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Abstract

Phagocytosis is a key process of the immune system. The human pathogen Klebsiella pneumoniae is a well known example
of a pathogen highly resistant to phagocytosis. A wealth of evidence demonstrates that the capsule polysaccharide (CPS)
plays a crucial role in resistance to phagocytosis. The amoeba Dictyostelium discoideum shares with mammalian
macrophages the ability to phagocytose and kill bacteria. The fact that K. pneumoniae is ubiquitous in nature and, therefore,
should avoid predation by amoebae, poses the question whether K. pneumoniae employs similar means to counteract
amoebae and mammalian phagocytes. Here we developed an assay to evaluate K. pneumoniae-D. discoideum interaction.
The richness of the growth medium affected the threshold at which the cps mutant was permissive for Dictyostelium and
only at lower nutrient concentrations the cps mutant was susceptible to predation by amoebae. Given the critical role of
bacterial surface elements on host-pathogen interactions, we explored the possible contribution of the lipopolysaccharide
(LPS) and outer membrane proteins (OMPs) to combat phagoyctosis by D. discoideum. We uncover that, in addition to the
CPS, the LPS O-polysaccharide and the first core sugar participate in Klebsiella resistance to predation by D. discoideum. K.
pneumoniae LPS lipid A decorations are also necessary to avoid predation by amoebae although PagP-dependent
palmitoylation plays a more important role than the lipid A modification with aminoarabinose. Mutants lacking OMPs OmpA
or OmpK36 were also permissive for D. discoideium growth. Except the LPS O-polysaccharide mutants, all mutants were
more susceptible to phagocytosis by mouse alveolar macrophages. Finally, we found a correlation between virulence, using
the pneumonia mouse model, and resistance to phagocytosis. Altogether, this work reveals novel K. pneumoniae
determinants involved in resistance to phagocytosis and supports the notion that Dictyostelium amoebae might be useful as
host model to measure K. pneumoniae virulence and not only phagocytosis.
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Introduction

Phagocytosis is the process by which particles are recognized,

bound to the surface of cells and internalized into a plasma

membrane-derived intracellular vacuole, or phagosome. In

mammals, phagocytosis is a special feature of the so-called

professional phagocytes, i.e. polymorphonuclear leukocytes (also

known as neutrophils), dendritic cells, monocytes and macrophag-

es. When a microorganism enters the sterile sections of the body,

professional phagocytes are chemotactically attracted, bind the

microorganism, ingest and kill it. In the case of macrophages and

dendritic cells, the invader’s antigenic molecules are presented to

other immune cells hence initiating adaptive immune responses.

The social amoeba Dictyostelium discoideum lives in soil, where it

feeds on both Gram-negative and positive bacteria [1]. Typically,

upon starvation, Dictyostelium cells initiate a multicellular develop-

ment stage leading to the formation of a fruit body. However,

there are D. discoideum axenic strains that can feed not only by

phagocytosis but also by macropynocytosis of liquid nutrients [2].

Of special interest is the fact that Dictyostelium cytoskeleton

architecture is similar to that found in mammalian cells.

Furthermore, the process of particle uptake in Dictyostelium is

similar to macrophage phagocytosis [1]. The fact that the

strategies evolved to counteract mammalian professional phago-

cytes are considered essential to establish an infection has led to

the notion that Dictyostelium amoebae could be used as host model

to measure virulence [3,4]. The similarities between Dictyostelium

and mammalian cells also extent to membrane trafficking,

endocytic transport and sorting events [1]. There are genetic

tools available to manipulate D. discoideum cells thereby facilitating
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the study of cellular mechanisms at the molecular level. Moreover,

the genome of D. discoideum strain AX4 has been sequenced [5].

Klebsiella pneumoniae is a Gram negative pathogen common cause

of nosocomial infections that include urinary tract, respiratory,

and wound infections [6]. K. pneumoniae isolates are frequently

resistant to multiple antibiotics [7], which leads to a therapeutic

dilemma. In contrast to many bacterial pathogens, K. pneumoniae is

ubiquitous in nature. The non-clinical habitats include the

mucosal surfaces of animals and environmental sources such as

vegetation, soil and surface waters [8]. Notably, it has been shown

that environmental Klebsiella isolates are nearly identical to clinical

ones with respect to the expression of virulence factors and ability

to infect animal models [9]. The factors mediating Klebsiella

survival in the environment are poorly characterized but

predominance in the environment is likely to correlate with the

ability of Klebsiella to avoid predation by protozoa, including

amoebae.

Macrophages and neutrophils play a critical role in the

clearance of bacteria from the lung and other organs by their

capacity for phagocytosis and killing. In this regard, it has been

shown that depletion of either neutrophils or alveolar macrophag-

es results in reduced killing of K. pneumoniae in vivo [10,11].

Conversely, this suggests that Klebsiella countermeasures against

phagocytosis should be important virulence factors. Supporting

this notion, K. pneumoniae capsule (CPS) reduces phagocytosis by

neutrophils and macrophages [12–14] and CPS mutant strains are

avirulent being not able to cause pneumonia and urinary tract

infections [13,15,16]. Notably, CPS is also important to prevent

phagocytosis by D. discoideum [17–19]. Therefore, a tantalizing

hypothesis could be that K. pneumoniae may employ the same

determinants for resistance to phagocytosis by neutrohils, macro-

phages and amoebae. Moreover, given the critical role of bacterial

surface elements on host-pathogen interactions, we speculated that

the lipopolysaccharide (LPS) and outer membrane proteins

(OMPs), major components of the outer membrane (OM) of

Gram negative bacteria, could be also involved in the resistance to

phagocytosis by K. pneumoniae.

LPS consists of a hydrophobic membrane anchor, lipid A,

substituted with an oligosaccharide core region that can be

extended in some bacteria, including Klebsiella, by a repeating

oligosaccharide, the O-polysaccharide (OPS). The LPS contains a

molecular pattern recognized by the innate immune system

thereby arousing several host defence responses. The lipid A could

be decorated with aminoarabinose, palmitate or phosphoethano-

lamine [20]. Several studies have demonstrated that these

modifications are involved in the resistance to antimicrobial

peptides, key weapons of the innate immune system against

infections [21–25]. In a recent study we have shown that K.

pneumoniae lipid A is decorated with palmitate and aminoarabinose

which contribute to K. pneumoniae resistance to antimicrobial

peptides [26]. OMPs are important for membrane integrity and

transport of molecules across (for a review see [27]). OmpA is one

of the best characterized OM protein and data support the notion

that plays an important role in the interaction of bacteria with the

innate immune system (for a review see [28]). OmpA and

OmpK36 are the most abundant OMPs on K. pneumoniae OM

[29]. Mounting evidence indicates that K. pneumoniae OmpA is

important for immune evasion in vitro and in vivo [30,31].

In this study, we report that K. pneumoniae employs the same

determinants to counteract phagocytosis by D. discoideum and

alveolar macrophages, the resident defenders of the lung against

infections. We uncover that the LPS OPS, the first LPS core sugar,

the lipid A decorations with palmitate and aminoarabinose, and

the OMPs OmpA and OmpK36 contribute to the resistance to

phagoyctosis by D. discoideum and alveolar macrophages. Finally,

we report a correlation between virulence, using the pneumonia

mouse model, and resistance to phagocytosis.

Materials and Methods

Ethics statement
Mice were treated in accordance with the European Conven-

tion for the Protection of Vertebrate Animals used for Experi-

mental and other Scientific Purposes (Directive 86/609/EEC) and

in agreement with the Bioethical Committee of the University of

the Balearic Islands. This study was approved by the Bioethical

Committee of the University of the Balearic Islands with the

authorisation number 1748.

Bacterial strains and growth conditions
Bacterial strains and plasmids used in this study are listed in

Table 1. Strains were grown in lysogeny broth (LB) at 37uC on an

orbital shaker (180 rpm). When appropriate, antibiotics were

added to the growth medium at the following concentrations:

rifampicin (Rif) 25 mg/ml, ampicillin (Amp), 100 mg/ml for K.

pneumoniae and 50 mg/ml for E. coli; kanamycin (Km) 100 mg/ml;

chloramphenicol (Cm) 12.5 mg/ml.

