasks are distributed across nodes that
communicate by means of MPI.

StarPU schedules tasks based on the predicted execution
time of tasks [23]. Execution time models are calibrated by
fitting measurement data to polynomial equations where the
free variables describe problem sizes (e.g. matrix dimension).
The scheduler assigns tasks to the processor that is predicted
to complete the task earliest.

Nabbit [7] is a library that schedules the execution of task
graphs using the Cilk++ language. The paper also provides
upper bounds on the parallel execution time of task graphs
with the Nabbit scheduler.



Concurrent Collections (CnC) is a programming model that
allows mixing task and data parallelism [24]. It is an implicitly
parallel and deterministic programming model where the user
specifies high-level operations along with semantic ordering
constraints. Together, these define a CnC graph. CnC does not
specify a scheduler by itself, but can be targeted to one of
many task dataflow schedulers.

The SMPSS language implements reductions with reduction
in/out arguments. The scheduler allows to simultaneously
execute tasks with dependencies arising from reduction argu-
ments. It is assumed that such tasks lock the shared variable
when it is updated. Cilk++ provides reducer hyperobjects
to implement reductions [15]. This construct can also be
used in the context of our scheduler, provided that no task
dependencies are specified on the reduction variable.

VII. CONCLUSION

This paper presented a language and a scheduler that
supports both fork/join parallel programming and task
dataflow parallel programming. The scheduler extends work-
first scheduling with task dependency-aware scheduling in
a way that introduces minimal overhead. We demonstrate
that our scheduler is as efficient as the Cilk++ scheduler on
fork/join programs and that it is more efficient than SMPSS,
a dependency-aware scheduler. In particular, our scheduler is
more well-behaved on small task granularities, while SMPSS
shows severe performance anomalies.

The language allows to structure algorithms either in
fork/join style or in task-dataflow style, depending on what
is more appropriate for the algorithm at hand. As such, the
overhead of dependency tracking must not be paid on truly
parallel algorithms.

In future work, we plan to extend ticked-based dependency
tracking to accesses to partially overlapping memory regions.
This is still an open problem in dependency-aware schedul-
ing. Such a system is necessary to mix the fork/join and
dependency-aware styles in a single algorithm and may allow
higher performance and/or better performance portability.
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