
Prefetching and Cache Management using Task Lifetimes

Papaefstathiou, V., Katevenis, M. G. H., Nikolopoulos, D. S., & Pnevmatikatos, D. (2013). Prefetching and
Cache Management using Task Lifetimes. In ICS '13 Proceedings of the 27th international ACM conference on
International conference on supercomputing. (pp. 325-334). New York, NY,USA: ACM. DOI:
10.1145/2464996.2465443

Published in:
ICS '13 Proceedings of the 27th international ACM conference on International conference on supercomputing

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2013 Author | ACM. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in ICS '13 Proceedings of the 27th international ACM conference on International conference on
supercomputing, http://dx.doi.org/10.1145/2464996.2465443

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:16. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/10082768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/prefetching-and-cache-management-using-task-lifetimes(8f462a1e-e845-40de-a5a3-600999266dfd).html

Prefetching and Cache Management Using Task Lifetimes

Vassilis Papaefstathiou∗

FORTH-ICS
Heraklion, Crete, Greece
papaef@ics.forth.gr

Manolis G.H. Katevenis∗

FORTH-ICS
Heraklion, Crete, Greece
kateveni@ics.forth.gr

Dimitrios S. Nikolopoulos
Queen’s University of Belfast

Belfast, United Kingdom

d.nikolopoulos@qub.ac.uk

Dionisios Pnevmatikatos†

FORTH-ICS
Heraklion, Crete, Greece
pnevmati@ics.forth.gr

ABSTRACT

Task-based dataflow programming models and runtimes em-
erge as promising candidates for programming multicore and
manycore architectures. These programming models ana-
lyze dynamically task dependencies at runtime and schedule
independent tasks concurrently to the processing elements.
In such models, cache locality, which is critical for perfor-
mance, becomes more challenging in the presence of fine-
grain tasks, and in architectures with many simple cores.

This paper presents a combined hardware-software ap-
proach to improve cache locality and offer better perfor-
mance is terms of execution time and energy in the memory
system. We propose the explicit bulk prefetcher (EBP) and
epoch-based cache management (ECM) to help runtimes
prefetch task data and guide the replacement decisions in
caches. The runtime software can use this hardware sup-
port to expose its internal knowledge about the tasks to the
architecture and achieve more efficient task-based execution.
Our combined scheme outperforms HW-only prefetchers and
state-of-the-art replacement policies, improves performance
by an average of 17%, generates on average 26% fewer L2
misses, and consumes on average 28% less energy in the
components of the memory system.

Categories and Subject Descriptors

B.3.2 [Design Styles]: Cache memories; C.1.4 [Parallel
Architectures]; D.1.3 [Concurrent Programming]

General Terms

Design, Measurement, Performance

∗Also, with the Computer Science Department (CSD), Uni-
versity of Crete, Heraklion, Greece.
†Also, with the ECE Department, Technical University of
Crete, Chania, Greece.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’13, June 10–14, 2013, Eugene, Oregon, USA.
Copyright 2013 ACM 978-1-4503-2130-3/13/06 ...$15.00.

Keywords

Task-based Programming; Prefetching; Cache Management

1. INTRODUCTION
One common approach to parallel programming is to de-

compose a program into a set of tasks and distribute them
among the processing elements. Many task-based program-
ming models have been proposed in the literature [4, 9, 18]
and promise to ease programming effort by abstracting out
the elements of parallel programming that are traditionally
considered hard and time consuming, such as scheduling,
synchronization, and locality optimizations. This paper con-
siders a class of emerging task-based dataflow programming
models where the memory footprint of each task is declared
by the programmer and the runtime software automatically
detects task dependencies based on these footprints and
schedules independent tasks concurrently [2, 6, 28, 33]. In
this context, we focus on the memory behavior of fine-grain
tasks and their impact on cache locality, which greatly af-
fects performance. The use of fine-grain tasks can unleash
large amounts of parallelism and has the potential to allow
many-core computing resources to be utilized.

Each task has its own unique memory footprint and the
associated data will eventually be transferred into the por-
tion of the underlying memory hierarchy that is closest to
the core that executes this task, i.e. L1 and/or L2 cache.
Given that tasks are separate units of work, each with its
own memory footprint, reuse of cache contents among tasks
is a difficult problem that locality-aware schedulers are try-
ing to alleviate [16]. However, task data reuse is not always
possible, and depends on the distance between producer and
consumer tasks, which is an intrinsic characteristic of each
application. Moreover, several types of applications do not
benefit from a single type of scheduler and their behavior
may be incompatible with specific scheduling algorithms.
Often times, applications benefit from load-balancing and
work-stealing, which makes locality a conflicting goal; the
most extreme case of locality scheduling dictates that all
tasks execute sequentially in a single core.

The task-based dataflow programming models use the me-
mory footprints of tasks to build dependency graphs (DAGs)
and maintain significant amount of information that is used
to dynamically drive runtime decisions. However, the under-
lying memory architecture is still agnostic of what runtimes
are trying to achieve. Therefore, hardware decisions are
based on rather simplistic assumptions. Our thesis is that

c©ACM, 2013 – To appear in the 27th International Conference on Supercomputing – ICS’13 1

the runtime software maintains important semantic knowl-
edge regarding the execution sequence and memory foot-
prints of tasks, which can be shared with the underlying
hardware to achieve an effective hardware-software synergy.

To this end, we propose architectural support and run-
time co-design to improve cache locality and optimize task-
based execution. We introduce the Explicit Bulk Prefetcher
(EBP), a programmable prefetch engine that can be uti-
lized by the runtime software to prefetch task data. EBP
is reminiscent of an RDMA (remote direct memory access)
engine, but it is designed for cache-based architectures, in-
tegrates with the local cache hierarchy of each core, and
offers a low overhead memory-mapped interface that can be
used at user-level. EBP enables runtime software to pre-
fetch task data in bulk before each task executes and per-
form common optimizations such as double-buffering. This
form of software-directed prefetching can overcome some of
the challenging issues with hardware-only prefetchers such
as timeliness, accuracy, and access pattern prediction.