Construction of K. pneumoniae mutants
To construct a pmrF mutant, pGEMTpmrF was amplified by

inverse PCR to delete internal coding regions of pmrF using

primers KpnpmrFinvF and KpnpmrFinvR (Table 2). The PCR

product was digested with DpnI, gel purified and ligated to obtain

pGEMTDpmrF. DpmrF allele was PCR- amplified using Vent

polymerase and primers KpnpmrFF and KpnpmrFR (Table 2),

and cloned into SmaI-digested pKOV [32] to obtain

pKOVDpmrF. This vector was electroporated into 52145-

DpagPGB and 52145-DwcaK2-DpagPGB and clones were selected

after growth on LB agar plates supplemented with Cm at 30uC.

Bacteria from 10 individual colonies were pooled in 500 Dl PBS,

serially diluted in PBS, and spread on LB agar plates with Cm

which were incubated at 42uC in order to select merodiploids in

which the suicide vector was integrated into the chromosome by

homologous recombination. 5–10 merodiploids were serially

diluted in PBS and dilutions spread in LB agar plates containing

10% sucrose and without NaCl which were incubated at 30uC.

The recombinants that survived 10% sucrose were checked for

their antibiotic resistance. The replacement of the wild-type alleles

by the mutant ones was confirmed by PCR (data not shown).

Recombinants selected were named 52145-DpagPGB-DpmrF and

52145-DwcaK2-DpagPGB-DpmrF.

To confirm that pmrF mutation does not have polar effects, the

expression of the downstream gene, pmrI, was analyzed by real

time quantitative PCR (RT-qPCR). Bacteria were grown in 5 ml

of LB on an orbital incubator shaker (180 r.p.m.) until an OD600

of 0.3. 0.5 ml of ice-cold solution EtOH/phenol [19:1 v/v

(pH 4.3)] were added to the culture and the mixture was

incubated on ice for 30 min to prevent RNA degradation. Total

RNA was extracted using a commercial NucleoSpin RNA II kit as

recommended by the manufacturer (Macherey-Nagel). cDNA was

obtained by retrotranscription of 2 mg of total RNA using a

commercial M-MLV Reverse Transcriptase (Sigma), and random

primers mixture (SABiosciences, Quiagen). 200 ng cDNA were

used as a template in a 25 ml reaction mixture containing 1x

SYBR green RT2 qPCR Master Mix (Superarray Bioscience

Corporation) and primer mix (KpnyfbGF1 and KpnyfbGR1). rpoD

was amplified as control using primers KpnrpoDLEFT and

KpnrpoDRIGHT (Table 2). RT-qPCR analyses were performed
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Table 1. Strains and plasmids used in this study.

Bacterial strains and plasmids Genotype or comments Source or references

Strains

Escherichia coli

C600 Thi, thr, leuB, tonA, lacY, supE [61]

CC118-lpir D(ara-leu)7697 araD139 DlacX74 galE galK DphoA20 thi-1 rpsE rrpoB
argE(Am) recA1

Klebsiella pneumoniae

Kp52145 clinical isolate (serotype O1:K2), RifR [13,62]

52145-DwcaK2 Kp52145, DwcaK2; the wcaK2 gene inactivated, no CPS expression; RifR [63]

52145-DpmrF Kp52145, DpmrF; the pmrF gene inactivated; nonpolar mutant; RifR [26]

52145-DpagPGB Kp52145, DpagP::Km-GenBlock; the pagP gene inactivated;
nonpolar mutant; RifR, KmR

[26]

52145-DwcaK2-DpmrF 52145-DwcaK2, DpmrF; the pmrF gene inactivated in CPS mutant
background; RifR, KmR

[26]

52145-DwcaK2-D pagPGB 52145-DwcaK2, DpagP::Km-GenBlock; the pagP gene inactivated in CPS
mutant background; RifR, KmR

[26]

52145-DpagPGB-DpmrF 52145-DpagPGB, DpmrF; the pmrF gene inactivated in pagP mutant
background; RifR, KmR

This work

52145-DwcaK2-DpagPGB-DpmrF 52145-DwcaK2-DpagPGB, DpmrF; the pmrF gene inactivated in cps-pagP
mutant background; RifR, KmR

This work

52OmpA2 Kp52145, ompA gene inactivated by insertion of
pKNOCKIntKpnOmpA; RifR, CmR

[30]

52145-DwcaK2-ompA 52145-DwcaK2; ompA gene inactivated by insertion of
pKNOCKIntKpnOmpA; RifR, CmR

[30]

52OmpA2Com Kp52145 ompA mutant harbouring mini-Tn7TKmKpnOmpA;
OmpA levels restored; RifR, CmR, KmR

[30]

52145- DwcaK2-ompACom 52145-DwcaK2 ompA mutant harbouring mini-Tn7TKmKpnOmpA;
OmpA levels restored; RifR, CmR, KmR

[30]

52OmpK36 Kp52145, ompK36 gene inactivated by insertion of
pKNOCKIntKpnOmpK36; RifR, CmR

[30]

52145-DwcaK2-ompK36 52145-DwcaK2; ompA gene inactivated by insertion of
pKNOCKIntKpnOmpA; RifR, CmR

This work

52OmpK36Com Kp52145 ompK36 mutant harbouring mini-Tn7TKmKpnOmpK36;
OmpK36 levels restored; RifR, CmR, KmR

This work

52145-DwcaK2-ompK36Com 52145-DwcaK2 ompK36 mutant harbouring mini-Tn7TKmKpnOmpK36;
OmpK36 levels restored; RifR, CmR, KmR

This work

52O21 Kp52145, wbbM gene inactivated; RifR, KmR [13]

52145-DwaaL Kp52145; DwaaL; the waaL gene inactivated; nonpolar mutant; RifR [34]

52145-DwcaK2-DwaaL 52145-DwcaK2, DwaaL; the waaL gene inactivated; nonpolar mutant; RifR This work

52145-DwabM Kp52145; DwabM; the wabM gene inactivated; nonpolar mutant; RifR [35]

52145-DwabH Kp52145; DwabH; the wabH gene inactivated; nonpolar mutant; RifR [35]

52145-DwabK Kp52145; DwabK; the wabK gene inactivated; nonpolar mutant; RifR [35]

52145-DwabG Kp52145; DwabG; the wabG gene inactivated; nonpolar mutant; RifR [34]

52145-DwaaQ Kp52145; DwaaQ; the waaQ gene inactivated; nonpolar mutant; RifR [52]

52145-DwaaL-DwaaQ 52145-DwaaL, DwaaQ; the waaQ gene inactivated; nonpolar mutant; RifR [52]

52145-DwcaK2-DwabM 52145-DwcaK2, DwabM; the wabM gene inactivated; nonpolar mutant; RifR This work

52145-DwcaK2-DwabH 52145-DwcaK2, DwabH; the wabH gene inactivated; nonpolar mutant; RifR This work

52145-DwcaK2-DwabK 52145-DwcaK2, DwabK; the wabK gene inactivated; nonpolar mutant; RifR This work

Plasmids

pGEM-T Easy Cloning plasmid, AmpR Promega

pKO3 Suicide vector, Psc101 replication origin, sacB gene, CmR [32]

pKOV pKO3 with the addition of a 3 kb stuffer sequence in the multiple
cloning site; CmR

Addgene plasmid 25769

pGEMTDpmrF pGEM-T Easy containing DpmrF; AmpR [26]

pKOVDpmrF pKOV containing DpmrF; CmR This study

Klebsiella and Professional Phagocytes
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as previously described [33]. The expression of pmrI was not

significantly different between strains (data not shown).

To obtain K. pneumoniae mutant strains with defects in LPS core,

chromosomal in-frame nonpolar waa deletions were generated

[34,35]. pKO3DwabM, pKO3DwabH, pKO3DwabK suicide vec-

tors were used to introduce each mutation into the cps mutant,

strain 52145-DwcaK2, by double homologous recombination, as

previously described [34,35]. Likewise, a double mutant lacking cps

and OPS was constructed by mobilizing the suicide vector

pKO3DwaaL into 52145-DwcaK2.

An ompK36 mutant in the genetic background of the cps mutant,

strain 52145-DwcaK2, was obtained by insertion-duplication

mutagenesis using the suicide vector pKNOCKIntKpnOmpK36.

Correct insertion was verified by Southern blot (data not shown).

OMPs were purified and analyzed by SDS-PAGE using 12%

polyacrylamide gels as previously described [30,36]. Proteins were

visualized by Coomassie brilliant blue staining. 52145-DwcaK2-

DompK36 did not express OmpK36 whereas the expression of

other OMPs was not affected (Figure S1).

Complementation ompK36 mutants
A 1.7 kb fragment encompassing ompK36 and its promoter was

PCR-amplified (using primers ComKpnOmpK36F and ComKp-

nOmpK36R [Table 2], Vent polymerase [New England Biolabs])

and cloned into SmaI-digested pUC18R6KT-mini-Tn7TKm to

give pUC18R6KT-mini-Tn7TKmKpnOmpK36. Tn7 delivery to

52OmpK36 and 52145-DwcaK2-DompK36 was performed as

described [37] and insertion was verified by colony-PCR with

primer pairs: KpnglmSup/Ptn7L; and KpnglmSdown/Ptn7R

[37]. Tn7 transposon integrates at the site-specific attTn7, located

Table 1. Cont.

Bacterial strains and plasmids Genotype or comments Source or references

pKO3DwaaL pKO3 containing engineered waaL deletion; CmR [34]

pKO3DwabM pKO3 containing engineered wabM deletion; CmR [35]

pKO3DwabH pKO3 containing engineered wabH deletion; CmR [35]

pKO3DwabK pKO3 containing engineered wabK deletion; CmR [35]

pKNOCKIntKpnOmpK36 pKNOCK-Cm containing an internal fragment from ompK36; CmR. [30]

pUC18R6KT-mini-Tn7TKm pUC18R6KT-mini-Tn7T containing a Km cassette; AmpR, KmR [30]

pUC18R6KT-mini-Tn7TKmKpnOmpK36 pUC18R6KT-mini-Tn7TKm; 1.7 kb encompassing ompK36 and its
promoter; AmpR, KmR

This work

pFPV25.1 rpsM::gfpmut3; AmpR [39]

pFPV25.1Cm pFPV25.1; cat cassette cloned into EcoRV site; AmpR, CmR This work

doi:10.1371/journal.pone.0056847.t001

Table 2. Primers used in this study.

Sequences of primers used in this study

Purpose/arget gene Name Sequence (59 to 39)

Mutagenesis

KpnpmrFF CGGATCCACCTGCGCGAGCTGGCGGAC

pmrF KpnpmrFR CGGATCCCGGCGTCATCCGCGCCAATC

KpnpmrFinvF TCTCCTCCGGCGGGTTTTGC

KpnpmrFinvR CAAATACAGCTTTATGCGCCTG

Complementation

ompK36 ComKpnOmpK36F GGAGTGGTAGCTGAATCGCAGC

ComKpnOmpK36R AGGGAATCATTAGCCGTAGCAC

RT-qPCR

pmrI KpnyfbGF1 CGCTGGATCTACTCGGTCTC

KpnyfbGR1 TCTTTGTTCTCGATGATGCG

rpoD KpnrpoDLEFT CCGGAAGACAAAATCCGTAA

KpnrpoDRIGHT CGGGTAACGTCGAACTGTTT

Tn7 insertion

glmS KpnglmSup GCGACAACTGTTGCGACGGTG

KpnglmSdown TGGCTTATCACGTCGCGCTG

Tn7 Ptn7L ATTAGCTTACGACGCTACACCC

Ptn7R CACAGCATAACTGGACTGATTTC

doi:10.1371/journal.pone.0056847.t002

Klebsiella and Professional Phagocytes
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downstream of the glmS gene, thereby introducing ompK36 gene

under the control of its own promoter into the chromosome. The

complemented strains, 52OmpK36Com and 52145-DwcaK2-

DompK36Com, expressed amounts of OmpK36 similar to those

of the wild-type strain (Figure S1).

Construction of pFPV25.1Cm plasmid
A cat cassette, obtained by SmaI digestion of p34S-Cm [38], was

cloned into EcoRV-digested pFPV25.1 [39,40] to obtain

pFPV25.1Cm. This plasmid expresses gfpmut3 under the control

of Salmonella rpsM promoter region. This fusion has been reported

to be expressed at similar levels in various environments, including

growth media and mammalian cells [39,40]. pFPV25.1Cm was

introduced into E. coli CC118-lpir from which it was mobilized

into Klebsiella strains by triparental conjugation using the helper

strain E. coli HB101/pRK2013.

LPS analysis
Small scale LPS extraction using hot phenol was performed

following the procedure described by Marolda et al. [41], with the

exception that ethyl ether was replaced by ethanol for the washing

of the LPS pellet. The LPS was run on a 12% SDS-PAGE and

visualized using Pro-Q Emerald 300 Lipopolysaccharide Gel Stain

Kit (Invitrogen).

Eukaryotic cells culture
D. discoideum AX2 cells were grown at 21uC in HL5 medium

(pH 6.5) supplemented with 1.12 mg/ml glucose, 20 mg/ml

streptomycin and 10 mg/ml tetracycline, and subcultured twice a

week to maintain a density ,106 cells/ml [42,43].

Murine alveolar macrophages MH-S (ATTC, CRL-2019) were

grown on RPMI 1640 tissue culture medium supplemented with

10% heat-inactivated fetal calf serum (FCS) and Hepes 10 mM at

37uC in an humidified 5% CO2 atmosphere.

Growth of Dictyostelium on bacteria
Procedures to test growth of Dictyostelium on bacteria have been

described previously [42]. Briefly, bacteria were grown overnight

in 5-ml LB, harvested (25006 g, 20 min, 24uC), washed once with

PBS and a suspension containing approximately 16109 cfu/ml

was prepared in 10 mM PBS (pH 6.5). 300 ml from this suspension

was spread onto standard medium (SM)-agar plates (10 g/l

glucose, 10 g/l peptone, 1 g/l yeast extract, 1 g/l MgSO4:7H2O,

1.9 g/l KH2PO4, 0.6 g/l K2HPO4, 20 g/l agar; pH 6.3) or

dilution series of HL5-agar plates. The plates were dried in a

laminar hood for 30 min. Variable numbers of Dictyostelium

amoebae (10 000, 1000, 100, 10) were deposited on the bacterial

lawn, and allowed to grow at 21uC for 4–5 days, i.e. until

Dictyostelium growth became visible.

Phagocytosis and killing of bacteria by Dictyostelium
Experiments were performed as previously described [44].

Briefly, bacteria were grown in 5-ml LB, harvested in the

exponential phase (2500x g, 20 min, 24uC), washed once with

PBS and a suspension containing approximately 16109 cfu/ml

was prepared in 10 mM PBS (pH 6.5). To test the ability of

Dictyostelium to ingest and kill live bacteria, 104 cfu from the

indicated suspension were mixed with 106 Dictyostelium in 500 ml of

KK2 buffer (16.5 mM KH2PO4, 3.9 mM K2HPO4; pH 6.3) and

incubated at 21uC with shaking. After 90 or 180 min of

incubation, a 10 ml aliquot of the suspension was collected and

diluted in 40 ml of ice-cold sucrose (400 g/l). 200 ml of 0.5%

saponin in KK2 were added, before plating on a LB agar plate

and incubating at 37uC. Control experiments showed that this

procedure does not affect bacterial viability (this work and [44]).

When indicated, the number of viable bacteria associated with

Dictyostelium cells (intracellular fraction) was determined by washing

the cells twice with ice-cold HL5 medium before diluting in

sucrose [44]. Results are expressed as percentage of the colony

count of bacteria not exposed to D. discoideum. All experiments

were done with triplicate samples on at least four independent

occasions.

Immunofluorescence analysis was performed as described

previously [45] by infecting AX2/RPF, a D. discoideum strain

constitutively expressing the red fluorescent protein [46]. 2.56107

cells were seeded on 12 mm circular coverslips in 24-well tissue

culture plates and, after 2 h, infected with GFP-expressing K.

pneumoniae at a ratio of 100 bacteria per 1 cell in a final volume of

500 ml of HL5. To synchronize infection, plates were centrifuged

at 2006g during 5 min. Plates were incubated at 21uC for 30 min.