Although prefetching has the potential to improve cache
locality and hide memory latency, its effectiveness is affected
by the ability of the cache to keep the prefetched data.
When applying double-buffering optimizations, prefetching
can pollute the cache and evict useful data. To address
the latter issues and shortcomings, we propose Epoch-based
Cache Management (ECM), a mechanism that allows soft-
ware to expose its knowledge of tasks to the cache hierar-
chy, assign cache resources to them, and isolate the effects
of prefetching. ECM is based on the notion of Epoch, which
is defined by software as the lifetime of a task, i.e. the time
period during which a task executes. ECM offers a memory-
mapped interface that allows software to advance epochs,
i.e. signal the beginning of new tasks, and assign quotas to
epochs, i.e. declare the space a task is allowed to allocate
in the cache. All data accessed (or prefetched) by a task is
associated with an epoch number in the cache. ECM guides
the cache replacement policy, by allowing it to distinguish
between data belonging to different tasks. The hardware
cost of ECM is very small.
The contributions of this paper are the following:

• We propose the Explicit Bulk Prefetcher (EBP), a pro-
grammable prefetch engine that allows software to ac-
curately prefetch data ahead of time and improve cache
locality in task-based programs.

• We introduce Epoch-based Cache Management (ECM),
a lightweight mechanism to guide cache replacement
decisions, assign local cache resources to tasks, and
isolate the effects of prefetching.

• We evaluate EBP and ECM using a task-based run-
time and a set of benchmark applications. We demon-
strate that EBP in conjunction with ECM outper-
forms HW-only prefetchers, improves performance by
an average of 17%, generates on average 26% fewer L2
misses, and consumes on average 28% less energy in
the components of the memory system.

The rest of this paper is organized as follows: Section 2 in-
troduces the task-based dataflow programming model. Sec-
tion 3 explains the proposed architectural support. Section 4
provides the experimental methodology. Section 5 presents
our evaluation. Section 6 discusses related work. Finally,
Section 7 offers our conclusions.

2. TASK DATAFLOW PROGRAMMING
The task-based dataflow programming models aim to sim-

plify parallel programming by discovering task dependen-
cies at runtime and dynamically extracting task parallelism.
Such models require the programmer (or the compiler) to
identify tasks (functions) that may run in parallel, anno-
tate the memory footprint of their arguments (addresses),
and declare the side-effect of each task argument in memory
(read/write). Representative examples of such program-
ming models include SmpSS/OmpSS [28, 29], BDDT [32],
Legion [6], Serialization Sets [2] and other proposals that
follow similar concepts and techniques [7,10,33].

The underlying runtime libraries use the memory foot-
prints and the side-effects of each task argument to identify
task dependencies and build dependency graphs as directed
acyclic graphs (DAGs) at runtime. Independent tasks are
immediately scheduled for execution on the available cores,
while dependent tasks are kept in internal data structures
and queues, waiting until all of their dependencies are sat-
isfied. Tasks in this model may execute out-of-order using
the scheduling techniques followed in processors, while re-
specting task dependencies in the same way that processors
respect register dependencies, i.e. true dependencies (RAW),
anti-dependencies (WAR) and output dependencies (WAW).
Deterministic execution and the preservation of task depen-
dencies are guaranteed by the order in which the main ap-
plication thread issues tasks, similarly to the order that in-
structions are issued in a sequential program.

In this paper, we consider the programming model pro-
posed in [28], which is based on C pragmas and follows syn-
tax similar to the popular OpenMP task pragmas [4]. We
use the same task constructs and multi-dimensional memory
regions syntax as in [29]. The side-effects of task arguments
may be declared as one of: (i) input: for read-only argu-
ments, (ii) output: for write-only arguments, and (iii) inout:
for arguments that are both read and written. A code exam-
ple illustrating matrix multiplication with our task dataflow
programming model is shown in Listing 1.

void matmul block (double A[N] [N] ,
double B[N] [N] ,
double C[N] [N])

{
for (int i=0 ; i < L ; i++)

for (int j=0 ; j < L ; j++)
for (int k=0 ; k < L ; k++)

C[i] [j] += A[i] [k] + B[k] [j] ;
}

double A[N] [N] , B[N] [N] , C[N] [N] ;
. . .
for (int i=0 ; i < N ; i+=L)

for (int j=0 ; j < N ; j+=L)
for (int k=0 ; k < N ; k+=L)

#pragma xss task input (A{0 :L}{0 :L}) \
input (B{0 :L}{0 :L}) \
inout (C{0 :L}{0 :L})

matmul block (&A[i] [k] ,
&B[k] [j] ,
&C[i] [j]) ;

#pragma xss waitall

. . .

Listing 1: A matrix multiplication example using
the task dataflow programming model

2 c©ACM, 2013 – To appear in the 27th International Conference on Supercomputing – ICS’13

3. ARCHITECTURAL SUPPORT
Emerging task-based dataflow programming models re-

quire the memory footprint of each task to be declared. This
requirement provides unique opportunities for optimizations
in the memory system. The runtime system maintains im-
portant knowledge about the task execution sequence and
task memory footprints, which can guide the resource allo-
cation decisions of the underlying hardware.

To this end, we propose a set of hardware mechanisms
which can improve task-based execution with low hardware
and software overhead. We propose the Explicit Bulk Pre-
fetcher (EBP): a hardware mechanism that allows the run-
time to accurately prefetch task data (Section 3.1) and Epoch-
based Cache Management (ECM): a hardware mechanism to
guide the cache replacement decisions (Section 3.2).

3.1 Explicit Bulk Prefetcher
Task-based programming models with annotated memory

footprints allow the runtime to know before-hand which data
will be used by a task before that task executes. This ob-
servation offers the opportunity to prefetch task data in a
timely fashion and improve cache locality. The Explicit Bulk
Prefetcher (EBP) is a hardware unit that allows software to
explicitly prefetch memory ranges that correspond to task
arguments. Software can utilize EBP to prefetch data for
the next task(s) waiting in the scheduling queue, effectively
applying double- or multi- buffering, in order to minimize
cache misses and improve task execution.