Cells were washed two times with KK2 buffer and fixed with 3.7%

paraformaldehyde in PBS pH 7.4 for 20 min at room tempera-

ture. Coverslips were washed two times in KK2 buffer before

mounting onto glass slides using Aqua poly/Mount (Polysciences).

Confocal microscopy was carried out with a Leica TCS SP5

confocal microscope. Experiments were carried out by duplicate in

three independent occasions. The number of infected cells and the

number of intracellular bacteria per cell was quantified within 300

cells.

Killing of Dictyostelium by bacteria
Bacteria were grown in 5-ml LB, harvested in the exponential

phase (25006 g, 20 min, 24uC), washed once with PBS and a

suspension containing approximately 16109 cfu/ml was prepared

in 10 mM PBS (pH 6.5). To test the ability of Klebsiella to kill

Dictyostelium, 104 cfu were mixed with 106 Dictyostelium cells in

500 ml of KK2 buffer and incubated at 21uC with shaking

(180 rpm). After 3 h, serial dilutions of the mixture were plated on

a K. aerogenes lawn on SM agar plates, which were incubated at

21uC for 4–5 days, i.e. until individual colonies of Dictyostelium

became visible. All experiments were done with triplicate samples

on three independent occasions.

Phagocytosis of bacteria by alveolar macrophages
MH-S cells were seeded in 24-well tissue culture plates at a

density of 76105 cells per well 15 h before the experiment.

Bacteria were grown in 5-ml LB, harvested in the exponential

phase (25006 g, 20 min, 24uC), washed once with PBS and a

suspension containing approximately 16109 cfu/ml was prepared

in 10 mM PBS (pH 6.5). Cells were infected with 35 ml of this

suspension to get a multiplicity of infection of 50:1 in a final

volume of 500 ml RPMI 1640 tissue culture medium supplemented

with 10% heat-inactivated FCS and 10 mM Hepes. To synchro-

nize infection, plates were centrifuged at 2006 g during 5 min.

Plates were incubated at 37uC in an humidified 5% CO2

atmosphere. After 30 min of contact, cells were washed twice

with PBS and incubated for additional 90 min with 500 ml RPMI

1640 containing 10% FCS, 10 mM Hepes, gentamicin (300 mg/

ml) and polymyxin B (15 mg/ml) to eliminate extracellular

bacteria. This treatment did not induce any cytotoxic effect which

was verified measuring the release of lactate dehydrogenase (LDH)

and by immunofluorescence microscopy (data not shown). Cells

were then washed three times with PBS and lysed with 300 ml of

0.5% saponin in PBS for 10 min at room temperature. Serial

dilutions were plated on LB to quantify the number of intracellular

bacteria. Phagocytosis data are represented as cfu per well. All
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experiments were done with triplicate samples on at least three

independent occasions.

Immunofluorescence was performed as previously described

[47]. Cells were seeded on 12 mm circular coverslips in 24-well

tissue culture plates. Infections were carried out as described

before with K. pneumoniae strains harbouring pFPV25.1Cm. After

90 min, cells were washed three times with PBS, and fixed with

3.7% paraformaldehyde in PBS pH 7.4. The actin cytoskeleton

was stained with Rhodamine-Phalloidin (Invitrogen) diluted 1:100,

DNA was stained with Hoescht 33342 (Invitrogen) diluted 1:2500.

Staining was carried out in 10% horse serum, 0.1% saponin in

PBS. Coverslips were washed twice in PBS containing 0.1%

saponin, once in PBS, and incubated for 30 minutes with primary

antibodies. Coverslips were then washed twice in 0.1% saponin in

PBS and once in PBS and incubated for 30 minutes with

secondary antibodies. Finally, coverslips were washed twice in

0.1% saponin in PBS, once in PBS and once in H2O, mounted on

Aqua Poly/Mount (Polysciences) and analysed with a Leica TCS

SP5 confocal microscope. The number of infected cells and the

number of intracellular bacteria per cell was quantified within 300

cells. Experiments were carried out by triplicate in three

independent occasions.

Intranasal infection model
Five- to 7-week-old female C57BL/6JOlaHsd mice (Harlan)

were anesthetized by intraperitoneal injection with a mixture

containing ketamine (50 mg/kg) and xylazine (5 mg/kg). Over-

night bacterial cultures were centrifuged (25006 g, 20 min, 24uC),

resuspended in PBS and adjusted to 56104 cfu/ml. 20 ml of the

bacterial suspension were inoculated intranasally in four 5 ml

aliquots. To facilitate consistent inoculations, mice were held

vertically during inoculation and placed on a 45u incline while

recovering from anaesthesia. At indicated times after infection,

mice were euthanized by cervical dislocation and lungs were

rapidly dissected for bacterial loads determination. Dissected lungs

were homogenized in 500 ml of PBS using an Ultra-Turrax TIO

basic (IKA) on ice. Serially diluted bacteria from the homogenates

were recovered in LB agar plates containing Rif for wild-type

strain or Cm for ompK36 mutant. Results are reported as log cfu

per gram of tissue.

Statistical analysis
Statistical analyses were performed using the two-tailed t test or,

when the requirements were not met, by the Mann-Whitney U

test. P,0.05 was considered statistically significant. The analyses

were performed using Prism4 for PC (GraphPad Software).

Results

Role of K. pneumoniae CPS on phagocytosis resistance
We evaluated the resistance of the highly virulent clinical isolate

K. pneumoniae strain 52145 (hereafter Kp52145) to predation by D.

discoideum in comparison to the previously analyzed K. aerogenes

susceptible strain, by using SM medium. Further confirming

previous results [42], amoebae feed only upon K. aerogenes, creating

phagocytic plaques (Figure 1A). Since CPS reduces phagocytosis,

the lack of growth of Dyctiostelium on Kp52145 may simply reflect

that these bacteria are not ingested by the amoebae. Unexpect-

edly, the isogenic cps mutant, strain 52145-DwcaK2, was also not

permissive for Dictyostelium growth (Figure 1A). This might be due

to the fact that the CPS of this Klebsiella strain, of the K2 serotype,

is not required for phagocytosis resistance. However, there are

studies showing that indeed CPSs of the K2 serotype mediate

resistance to phagocytosis [18,48,49]. Another possibility could be

that the assay conditions were too favourable for Kp52145. In fact,

a similar scenario was reported when the virulence of Aeromonas spp

was analyzed using D. discoideum model [50], i.e. Dictyostelium was

incapable of growing on wild-type bacteria or on any of the

nonvirulent mutants of Aeromonas tested when the assays were

performed on SM medium. Since the richness of the growth

medium affects the threshold at which a bacteria is permissive for

Dictyostelium [42], we tested a range of dilutions of HL5 to

determine the medium where only Kp52145 remains nonpermis-

sive (Figure 1B). We observed that 52145-DwcaK2, but not

Kp52145, was susceptible to predation even by 10 amoebae at

5% HL5 (Figure 1C). Kp52145 and 52145-DwcaK2 exhibited

similar growth rates in 5% HL5 (data not shown). Control

experiments indicated that Kp52145 was not cytotoxic for

Dictyostelium because the number of amoebae after incubation

with Kp52145 was similar to that after incubation with K. aerogenes

(1.660.56105, versus 1.760.66105; respectively, P.0.05).

Survival experiments were carried out to determine the total

number of remaining bacteria, as well as the number of live cell-

associated bacteria. Dictyostelium ingested and killed 52145-DwcaK2

as fast as the K. aerogenes control strain (Figure 2A). The number of

intracellular 52145-DwcaK2 was higher than that of intracellular

Kp52145 after co-culture of bacteria and Dictyostelium with an

average of 2 bacteria per infected amoeba (Figure 2B). The

percentage of infected Dyctiostelium with Kp52145 was 763%

whereas it reached 6569% when the challenging strain was

52145-DwcaK2. Altogether, these findings indicate that 52145-

DwcaK2 is more easily engulfed by Dictyostelium than Kp52145.

Intracellular killing was so fast that viable intracellular bacteria

were hardly detectable already at 60 min post infection

(Figure 2C), suggesting that under these experimental conditions

the limiting factor for killing was the rate of phagocytosis.

Gentamicin protection assays showed that 52145-DwcaK2 was

ingested by MH-S alveolar macrophages in higher numbers than

the wild-type strain (Figure 2D). This correlated with the

microscopic observation of higher numbers of intracellular

52145-DwcaK2 than Kp52145 after co-culture with alveolar

macrophages with an average of 4 bacteria per infected

macrophage (Figure 2E). The percentage of macrophages infected

with 52145-DwcaK2 was significantly higher than that of macro-

phages infected with Kp52145 (4369% and 963%, respectively;

P,0.05).

Collectively, these results highlight the role of K. pneumoniae CPS

of K2 serotype in resistance to phagocytosis by D. discoideum and

alveolar macrophages.

Role of K. pneumoniae LPS polysaccharide section on
phagocytosis resistance

We sought to determine whether the LPS OPS and core

sections contribute to phagocytosis resistance by D. discoideum and

alveolar macrophages. Strains 52O21 and 52145-DwaaL are

mutants in the OPS transporter and the OPS ligase that attaches

the OPS to the LPS core, respectively [13,34]. Both mutants do

not express the OPS and they express similar levels of CPS than

the wild type [13,34]. After 90 min of co-culture with amoebae, no

significant differences in survival were found between the OPS

mutants, strains 52O21 and 52145-DwaaL, and the wild type

(Figure 3B). However, a 50% decreased in survival of the two

mutants was observed after 180 min of incubation (Figure 3B). We

investigated whether the absence of the LPS OPS also increases

the phagocytosis of 52145-DwcaK2 by D. discoideium. Indeed, this

was the case (Figure 3B). The survival of the double mutant

lacking cps and OPS, strain 52145-DwcaK2-DwaaL, was signifi-

Klebsiella and Professional Phagocytes

PLOS ONE | www.plosone.org 6 February 2013 | Volume 8 | Issue 2 | e56847



cantly lower than that of the cps mutant, 52145-DwcaK2 already

after 90 min of co-culture with the amoebae (Figure 3B).

To delineate the possible contribution of the LPS core to

phagocytosis resistance, we first analyzed strains 52145-DwaaQ,

lacking one heptose and its attached variable residue, and 52145-

DwabG, lacking the first four sugars of the LPS core (Figure 3A).

Whereas 52145-DwaaQ expresses OPS and similar levels of CPS

than the wild-type strain [51,52], 52145-DwabG is devoid of cell-

surface attached CPS and OPS [51]. Results shown in Figure 3C

revealed that 52145-DwabG was more susceptible to predation by

Figure 1. Virulence of K. pneumoniae against D. discoideum can be modulated. (A) The ability of Dictyostelium to grow on a bacterial lawn
was assessed by depositing amoebae (from 10 to 10,000) on a lawn of bacteria grown on SM agar medium. A phagocytosis plaque was observed 5
days later when bacteria were permissive. Bacteria tested were: K. pneumoniae (Kp52145), cps mutant (52145-DwcaK2; DwcaK2), or control strain (K.
aerogenes). (B) The ability of wild-type K. pneumoniae (Kp52145), cps mutant (52145-DwcaK2), or control strain (K. aerogenes) to resist predation by D.
discoideum was tested on HL5-agar, pure or diluted. 1,000 amoebae were deposited on the bacterial lawns and plaques were recorded 5 days later.
(C) The ability of Dictyostelium to grow on a bacterial lawn was assessed by depositing amoebae (from 10 to 10,000) on a lawn of bacteria grown on
HL5–5% agar medium. A phagocytosis plaque was observed 5 days later when bacteria were permissive (K. aerogenes and 52145-DwcaK2; DwcaK2).
doi:10.1371/journal.pone.0056847.g001
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D. discoideum than 52145-DwaaQ, which, in turn, was as susceptible

as the OPS mutants. We did not observe significant differences

between 52145-DwaaQ and 52145-DwaaL-DwaaQ (Figure 3C).

Since 52145-DwabG lacks the cell-surface attached CPS, the OPS

and the sugars of the outer core region we analyzed other core

mutants expressing CPS and a less truncated core. 52145-DwabM,

52145-DwabK and 52145-DwabH, lack, in addition to the OPS, the

first, second and third sugar of the LPS core, respectively

(Figure 3A), but expressed similar levels of CPS than the wild-

type strain [35]. Results shown in Figure 3C revealed that 52145-

DwabM; 52145-DwabK and 52145-DwabH were susceptible to

predation by D. discoideum already after 90 min of co-culture with

amoebae (Figure 3C). No significant differences were observed

between these mutants and 52145-DwabG (Figure 3C). In the

genetic background of the cps mutant, the three core mutants were

more susceptible to predation by the amoebae than the LPS OPS

mutant but only after 90 min of co-culture (Figure 3D).

Next, we analyzed the susceptibility of this set of mutant strains

to phagocytosis by alveolar macrophages. No differences were

found between the phagocytosis of the LPS OPS mutants, 52O21

and 52145-DwaaL, and that of the wild-type strain (Figure 3E). In

contrast, all the LPS core mutants tested were ingested in higher

Figure 2. Role of K. pneumoniae CPS on phagocytosis resistance. (A) Dictyostelium cells were incubated with Klebsiella and the number of
surviving bacteria (total or cell-associated) was determined at different times by killing the Dictyostelium and plating the bacteria on LB plates. Bars
represent mean 6 s.e.m (n = 4). *; P,0.05 (results are significantly different from the results for the wild-type strain [Kp52145]; two tailed t test). (B)
Dictyostelium AX2/RFP cells were incubated in the presence of Klebsiella strains, K. pneumoniae (Kp52145), cps mutant (52145-DwcaK2; DwcaK2),
containing plasmid pFPV25.1Cm for 30 min, and then fixed. Images are representative of three independent experiments. (C) Dictyostelium cells were
incubated with Klebsiella and the number of intracellular bacteria was determined at different times by killing the Dictyostelium and plating the
bacteria on LB plates. Each point represents the mean and standard deviation of twelve samples from four independent experiments. (D) Klebsiella
phagocytois by MH-S mouse alveolar macrophages. Intracellular bacteria were determined by the gentamicin protection assay. Bars represent mean
6 s.e.m (n = 4). *; P,0.05 (results are significantly different from the results for the wild-type strain [Kp52145]; two tailed t test). (E)
Immunofluorescence confocal microscopy of MH-S mouse alveolar macrophages infected with Klebsiella strains Kp52145 or 52145-DwcaK2 (DwcaK2),
containing plasmid pFPV25.1Cm. Actin cytoskeleton was stained with Phalloidin-RRX (red) and host cell nuclei were stained with Hoechst (blue).
Images are representative of five independent experiments.
doi:10.1371/journal.pone.0056847.g002
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numbers than the LPS OPS mutants and the wild-type strain

(Figure 3E). In the genetic background of the cps mutant, only

wabK and wabH mutants were internalized in higher numbers than

the LPS OPS mutant by the alveolar macrophages (Figure 3F).

In summary, our findings indicate that, in addition to the CPS,

K. pneumoniae LPS OPS and the core sugars participate in the

resistance to predation by D. discoideum. In the case of alveolar

macrophages, the LPS core plays a more prominent role than the

LPS OPS in K. pneumoniae avoidance of phagocytosis.

Role of K. pneumoniae LPS lipid A decorations on
phagocytosis resistance

52145-DpmrF, 52145-DpagPGB and 52145-DpmrF-DpagPGB are

mutant strains lacking lipid A species containing aminoarabinose,

palmitate or both [26]. These mutants express the same levels of

CPS than the wild type [26]. LPS analysis showed that these

mutants expressed OPS (Figure S2).