EBP is a programmable prefetch engine that offers a mem-
ory-mapped interface and accepts a set of commands at user-
level. We design EBP as a per-core engine that operates on
a private coherent L2 cache. We target L2 caches since their
large capacity – when compared to L1 caches – makes them
more suitable for bulk prefetching and because processor
pipelines and critical paths are less susceptible to changes
in the L2 cache. Moreover, we choose a memory-mapped
interface instead of a register-mapped interface, in order to
avoid ISA changes and make our design less intrusive. EBP
is reminiscent of existing RDMA engines [3,22].

The memory-mapped interface offered by EBP, is designed
to allow memory ranges to be specified with virtual ad-
dresses, thus offering fast user-level access with low software
overhead. In order to translate virtual addresses1 and ensure
protection, EBP requires access to the local TLBs; typically
the 2nd level TLB. The use of virtual addresses provides
EBP with the capability to prefetch across page boundaries,
which is a common limiting factor in HW prefetchers. In ad-
dition, EBP can trigger page-table walking hardware early
and minimize, or even hide, the effect of TLB misses.

The EBP engine supports 2D memory ranges with a con-
stant stride in order to minimize the number of required pre-
fetch operations in common array patterns, such as block-
ing/tiling. The interface defines the following memory-map-
ped registers to initiate prefetch operations:

• Address: The starting virtual address for a prefetch.

• Block Size: The size (bytes) of each block.

• Block Number: The number of blocks to prefetch.

• Block Stride: A constant stride (measured in bytes)
used for the calculation of the next block address.

• Epoch: This field is used by ECM as described later.

1We assume that the L2 cache is physically tagged.

Figure 1: EBP Overview

• Opcode: This field marks whether this data will be
used as Read-Only or Read-Write. Based on this value,
the associated cache-lines are requested with the proper
coherence permissions: Shared or Exclusive.

Upon writing the “Opcode” register, all command fields
are atomically enqueued in a “Command FIFO” and each
command is served in-order by the internal “Request En-
gine” (Figure 1). The “Request Engine” converts each me-
mory range into multiple cache-line aligned requests, per-
forms address translation, and probes the cache. If a cache-
line is present in the cache with the appropriate coherence
permissions, then the request is skipped. If the cache-line
is not present, or present with “limited” permissions, then
a new request is sent to the coherence directory to fetch
or upgrade the cache-line. In case a cache set is full, an
old cache-line is evicted to make space. The intermediate
“Command FIFO” supports multiple outstanding prefetch
operations (32 in our implementation). The “Request En-
gine”also supports multiple outstanding cache-line requests,
the number of which is however limited by the number of
miss status handling registers (MSHRs). We assume that up
to 8 outstanding requests can be issued without occupying
all MSHRs.

3.2 Epoch-based Cache Management
Current cache replacement policies base their decisions

on the recent history of referenced cache-blocks and try to
predict which blocks will be referenced in the near future.
They typically assume that the most recent or the most
referenced blocks should remain in the cache [21] and try
to optimize this behavior. However, the behavior of task-
based execution models is substantially different, since after
the lifetime of a task, the reference history of many cache-
blocks used by the completed task may be useless and can
negatively affect performance.

The replacement decisions become even more challeng-
ing in the presence of prefetching [36], e.g. when utilizing
EBP. The use of EBP has the potential to effectively hide
memory latency when the software can initiate it ahead of
time, before data is requested by a task, for example when
the runtime software uses double-buffering. However, the ef-
fectiveness of EBP is also affected by the ability of the cache
to keep the prefetched data. Prefetching is known to cause
cache pollution, therefore double-buffering data for the next
task may evict data needed by the current task. Likewise,
the current task may evict data prefetched for the next task.

These inefficiencies offer an opportunity to improve per-
formance by making the cache aware of the tasks’ lifetimes
and datasets. We propose Epoch-based Cache Management

c©ACM, 2013 – To appear in the 27th International Conference on Supercomputing – ICS’13 3

Figure 2: ECM Overview

(ECM), a hardware mechanism that allows software to ex-
pose the knowledge of tasks and their requirements to the
cache hierarchy in order to improve replacement decisions
and optimize cache locality.

ECM is based on the notion of Epoch, which is defined
as the time period during which a task executes, which we
refer to as the task lifetime. Epochs are tracked locally on
each core, in the form of a memory-mapped register visible
to the local cache. Every memory access that arrives from
the processor, is augmented in hardware with the current
epoch and marks the corresponding cache-line. The epoch
number is kept in the tag of each cache-line and occupies a
few bits, e.g. 3 bits to support 8 epochs. ECM only requires
the software to advance the epoch register at the beginning
of a new task. The epochs are free to wrap around without
any special handling.

The epoch number is essentially an short identifier that
allows the cache to distinguish between data that belong to
different tasks while maintaining a short history, i.e. data
accessed by the last 8 tasks. The replacement policy can
use the epoch numbers contained in the tags of each set and
the current epoch register, in order to quickly filter old data
and decide which cache-lines to victimize when needed. This
strategy effectively prioritizes data used by the current task.
When all cache-lines in a set belong to the current epoch, the
replacement policy operates as it would do without epochs
and uses the reference state of cache-lines (e.g. LRU bits).

However, when the runtime employs double-buffering op-
timizations and uses EBP, the cache must also handle an-
other active task context, i.e. the next task and its data. The
cache has to ensure that data between these active task con-
texts do not interfere in a destructive manner. To address
the latter issue, we introduce software-controlled Quotas for
epochs and their corresponding tasks. ECM offers a set of
memory-mapped quota registers that enables software to as-
sign a portion of cache space for each “active” epoch. We
consider active epochs to be the “current” and “next” epoch,
which correspond to the current task and the first waiting
task in the processor’s task queue. Older epochs do not have
quotas. The software assigns quotas, expressed in number
of bytes for the active epochs, using the memory footprint
of each task, in order reserve cache space for the task. We
implement this scheme in private L2 caches.

The underlying hardware mechanism uses the quotas to
construct flexible and lightweight partitions for each epoch.

When a quota is assigned, the byte quantity is converted
into equivalent number of ways, depending on the size and
associativity of the cache. The scheme rounds up the quota
to the closest multiple of equivalent cache ways and handles
cases of over-booking; the sum of quotas cannot exceed the
number of cache ways. ECM enforces the quotas in a best-
effort manner and guarantees that each active epoch can
allocate at least its assigned quota (ways) per set. However,
an active epoch is allowed to allocate more than the assigned
ways in a set, when another active epoch does not fully
utilize its quota. Moreover, an active epoch is also free to
use cache-lines that belong to old epochs.

The replacement policy counts the allocated ways for the
active epochs in a per-set basis and based on the quotas,
decides whether an epoch can allocate more space. When
a cache set is fully utilized with cache-lines that belong to
active epochs, the replacement policy selects a victim that
belongs to the requesting epoch, by consulting only the ref-
erence state bits (e.g. LRU bits) that belong to this epoch.
Cache-line allocation for an active epoch is not tied to spe-
cific cache ways but is instead dynamically selected. An
overview of ECM is illustrated in Figure 2.

When EBP is used in conjunction with ECM, each pre-
fetch request is augmented with the “Epoch” field of the
prefetch command, to signify whether this request belongs
to the current or the next epoch. In addition, EBP probes
ECM to discover whether its quota has exceeded, i.e. the
corresponding set is full with cache-lines that belong to ac-
tive epochs. When a set is full, EBP throttles prefetching
by skipping requests destined to this specific set, in order to
avoid evicting cache-lines that were recently prefetched.

ECM can be easily implemented at low hardware cost,
and in fact we have already implemented it along with EBP
in an FPGA prototype [25]. Adding 3 epoch bits per tag
in a 256KB 8-way set-associative L2 cache has a memory
overhead of only 0.5%.

4. EXPERIMENTAL METHODOLOGY

4.1 Simulation Infrastructure
We use an execution-driven simulation framework that

couples Pin [24] and GEMS [26] to model the memory hi-
erarchy in detail. We use Garnet [1] for NoC modeling and
Dramsim2 [31] for the off-chip DRAM memory controllers.

4 c©ACM, 2013 – To appear in the 27th International Conference on Supercomputing – ICS’13

Master Core out-of-order superscalar at 2 GHz, 4-wide,
128-entry ROB, 96-entry LD/ST queue,

Worker Cores up to 64, in-order at 2 GHz
L1 Caches 32KB, 4-way, 64-byte block,

1 port, 1-cycle, LRU, split I/D
L2 Caches private 256KB, 8-way, 64-byte block,

2-port, 8-cycles, NRU, 16 MSHRs,
unified, coherent, inclusive

Coherence MESI directory per memory controller,
4 virtual networks, 10-cycles, non-blocking

L2 Prefetcher PC-based stride, 64 streams, degree of 4
NoC 2D Mesh at 2 GHz, 2 cores per node,

16-byte control packets, 80-byte data packets,
16-byte links, 1-cycle link, 5-stage routers,

4 virtual networks, 4 VCs per virtual network
DRAM 4 dual-channel memory controllers,

16GB DDR3 SDRAM, PC3-15400,
8 banks, FR-FCFS scheduling policy

EBP 32 commands, 8 outstanding requests
ECM 8 epochs using 3 bits per L2 tag

Table 1: Detailed architectural parameters for the
simulated system.

Power estimation is for 32nm technology, uses Cacti 6.5 [17]
for the caches and directories, Orion 2.0 [23] for the on-chip
interconnect, and the infrastructure of Dramsim2 for the off-
chip DRAM power. Our framework supports the x86 ISA
and simulates user-level application and library code.

We model a tiled manycore architecture with directory-
based cache coherence and distributed directories (per me-
mory controller). Our design uses up to 64 in-order cores
with a two-level private cache hierarchy, similar to the In-
tel Xeon-Phi Coprocessor [19]. We also add an out-of-order
superscalar core for the role of the master processor that
runs the main application thread and spawns tasks. Further
details for simulation parameters appear in Table 1.

For the evaluation of our proposed architectural support
we also implement a per-core PC-based stride prefetcher [5]
that prefetches cache-lines into the L2 cache. We also model
a state-of-the-art prefetch-aware replacement policy [36] for
the purpose of comparison with ECM.

4.2 Runtime Software
We implement an in-house runtime system for the task-

based dataflow programming model that supports the basic
task spawning and waiting constructs as discussed in Section
2. It supports two-dimensional address ranges for declaring
task footprints and uses a block-based approach with ar-
bitrary granularity for dynamic dependence analysis [32].
Pragmas are converted into calls to the underlying runtime
library using an in-house source-to-source compiler that is
based on CIL [27].

The runtime, in its current form, can utilize an arbitrary
number of worker threads but only a single master thread
can spawn tasks. To issue tasks, the compiler generated code
builds task descriptors containing: (i) the function pointer
of each task, (ii) the base memory pointer for each argu-
ment, (iii) the dimensions of each argument, and (iv) the
argument type describing the memory side-effects (input,
output, inout). Upon task spawning, the runtime analyzes
inter-task dependencies using internal metadata for the ap-
plication memory and decides whether tasks are eligible for
immediate execution. Ready (independent) tasks are sched-
uled to worker threads, while dependent tasks are kept in

internal data structures until all their dependencies are sat-
isfied. Eventually, all tasks become eligible for scheduling.
The runtime fully supports out-of-order execution of tasks.
The implementation utilizes private per-worker FIFO queues
to schedule tasks and follows a round-robin lowest occupancy
first scheduling policy to achieve load balancing in the pres-
ence of unbalanced tasks.