We asked whether these modifications contribute to phagocy-

tosis resistance by D. discoideum. After 90 min of co-culture, pagP

mutant was more susceptible to predation by the amoebae than

the wild type and the pmrF mutant whereas the pagP-pmrF double

mutant was the most susceptible strain (Figure 4A). After 180 min,

the three lipid A mutants were more susceptible to predation than

the wild type and no significant differences between the mutant

strains were observed (Figure 4A). In the background of the cps

mutant, after 90 min of co-culture, the pagP and pmrF single

mutants were more susceptible to predation than 52145-DwcaK2

whereas 52145-DwcaK2-DpmrF-DpagPGB triple mutant was the

most susceptible strain (Figure 4B). After 180 min, the three lipid

mutants were more susceptible than 52145-DwcaK2 (Figure 4B).

Next, we assessed the contribution of lipid A decorations to

phagocytosis resistance by alveolar macrophages. The pagP

mutants, strains 52145-DpagPGB, 52145-DpmrF-DpagPGB,

52145-DwcaK2-DpagPGB, and 52145-DwcaK2-DpmrF-DpagPGB,

were internalized in higher numbers by alveolar macrophages

than Kp52145 and 52145-DwcaK2, being the numbers of 52145-

DwcaK2-DpmrF-DpagPGB the highest (Figure 4C-D).

Altogether, these data support the notion that the PagP-

dependent lipid A modification with palmitate plays a more

important role to reduce K. pneumoniae phagocytosis by D. discoideum

and alveolar macrophages than the lipid A modification with

aminoarabinose. The impact of the latter is more evident in the

pagP mutant background.

Role of K. pneumoniae OMPs on phagocytosis resistance
Previously, we have shown that ompA and ompK36 mutants

express similar levels of CPS than Kp52145 [30,31]. We aimed to

establish whether OmpA and OmpK36 are involved in the

resistance to phagocytosis by D. discoideum and alveolar macro-

phages.

Results displayed in Figure 5A indicate that ompA and ompK36

mutants were susceptible to predation by amoebae. The contri-

bution of both OMPs to resist predation by D. discoideum was also

observed in the cps mutant background (Figure 5B). Likewise,

OMPs mutants were phagocytosed by alveolar macrophages in

higher numbers than Kp52145 and 52145-DwcaK2 (Figure 5C–D).

OMPs mutants could be complemented (Figure 5).

Virulence of K. pneumoniae ompK36 mutant
We and others have assessed the contribution of CPS, LPS

polysaccharides, lipid A decorations and ompA to K. pneumoniae

virulence [13,18,26,31,34,35,53]. Notably, there is a strong

correlation between resistance to phagocytosis (this work) and

attenuation in vivo. Therefore, the fact that OmpK36 contributed

to phagocytosis resistance prompted us to determine the ability of

the ompK36 mutant to cause pneumonia. C57BL/6JOlaHsd mice

were infected intranasally and bacterial loads in trachea and lung

homogenates were determined at 24 and 72 h post-infection

(Figure 6). Kp52145 and ompK36 mutant colonized trachea

although bacterial loads of the mutant were lower than those of

the wild type at 24 and 72 h post-infection (Figure 6A). ompK36

mutant also colonized the lungs and at 72 h post infection

bacterial loads of the mutant were lower than those of the wild

type (Figure 6B).

To evaluate the ability of the mutant to disseminate to other

organs, bacterial loads in spleen and liver were determined.

ompK36 mutant reached both organs (Figure 6C–D) and at 72 h

post-infection the bacterial loads in spleen and liver were

significantly lower than those of the wild type (Figure 6C–D).

Figure 3. Role of K. pneumoniae LPS polysaccharide section on phagocytosis resistance. (A) K. pneumoniae 52145 (Kp52145)
oligosaccharide structure based on a published study [35]. Lines denote the truncation level for the different core biosynthetic gene mutations.
Residues J and K could be hydrogen (H) or GalA. (B) Dictyostelium cells were incubated with Klebsiella strains (wild type [Kp52145], LPS OPS mutants
[52O21] and 52145-DwaaL [DwaaL], CPS mutant 52145-DwcaK2 [DwcaK2], or strain lacking the CPS and the OPS 52145-DwcaK2-DwaaL [DwcaK2-
DwaaL]) and the number of surviving bacteria (total or cell-associated) was determined at different times by killing the Dictyostelium and plating the
bacteria on LB plates. Bars represent mean 6 s.e.m (n = 4). *; P,0.05 (results are significantly different from the results for the wild-type strain
[Kp52145]; two tailed t test). n; P,0.05 (results are significantly different from the results for the cps mutant [52145-DwcaK2]; two tailed t test). (C)
Dictyostelium cells were incubated with Klebsiella strains (wild type [Kp52145], LPS OPS mutant 52145-DwaaL [DwaaL], and LPS core mutants 52145-
DwaaQ [DwaaQ], 52145-DwaaL-DwaaQ [DwaaL-DwaaQ], 52145-DwabG [DwabG] 52145-DwabM [DwabM], 52145-DwabH [DwabH], and 52145-DwabK
[DwabK]) and the number of surviving bacteria was determined at different times by killing the Dictyostelium and plating the bacteria on LB plates.
Bars represent mean 6 s.e.m (n = 4). *; P,0.05 (results are significantly different from the results for the wild-type strain [Kp52145]; two tailed t test).
n; P,0.05 (results are significantly different from the results for the waaL mutant [52145-DwaaL]; two tailed t test). (D) Dictyostelium cells were
incubated with Klebsiella mutant lacking the CPS and the OPS 52145-DwcaK2-DwaaL (DwcaK2-DwaaL), or the OPS and the first, second or third sugar
of the core (strains 52145-DwcaK2-DwabM [DwcaK2-DwabM], 52145-DwcaK2-DwabH [DwcaK2-DwabH], and 52145-DwcaK2-DwabK [DwcaK2-DwabK]
respectively). The number of surviving bacteria was determined at different times by killing the Dictyostelium and plating the bacteria on LB plates.
Bars represent mean 6 s.e.m (n = 4). *; P,0.05 (results are significantly different from the results for 52145-DwcaK2-DwaaL; two tailed t test). (E)
Phagocytosis of LPS polysaccharide mutants by MH-S mouse alveolar macrophages. Intracellular bacteria were determined by the gentamicin
protection assay. Kp52145 (wild type); OPS mutants 52O21 and DwaaL (52145-DwaaL); LPS core mutants DwaaQ (52145-DwaaQ), DwaaL-DwaaQ
(52145-DwaaL-DwaaQ), DwabG (52145-DwabG), DwabM (52145-DwabM), DwabH (52145-DwabH), and DwabK (52145-DwabK). Bars represent mean 6
s.e.m (n = 4). *; P,0.05 (results are significantly different from the results for the wild-type strain [Kp52145]; two tailed t test). (F) MH-S cells
engulfment of Klebsiella cps mutant, strain 52145-DwcaK2 (DwcaK2), or strains lacking the CPS and the OPS 52145-DwcaK2-DwaaL (DwcaK2-DwaaL), or
the OPS and the first, second or third sugar of the core (strains 52145-DwcaK2-DwabM [DwcaK2-DwabM], 52145-DwcaK2-DwabH [DwcaK2-DwabH], and
52145-DwcaK2-DwabK [-DwcaK2-DwabK] respectively). *; P,0.05 (results are significantly different from the results for the cps mutant [52145-DwcaK2];
two tailed t test).
doi:10.1371/journal.pone.0056847.g003
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Figure 4. Role of K. pneumoniae lipid A decorations on phagocytosis resistance. (A) Dictyostelium cells were incubated with Klebsiella strains
(wild type [Kp52145], pagP mutant (DpagP, 52145-DpagPGB), pmrF mutant (DpmrF, 52145-DpmrF), or pagP-pmrF double mutant (DpagP-DpmrF,
52145-DpagPGB-DpmrF). The number of surviving bacteria (total or cell-associated) was determined at different times by killing the Dictyostelium and
plating the bacteria on LB plates. Bars represent mean 6 s.e.m (n = 4). *; P,0.05 (results are significantly different from the results for the wild-type
strain [Kp52145]; two tailed t test). n; P,0.05 (results are significantly different from the results for 52145-DpagPGB; two tailed t test). (B)
Dictyostelium cells were incubated with Klebsiella lipid A mutants constructed in the background of the cps mutant (52145-DwcaK2 [DwcaK2]). The
number of surviving bacteria was determined at different times by killing the Dictyostelium and plating the bacteria on LB plates. Bars represent mean
6 s.e.m (n = 4). *; P,0.05 (results are significantly different from the results for the cps mutant [52145-DwcaK2]; two tailed t test). n; P,0.05 (results
are significantly different from the results for 52145-DwcaK2-DpagPGB; two tailed t test). (C) Phagocytosis of lipid A mutants by MH-S cells. Wild type
[Kp52145], pagP mutant (DpagP, 52145-DpagPGB), pmrF mutant (DpmrF, 52145-DpmrF), or double pagP-pmrF mutant (DpagP-DpmrF, 52145-
DpagPGB-DpmrF). Bars represent mean 6 s.e.m (n = 4) *; P,0.05 (results are significantly different from the results for the wild-type strain [Kp52145];
two tailed t test). n; P,0.05 (results are significantly different from the results for 52145-DpagPGB; two tailed t test). (D) Phagocytosis of lipid A
mutants constructed in the background of the cps mutant (52145-DwcaK2 [DwcaK2]) by MH-S cells. Bars represent mean 6 s.e.m (n = 4). *; P,0.05
(results are significantly different from the results for the cps mutant [52145-DwcaK2]; two tailed t test). n; P,0.05 (results are significantly different
from the results for 52145-DwcaK2-DpagPGB; two tailed t test).
doi:10.1371/journal.pone.0056847.g004
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Discussion