When the runtime executes on architectures that imple-
ment EBP and ECM, it utilizes our hardware support to
optimize task-based execution. It prefetches task data in a
double-buffered fashion using EBP and leverages ECM to
manage the local cache resources. The runtime advances
ECM epochs on task boundaries and assigns epoch quotas
to tasks based on their memory footprint.

4.3 Benchmarks
We use six widely used benchmark applications, after con-

verting them to the task-based dataflow programming model
using C pragmas. Most of these benchmarks originate from
the SmpSS distribution and are sketched in [29]. All bench-
marks accept a block size as input parameter to allow con-
trolling the memory footprint of tasks and, in effect, the task
granularity. The benchmarks are the following:
Matrix Multiplication: An implementation of dense ma-
trix multiplication using the BLAS [8] package. We run the
benchmark with 1000 × 1000 double precision matrices.
Jacobi: The iterative 5-point stencil linear equation solver.
We run Jacobi with 1000 × 1000 double precision matrices.
FFT: The 2D Fast Fourier Transform uses the FFTW [13]
package for 1D FFT computations and performs transposi-
tion and twiddling in-place. We run FFT with 1M points.
Bitonic Sort: A comparison-based sorting kernel. The
implementation uses Quicksort to create an initial bitonic
sequence and then performs a logarithmic number of merge
phases. We sort 1M long integers.
Cholesky: The Cholesky decomposition of a positive def-
inite matrix into the product of a lower triangular matrix
and its conjugate transpose. The implementation uses rou-
tines from the BLAS [8] package. We run Cholesky with a
1280 × 1280 double precision matrix.
Sparse LU: The LU factorization of a sparse matrix as the
product of a lower triangular matrix and an upper triangu-
lar matrix. We run Sparse LU with a 1280 × 1280 double
precision matrix.

5. EVALUATION

5.1 Performance Analysis
We evaluate the performance of our proposed architec-

tural support (EBP and ECM) by comparing it to a base-
line without and with HW-only prefetching. We run the
benchmarks with block sizes that generate fine-grain tasks,
each with a memory footprint size approximately equal the
L1 cache size (32KB). Figure 3 shows percentage of per-
formance improvement (execution time) over the baseline
without prefetching for runs with up to 64 worker cores, for
three configurations: (i) hardware L2 prefetcher (HWP),
(ii) EBP, and (iii) EBP together with ECM. All measure-
ments include the software runtime overhead. We also plot
the speedup achieved by the baseline without prefetching,
normalized to single core serial execution without runtime
overhead (ignore pragmas), to show how each benchmark
scales with the number or cores in our implementation.

c©ACM, 2013 – To appear in the 27th International Conference on Supercomputing – ICS’13 5

Figure 3: Performance improvement over the base-
line without prefetching for each of the following
configurations: (i) Hardware Prefetcher (HWP), (ii)
Explicit Bulk Prefetcher (EBP), (iii) Explicit Bulk
Prefetcher with Epoch-based Cache Management
(EBP+ECM). The line shows the speedup of the
baseline, normalized to the single core serial code
execution time that ignores the task pragmas (no
runtime overhead).

Figure 4: Reduction in the number of L2 misses over
the baseline without prefetching when running with
16, 32, and 64 worker cores (higher is better).

We observe that the configuration with EBP in conjunc-
tion with ECM always outperforms HWP. For the bench-
marks that scale almost linearly (Matrix multiplication, Ja-
cobi, FFT, and Bitonic) the improvement over HWP for the
higher core counts (>=16) ranges from 15% in FFT to 43%
in Jacobi, which is the most memory intensive benchmark.
Bitonic is 26% faster in 32 cores but appears 10% faster in 64
cores because the master thread saturates and cannot gener-
ate enough tasks for double-buffering. Matrix multiplication
is consistently better by more than 16%. For benchmarks
that do not scale linearly and are more compute intensive
(Cholesky, Sparse LU) the improvement ranges from 3% in
Sparse LU up to 11% in Cholesky. EBP alone (without
ECM) is not always better than HWP. In Jacobi it performs
worse than HWP by more than 13% and in FFT it achieves
almost the same performance. In the rest of the benchmarks,
EBP alone performs either worse than EBP+ECM (5% in
Matrix multiplication) or achieves the same performance
(Sparse LU). On average, for the 64-core setup, EBP+ECM
is 17% faster than the HW-only prefetcher and 13% faster
than EBP alone.

To gain more insight into the latter results, we study the
impact of EBP and ECM in the number of L2 misses. Fig-
ure 4 presents the reduction in L2 misses over the baseline
without prefetching for the three configurations and for se-
tups with high cores counts (>=16). EBP with ECM signif-
icantly reduces the number of L2 misses, outperforms HWP,
and achieves reduction of more than 90% on half of the
benchmarks (Jacobi, Bitonic, Sparse LU). HWP performs
relative well in a number of benchmarks (Jacobi, Bitonic,

6 c©ACM, 2013 – To appear in the 27th International Conference on Supercomputing – ICS’13

Figure 5: NoC traffic normalized to the baseline
without prefetching when running with 16, 32, and
64 worker cores (lower is better).

Sparse LU) and reduces the associated L2 misses by up to
75%, however, in the rest of the benchmarks it cannot iden-
tify the memory access patterns accurately and the reduc-
tion in L2 misses falls below 30%. On the other hand, EBP
with ECM consistently provides more than 18% additional
reduction in L2 misses over HWP. The additional reduction
in L2 misses ranges from over 18% (Jacobi, FFT, Bitonic,
Sparse LU) to 44% (Matrix multiplication, Cholesky). EBP
alone cannot always perform better than HWP (e.g. Jacobi)
and is less effective than EBP+ECM. When EBP prefetches
data and requires L2 replacements, the replacement policy
cannot distinguish between old task data, current task data
and next task data, thus the victim selection is not optimal,
causes interference, and reduces the effectiveness of prefetch-
ing. On average, for the 64-core setup, EBP+ECM reduces
L2 misses by an additional 26% over the HW-only prefetcher
and an additional 7% over EBP alone.