Phagocytosis is one of the key processes of the immune system.

Although most bacteria are successfully internalized and eliminat-

ed by phagocytes, several pathogens have developed survival

strategies that interfere with the internalization and/or maturation

processes. K. pneumoniae is a well known example of one pathogen

displaying resistance to phagocytosis. Prevention and management

of the infections caused by such pathogens would obviously benefit

from understanding the manner in which they circumvent and

often co-opt the immune response. The fact that K. pneumoniae is

ubiquitous in nature and, therefore, should avoid predation by

protozoa, including amoebae, poses the question whether K.

pneumoniae employs similar means to counteract predation by

amoebae and engulfment by mammalian phagocytes. In this

study, we provide evidence for this notion. Furthermore, our data

reveal novel information about the implication of K. pneumoniae

Figure 5. Role of K. pneumoniae OMPs on phagocytosis resistance. (A) Dictyostelium cells were incubated with Klebsiella strains (wild type
[Kp52145], ompA mutant (DompA, 52OmpA2), ompK36 mutant (DompK36, 52OmpK36), and the corresponding complemented strains. The number of
surviving bacteria (total or cell-associated) was determined at different times by killing the Dictyostelium and plating the bacteria on LB plates. Bars
represent mean 6 s.e.m (n = 4). *; P,0.05 (results are significantly different from the results for the wild-type strain [Kp52145]; two tailed t test). (B)
Dictyostelium cells were incubated with Klebsiella OMPs mutants constructed in the background of the cps mutant (52145-DwcaK2, [DwcaK2]). The
number of surviving bacteria (total or cell-associated) was determined at different times by killing the Dictyostelium and plating the bacteria on LB
plates. Bars represent mean 6 s.e.m (n = 4). *; P,0.05 (results are significantly different from the results for the cps mutant [52145-DwcaK2]; two tailed
t test). (C) Phagocytosis of OMPs mutants by MH-S cells. Wild type [Kp52145], ompA mutant (DompA, 52OmpA2), ompK36 mutant (DompK36,
52OmpK36), and the corresponding complemented strains. Bars represent mean 6 s.e.m (n = 4) *; P,0.05 (results are significantly different from the
results for the wild-type strain [Kp52145]; two tailed t test). (D) Phagocytosis of OMPs mutants constructed in the background of the cps mutant
(52145-DwcaK2) by MH-S cells. Bars represent mean 6 s.e.m (n = 4). *; P,0.05 (results are significantly different from the results for the cps mutant
[52145-DwcaK2]; two tailed t test).
doi:10.1371/journal.pone.0056847.g005
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LPS polysaccharide and lipid A sections, and of the OMPs OmpA

and OmpK36 to K. pneumoniae avoidance of phagocytosis.

In this study, we found a correlation between the findings

obtained testing alveolar macrophages, key cells responsible for

lung defence against infections, and those found challenging D.

discoideum. Therefore, our results add further evidence to the

notion that D. discoideum model is useful for investigating

phagocytosis. Our data further support the idea that the limiting

factor for killing Klebsiella by the amoebae is the rate of

phagocytosis [17,44] since bacterial survival was not affected in

those strains not engulfed by D. discoideum. Nevertheless, our results

also highlight the importance of adjusting the assay conditions in

order to set the threshold of the assay for supposedly permissive

bacteria, in our case the cps mutant [17–19]. This was so even for a

bacterial species previously tested, K. pneumoniae, thereby suggesting

that the interplay between D. discoideum and bacterial pathogens is

strain specific. Likewise, not all strains of Vibrio cholerae are able to

avoid predation by D. discoideum [54]. The assay established and

used in this study allowed a comprehensive analysis of Klebsiella

surface determinants mediating resistance to phagocytosis with a

high degree of reproducibility.

While this work was in progress, Pan and co-workers [19]

reported the results of a screening to identify K. pneumonia NHTU-

K2044 determinants preventing predation by D. discoideum.

Seventy two of the mutants permissive for D. discoideum growth

had transposon insertions in the cps operon [19], which is in good

agreement with our findings showing the importance of CPS to

resist phagocytosis. Of note, Kp52145 and NHTU-K2044 express

CPS of different K serotypes, K2 and K1 respectively, thereby

suggesting that the CPS serotype may not be the determinant

factor mediating CPS-dependent reduction of phagocytosis. In

fact, evidence points out that the critical factor is the amount of

CPS expressed [19,55]. Like most clinical isolates associated to

Figure 6. Virulence of K. pneumoniae ompK36 mutant. Bacterial counts in mouse organs at 24 h post infection or 72 h post infection. Mice were
infected intranasally with a bacterial mixture containing 56104 bacteria of wild type (Kp52145, N) or ompK36 mutant (DompK36, #) Results were
reported as log CFU per gram of tissue (Log CFU/g). *, results are significantly different (P,0.05; two-tailed t test) from the results for Kp52145. (A)
Trachea; (B) Lung; (C) Spleen, (D) Liver.
doi:10.1371/journal.pone.0056847.g006
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severe infections, Kp52145 and NHTU-K2044 are heavily

capsulated strains.

Twenty one of the NHTU-K2044 mutants supporting the

growth of the amoebae had transposon insertions affecting the

biosynthesis of the LPS OPS [19]. However, those mutants were

less capsulated than the wild type [19] making difficult to delineate

the relative contribution of the OPS and CPS to resist predation

by D. discoideum. The OPS mutants tested in this work express wild-

type levels of CPS hence allowing us to study the role of OPS on

resistance to phagocytosis by D. discoideum. Indeed, our data

highlight that the OPS limits predation by D. discoideum.

Unexpectedly, the OPS mutants were phagocytosized by alveolar

macrophages in similar numbers than the wild-type strain.

Likewise, it has been reported no role for Klebsiella OPS on the

resistance to phagocytosis by human dendritic cells [56]. In

contrast, it has been shown that the OPS does play a role in the

interaction with mouse and human neutrophils [19,57]. There-

fore, it is tempting to postulate that the contribution of Klebsiella

OPS to prevent phagocytosis is not uniform to all professional

phagocytes.

The contribution of LPS core to virulence is poorly character-

ized in most Gram negative pathogens and it has been only

conclusively established for Yersinia enterocolitica and Kp52145

[35,58]. To the best of our knowledge, our study is the first one

highlighting the contribution of LPS core residues to phagocytosis

resistance. Our findings showed that the heptose branch linked to

the core by WaaQ is implicated in resistance to phagocytosis by D.

discoideum and alveolar macrophages even in the presence of OPS.