5.2 Memory Traffic Analysis
We study the implications of EBP and ECM on the me-

mory system by measuring the on-chip and off-chip traffic.
Given that the memory traffic is sensitive to task-scheduling,
i.e. which task is executed on which core and in what order,
we use a fixed off-line schedule that was captured when run-
ning the application on the baseline system. We replay the
same schedule in the runtime for each of the three configu-
rations. We present the results for on-chip network (NoC)
traffic in Figure 5 and for off-chip memory (DRAM) traffic
in Figure 6 for setups with high core counts (>=16). The
traffic volumes are normalized to the traffic generated by the
baseline without prefetching for each configuration.

Figure 6: DRAM traffic normalized to the baseline
without prefetching when running with 16, 32, and
64 worker cores (lower is better).

The results indicate that EBP with ECM does not gener-
ate excessive traffic when compared to the baseline without
prefetching. In some cases, EBP with ECM generates even
less traffic than the baseline. On the contrary, HWP results
in increased traffic on most benchmarks because of inaccu-
racy in its predictions and the associated cache pollution.
The improved traffic behavior observed in the 64-core se-
tups is partly attributed to the increased on-chip cache size
when the number of cores increases; on high core counts
a larger portion of the benchmarks’ datasets fits on-chip2.
In the presence of prefetching (either HWP or EBP), data
from the producers’ caches are transferred earlier to the con-
sumers’ caches (before they are evicted), thus saving traffic.
However, the improved behavior of EBP+ECM is also be-
cause of the smarter cache management of the task datasets
and the throttling technique employed (Section 3.2).

EBP+ECM generates less on-chip traffic on all bench-
marks when compared to both HWP and EBP alone, Fig-
ure 5. On the other hand, EBP alone generates significantly
more traffic in a number of benchmarks (Matrix multipli-
cation, Jacobi, FFT) which can be up to 50% higher than
the baseline (e.g. FFT on 16 cores). EBP alone prefetches
the requested cache-lines blindly in the cache and incurs de-
structive interference between data belonging to the active
task contexts (current and next). When EBP prefetches
cache-lines that map to fully-occupied sets with data from
active tasks, the replacement policy has to evict useful data,
whereas ECM throttles prefetching for these sets by consult-

2We did not use larger datasets because of the prohibitive
simulation times.

c©ACM, 2013 – To appear in the 27th International Conference on Supercomputing – ICS’13 7

Figure 7: Dynamic energy consumption of the me-
mory system’s components. The energy is normal-
ized to the baseline without prefetching when run-
ning with 16, 32, and 64 worker cores (lower is bet-
ter).

ing the epochs and their associated quotas. On average, for
the 64-core setup, EBP+ECM generates 21% less on-chip
traffic than the HW-only prefetcher and 11% less traffic than
EBP alone.

The off-chip DRAM traffic shows a similar trend with on-
chip traffic (Figure 6) and the pathological cases of EBP
described earlier are again clearly shown. On average, for
the 64-core setup, EBP+ECM generates 28% less off-chip
DRAM traffic than the HW-only prefetcher and 15% less
traffic than EBP alone.

Bitonic presents a noteworthy behavior on 64 cores, where
EBP reduces off-chip traffic by more than 80% over the base-
line. This behavior is explained by the nature of comparison-
based sorting which leads to a coherence pattern where data
come as shared (to compare) and then upgrade to exclusive
(to swap). In Bitonic, the application has marked this data
as inout and EBP fetches them directly in exclusive mode.
This avoids writebacks when data is dirty in another cache
and downgrades due to the reads required for comparisons,
assuming a MESI cache coherence protocol.

5.3 Power Analysis
Following the methodology discussed in Section 5.2, we

use the simulator infrastructure to measure the dynamic en-

Figure 8: Comparison of replacement policies when
EBP is utilized, running with 16 worker cores.

ergy consumption3 of the memory system components (L1,
L2, Directory, DRAM) and the on-chip interconnect (NoC).
We present our results using breakdowns in Figure 7. In al-
most all the benchmarks, the dynamic energy consumption
is dominated by the off-chip DRAM, while the second ma-
jor component is the L1 cache. The most important find-
ing is the reduction of DRAM energy when prefetching is
used (either HWP or EBP). This behavior is explained by
the open-row management and the scheduling policy of the
memory controller (FR-FCFS [30]). With prefetching, the
memory controller has the potential to serve more requests
from open rows and reduce the number of row activations
and precharges, which contribute significantly to DRAM en-
ergy. With EBP, task data is requested in bulk and close in
time, thus offering the memory controller more opportuni-
ties to exploit open row buffer locality. Moreover, the sig-
nificant reduction in on-chip and DRAM traffic we observe
when using EBP+ECM (Section 5.2) offers additional en-
ergy savings. On average, for the 64-core setup, EBP+ECM
consumes 28% less energy than the HW-only prefetcher and
11% less energy than EBP alone.

5.4 Comparing Cache Replacement Policies
We explore a number of candidate replacement policies

for use with EBP and present our findings for 16-cores in
Figure 8. We examine the typical NRU and LRU replace-
ment policies, RRIP [21], and the state-of-the-art prefetch-
aware replacement policy called PACMan [36] in its three
variants: PACH, PACM, PACHM4. Moreover, given that
ECM is versatile and can be used in conjunction with many
replacement policies, we also evaluate three variants with
ECM: NRU+ECM, LRU+ECM, RRIP+ECM. We observe
that when EBP is utilized, the PACMan variants perform
worse than NRU and LRU, whereas the ECM variants can
be up to 22% faster than LRU (Jacobi). In PACMan, the
reference history that is accumulated during a task lifetime
is useless for the next task and requires several misses be-
fore cache-lines with old task data become candidates for
replacement. This behavior appears to have a negative ef-
fect on performance. On the other hand, the ECM epochs
help to effectively filter “old” cache-lines and allow the data
prefetched for the next task to be preserved in the cache.

3Note that we do not include static energy measurements
which are influenced by execution time, thus our compar-
isons are conservative.
4For RRIP and PACMan we use 2-bit values and the version
without set-dueling.

8 c©ACM, 2013 – To appear in the 27th International Conference on Supercomputing – ICS’13

6. RELATED WORK
There is a vast amount of previous work on hardware

prefetchers that try to predict memory access patterns and
prefetch data without any software guidance such as [11,
12]. However, we propose a hardware-software approach for
prefetching which is based on the fully-accurate knowledge
about task memory footprints, known a-priori by the run-
time software (before tasks start executing).

Guided region prefetching (GRP) [34] is a related scheme
that augments load instructions with compiler generated
hints to improve the accuracy of a hardware prefetcher.
GRP requires sophisticated compiler analysis, the hints are
not always accurate, and the prefetches are triggered by L2
misses during the execution of code. Our approach differs
from GRP, since we use fully accurate memory footprints
and the data are fetched early before task execution with
the potential to hide all L2 misses.

Most pertinent to this work is Streamware [14] and the re-
lated architectural support [15] which target stream process-
ing. They propose a software programmable Stream-Load-
Store (SLS) hardware unit, that resembles EBP, and is used
by the runtime software. However, they do not tackle the
problem of cache pollution and interference due to prefetch-
ing, as we propose with the use of ECM. ARM’s Preload
Engine (PLE) [3], which is also similar to EBP, does not
address cache pollution either.
“KILL” [20] and “Evict-me” [35] are two related schemes

that try to improve cache replacement decisions and re-
duce pollution in the presence of prefetching. Both of them
are based on sophisticated compiler analysis and instruction
hints (using ISA modification) that are used in conjunction
with the replacement policy. These approaches try to iden-
tify which data will not be used in the future and mark this
data appropriately. In the task-based execution context, this
approach could only be useful for the data of the current
task, while there can be no information about the behavior
of the next task, the data of which can be prefetched. In
addition, when a task completes, such schemes would re-
quire massive marking (or eviction) of each task’s dataset.
The latter could be an erroneous behavior if some of the
data is reused by the next task. ECM on the other hand,
easily handles all these cases and only requires software to
advance the local epoch. Moreover, the epoch quotas offer
an additional criterion to throttle prefetching.

PACMan [36] is also a relevant prefetch-aware cache man-
agement scheme that builds on top of RRIP [21]. PAC-
Man tries to reduce cache pollution and prefetch interfer-
ence by handling demand and prefetch requests separately.
To achieve this effect, PACMan modifies the cache insertion
and hit promotion policies. Although this scheme might
perform well for intra-task prefetching (when data for the
current task is prefetched), it can not handle inter-task pre-
fetching. ECM addresses prefetching across tasks and helps
throttling prefetches to reduce traffic and pollution. We
evaluated the performance of PACMan as a candidate cache
replacement scheme for use with EBP in Section 5.4.

7. CONCLUSIONS
This paper presented a hardware-software approach to im-

prove cache locality and optimize the execution of fine-grain
tasks. We proposed the Explicit Bulk Prefetcher (EBP) and
Epoch-based Cache Management (ECM) to allow runtime

software to prefetch task data and guide replacement de-
cisions in caches. Using EBP and ECM the runtime soft-
ware can exploit its available information about task me-
mory footprints and task lifetimes, and expose this informa-
tion to the memory hierarchy with minimal software over-
head. ECM assists the cache replacement policy to select
victims and removes cache pollution and prefetch interfer-
ence when EBP is used. We show that EBP in conjunction
with ECM outperforms HW-only prefetchers, improves per-
formance by an average of 17%, generates on average 26%
fewer L2 misses, and consumes on average 28% less energy
in the components of the memory system.

8. ACKNOWLEDGMENTS
We thankfully acknowledge the support of the European

Commission under the 7th Framework Programs through
the ENCORE (FP7-ICT-248647) and HiPEAC3 (FP7-ICT-
287759) projects. This research is also supported by EPSRC
through the GEMSCLAIM project (grant EP/K017594/1).

9. REFERENCES
[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha.

Garnet: A detailed on-chip network model inside a
full-system simulator. In Proc. of IEEE Int. Symp. on
Performance Analysis of Systems and Software,
ISPASS ’09, pages 33–42, 2009.

[2] M. D. Allen, S. Sridharan, and G. S. Sohi.
Serialization sets: a dynamic dependence-based
parallel execution model. In Proc. of the ACM Symp.
on Principles and Practice of Parallel Programming,
PPoPP ’09, pages 85–96, 2009.

[3] ARM Ltd. Cortex A9 Preload Engine.
http://infocenter.arm.com/.

[4] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger,
Y. Lin, F. Massaioli, X. Teruel, P. Unnikrishnan, and
G. Zhang. The design of OpenMP tasks. IEEE Trans.
Parallel Distributed Systems, 20(3):404–418, 2009.

[5] J.-L. Baer and T.-F. Chen. An effective on-chip
preloading scheme to reduce data access penalty. In
Proc. of the ACM/IEEE Conf. on Supercomputing,
Supercomputing ’91, pages 176–186, 1991.

[6] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken.
Legion: expressing locality and independence with
logical regions. In Proc. of the Int. Conf. on High
Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 66–77, 2012.

[7] M. J. Best, S. Mottishaw, C. Mustard, M. Roth,
A. Fedorova, and A. Brownsword. Synchronization via
scheduling: techniques for efficiently managing shared
state. In Proc. of the ACM Conf. on Programming
Language Design and Implementation, PLDI ’11,
pages 640–652, 2011.

[8] L. S. Blackford et al. An Updated Set of Basic Linear
Algebra Subprograms (BLAS). ACM Transactions on
Mathematical Software, 28:135–151, 2001.

[9] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: an
efficient multithreaded runtime system. In Proc. of the
ACM Symp. on Principles and Practice of Parallel
Programming, PPOPP ’95, pages 207–216, 1995.

[10] R. Bocchino et al. A type and effect system for
deterministic parallel java. In Proc. of the ACM Conf.

c©ACM, 2013 – To appear in the 27th International Conference on Supercomputing – ICS’13 9

on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’09, pages 97–116, 2009.

[11] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Stealth
prefetching. In Proc. of the Int. Conf. on Architectural
support for programming languages and operating
systems, ASPLOS XII, pages 274–282, 2006.

[12] P. Diaz and M. Cintra. Stream chaining: exploiting
multiple levels of correlation in data prefetching. In
Proc. of the Int. Symp. on Computer architecture,
ISCA ’09, pages 81–92, 2009.

[13] M. Frigo and S. G. Johnson. The design and
implementation of FFTW3. Proc. of the IEEE,
93(2):216–231, 2005.

[14] J. Gummaraju, J. Coburn, Y. Turner, and
M. Rosenblum. Streamware: programming
general-purpose multicore processors using streams. In
Proc. of the Int. Conf. on Architectural support for
programming languages and operating systems,
ASPLOS XIII, pages 297–307, 2008.

[15] J. Gummaraju, M. Erez, J. Coburn, M. Rosenblum,
and W. J. Dally. Architectural support for the stream
execution model on general-purpose processors. In
Proc. of the Int. Conf. on Parallel Architecture and
Compilation Techniques, PACT ’07, pages 3–12, 2007.

[16] Y. Guo, J. Zhao, V. Cave, and V. Sarkar. Slaw: a
scalable locality-aware adaptive work-stealing
scheduler for multi-core systems. In Proc. of the ACM
Symp. on Principles and Practice of Parallel
Programming, PPoPP ’10, pages 341–342, 2010.

[17] HP Laboratories. Cacti 6.5: An integrated cache and
memory access time, cycle time, area, leakage, and
dynamic power model.
http://www.hpl.hp.com/research/cacti/.

[18] Intel Corporation. Intel Threading Building Blocks
(TBB). http://www.threadingbuildingblocks.org.

[19] Intel Corporation. The Intel Xeon Phi Coprocessor.
http://www.intel.com/content/www/us/en/
processors/xeon/xeon-phi-detail.html.

[20] P. Jain, S. Devadas, D. Engels, and L. Rudolph.
Software-assisted cache replacement mechanisms for
embedded systems. In Proc. of the IEEE/ACM Int.
Conf. on Computer-Aided Design, ICCAD ’01, pages
119–126, 2001.

[21] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and
J. Emer. High performance cache replacement using
re-reference interval prediction (RRIP). In Proc. of the
Int. Symp. on Computer Architecture, ISCA ’10, pages
60–71, 2010.

[22] J. A. Kahle et al. Introduction to the Cell
Multiprocessor. IBM Journal of Research and
Develeopment, 49(4/5):589–604, 2005.

[23] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. Orion
2.0: A fast and accurate noc power and area model for
early-stage design space exploration. In Design,
Automation & Test in Europe Conference, DATE ’09,
pages 423–428, 2009.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In Proc.
of the ACM Conf. on Programming Language Design
and Implementation, PLDI ’05, pages 190–200, 2005.

[25] S. Lyberis, G. Kalokerinos, M. Lygerakis,
V. Papaefstathiou, D. Tsaliagkos, M. Katevenis,
D. Pnevmatikatos, and D. Nikolopoulos. Formic:
Cost-efficient and scalable prototyping of manycore
architectures. In Proc. of the IEEE Symp. on
Field-Programmable Custom Computing Machines,
FCCM ’12, pages 61–64, 2012.

[26] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (GEMS)
toolset. SIGARCH Computer Architecture News,
33(4):92–99, 2005.

[27] G. C. Necula, S. McPeak, S. P. Rahul, and
W. Weimer. Cil: Intermediate language and tools for
analysis and transformation of c programs. In Proc. of
the Int. Conf. on Compiler Construction, CC ’02,
pages 213–228, 2002.

[28] J. Perez, R. Badia, and J. Labarta. A
dependency-aware task-based programming
environment for multi-core architectures. In Proc.
IEEE Conf. on Cluster Computing, CLUSTER ’08,
pages 142 –151, 2008.

[29] J. M. Perez, R. M. Badia, and J. Labarta. Handling
task dependencies under strided and aliased
references. In Proc. of the ACM Int. Conf. on
Supercomputing, ICS ’10, pages 263–274, 2010.

[30] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and
J. D. Owens. Memory access scheduling. In Proc. of
the Int. Symp. on Computer architecture, ISCA ’00,
pages 128–138, 2000.

[31] P. Rosenfeld, E. Cooper-Balis, and B. Jacob.
Dramsim2: A cycle accurate memory system
simulator. Comp. Arch. Letters, 10(1):16 –19, 2011.

[32] G. Tzenakis, A. Papatriantafyllou, J. Kesapides,
P. Pratikakis, H. Vandierendonck, and D. S.
Nikolopoulos. BDDT: block-level dynamic dependence
analysis for deterministic task-based parallelism. In
Proc. of the ACM Symp. on Principles and Practice of
Parallel Programming, PPoPP ’12, 2012.

[33] H. Vandierendonck, G. Tzenakis, and D. S.
Nikolopoulos. A unified scheduler for recursive and
task dataflow parallelism. In Proc. of the Int. Conf. on
Parallel Architectures and Compilation Techniques,
PACT ’11, pages 1–11, 2011.

[34] Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt,
and C. C. Weems. Guided region prefetching: a
cooperative hardware/software approach. In Proc. of
the Int. Symp. on Computer architecture, ISCA ’03,
pages 388–398, 2003.

[35] Z. Wang, K. S. McKinley, A. L. Rosenberg, and C. C.
Weems. Using the compiler to improve cache
replacement decisions. In Proc. of the Int. Conf. on
Parallel Architectures and Compilation Techniques,
PACT ’02, pages 199–208, 2002.

[36] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely, Jr.,
and J. Emer. PACMan: prefetch-aware cache
management for high performance caching. In Proc. of
the IEEE/ACM Int. Symp. on Microarchitecture,
MICRO-44, pages 442–453, 2011.

10 c©ACM, 2013 – To appear in the 27th International Conference on Supercomputing – ICS’13