To investigate the contribution of other core residues in an OPS-

bearing strain, we have used defined mutants that lack the OPS in

addition to core residues which, in turn, suggest that the core

residues are never exposed in a wild-type strain. However, it

should be noted that epidemiological data indicate that nearly

10% of Klebsiella clinical isolates do not express the LPS OPS [59]

and, therefore, core residues will not be masked by the OPS. Our

results revealed that the first glucose residue of the LPS core is

necessary to avoid engulfment by D. discoideum and alveolar

macrophages since the relative survival of wabM mutant, lacking

also OPS, was lower than those of the OPS mutants. Elimination

of additional core residues did not further decrease the observed

phagocytosis resistance.

Perusal of the literature clearly shows the importance of lipid A

decorations with aminoarabinose and palmitate to counteract the

microbial action of antimicrobial peptides. However, the role of

these lipid A decorations, if any, to resist phagocytosis was

unknown. Our data indicated that PagP-dependent lipid A

palmitoylation plays an important role to reduce Klebsiella

engulfment by D. discoideum and alveolar macrophages. Intriguing,

a pagP-like gene also confers Legionella pneumophila resistance to

antimicrobial peptides and contributes to the intracellular life of

the pathogen in Hartmannella vermiformis amoebae and human

macrophages [60]. It is tempting to formulate that PagP-

dependent lipid A modification is a major bacterial determinant

against the soluble and the cellular arms of the innate immune

system. As a consequence, pagP mutants should be attenuated as

indeed it has been indeed shown for K. pneumoniae and Legionella

[26,60]. Studies in other bacterial models are required to further

validate our hypothesis.

Finally, we showed that Klebsiella OMPs also contribute to

phagocytosis resistance in K. pneumoniae. Mounting evidence

indicates that an essential attribute of K. pneumoniae OmpA is to

thwart the innate immune system [30,31]. The findings reported

in this work further corroborate this notion and add new features

to the previously described panoply of OmpA-dependent anti-

immune strategies. In turn, the possible role of OmpK36 on K.

pneumoniae evasion of innate immunity is poorly characterized. Our

results revealed that OmpK36 also contributes to phagocytosis

resistance by Klebsiella. However, and in contrast to OmpA,

OmpK36 does not play any role in the resistance to antimicrobial

peptides [30] and therefore it seems that both OMPs are not

functionally redundant in terms of immune evasion. We are

currently assessing whether OmpK36 modulates the cellular

responses upon Klebsiella infection.

Previous reports suggested that alveolar macrophages play a

major role in host defence against K. pneumoniae since the depletion

of these cells results in reduced killing of the pathogen in vivo

[10,11]. Conversely, this suggests that Klebsiella countermeasures

against phagocytosis could be important virulence factors. Data

reported in this work give experimental support to this hypothesis

since we have found a nearly perfect correlation between virulence

using the pneumonia mouse model and resistance to phagocytosis

by D. discoideum and alveolar macrophages. Thus, cps, pagP, LPS

core, ompA and ompK36 mutants are attenuated in vivo (this work

and [13,18,26,31,34,35,53]) and in this study we have demon-

strated that these loci mediate phagocytosis resistance. A

tantalizing observation is that Dictyostelium amoebae might be

useful as host model to measure K. pneumoniae virulence and not

only phagocytosis. Given the relatively simplicity and low cost to

create banks of D. discoideum mutants in comparison to mouse or

human macrophages, it can be envisaged a more systematic

analysis of the complex interactions between Klebsiella and the host,

aiming to identify host resistance genes. First attempts challenging

a non-saturating D. discoideum library of mutants with a laboratory

adapted K. pneumoniae strain led to the identification of a type V P-

ATPAase as an essential element for killing of Klebsiella [44].

Interestingly, this P-ATPAase was dispensable for the elimination

of other bacteria [44] hence suggesting that Klebsiella may mobilize

a specific set of host gene products only necessary for resistance to

K. pneumoniae infection.

Supporting Information

Figure S1 Analysis of OMPs from Klebsiella strains.
SDS-PAGE (the acrylamide concentration was 4% in the stacking

gel and 12% in the separation one) followed by Coomasie brilliant

blue staining of OMPs from (A) Kp52145, 52OmpK36 and

52OmpK36Com; and (B) 52145-DwcaK2, 52145-DwcaK2-ompK36

and 52145-DwcaK2-ompK36Com. MW, molecular weight marker.

(TIF)

Figure S2 Analysis of LPSs from Klebsiella strains. SDS-

PAGE (the acrylamide concentration was 4% in the stacking gel

and 12% in the separation one) followed by staining using Pro-Q

Emerald 300 Lipopolysaccharide Gel Stain Kit (Invitrogen) of

LPSs from Kp52145, 52145-DpmrF (DpmrF), 52145-DpagPGB

(DpagP) and 52145-DpagPGB-DpmrF (DpagP-DpmrF).

(TIF)

Acknowledgments

We are grateful to members of Bengoechea lab for helpful discussions.

Author Contributions

Conceived and designed the experiments: JAB TS JG. Performed the

experiments: CM VC EL DM CPG. Analyzed the data: CM VC JAB TS

JG. Contributed reagents/materials/analysis tools: JMT. Wrote the paper:

JAB TS JG.

Klebsiella and Professional Phagocytes

PLOS ONE | www.plosone.org 14 February 2013 | Volume 8 | Issue 2 | e56847



References

1. Bozzaro S, Bucci C, Steinert M (2008) Phagocytosis and host-pathogen
interactions in Dictyostelium with a look at macrophages. Int Rev Cell Mol Biol

271: 253–300.

2. Cardelli J (2001) Phagocytosis and macropinocytosis in Dictyostelium: phospho-

inositide-based processes, biochemically distinct. Traffic 2: 311–320.

3. Cosson P, Soldati T (2008) Eat, kill or die: when amoeba meets bacteria. Curr
Opin Microbiol 11: 271–276.

4. Hilbi H, Weber SS, Ragaz C, Nyfeler Y, Urwyler S (2007) Environmental

predators as models for bacterial pathogenesis. Environ Microbiol 9: 563–575.

5. Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, et al.
(2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435: 43–

57.

6. Sahly H, Podschun R (1997) Clinical, bacteriological, and serological aspects of
Klebsiella infections and their spondylarthropathic sequelae. Clin Diagn Lab

Immunol 4: 393–399.

7. Nordmann P, Cuzon G, Naas T (2009) The real threat of Klebsiella pneumoniae

carbapenemase-producing bacteria. Lancet Infect Dis 9: 228–236.

8. Bagley ST (1985) Habitat association of Klebsiella species. Infect Control 6: 52–
58.

9. Struve C, Krogfelt KA (2004) Pathogenic potential of environmental Klebsiella

pneumoniae isolates. Environ Microbiol 6: 584–590.

10. Broug-Holub E, Toews GB, van Iwaarden JF, Strieter RM, Kunkel SL, et al.
(1997) Alveolar macrophages are required for protective pulmonary defenses in

murine Klebsiella pneumonia: elimination of alveolar macrophages increases

neutrophil recruitment but decreases bacterial clearance and survival. Infect
Immun 65: 1139–1146.

11. Cheung DO, Halsey K, Speert DP (2000) Role of pulmonary alveolar

macrophages in defense of the lung against Pseudomonas aeruginosa. Infect Immun
68: 4585–4592.

12. Alvarez D, Merino S, Tomas JM, Benedi VJ, Alberti S (2000) Capsular

polysaccharide is a major complement resistance factor in lipopolysaccharide O

side chain-deficient Klebsiella pneumoniae clinical isolates. Infect Immun 68: 953–
955.

13. Cortes G, Borrell N, de Astorza B, Gomez C, Sauleda J, et al. (2002) Molecular

analysis of the contribution of the capsular polysaccharide and the lipopolysac-
charide O side chain to the virulence of Klebsiella pneumoniae in a murine model of

pneumonia. Infect Immun 70: 2583–2590.

14. Regueiro V, Campos MA, Pons J, Alberti S, Bengoechea JA (2006) The uptake
of a Klebsiella pneumoniae capsule polysaccharide mutant triggers an inflammatory

response by human airway epithelial cells. Microbiology 152: 555–566.

15. Camprubi S, Merino S, Benedi VJ, Tomas JM (1993) The role of the O-antigen

lipopolysaccharide and capsule on an experimental Klebsiella pneumoniae infection
of the rat urinary tract. FEMS Microbiol Lett 111: 9–13.

16. Lawlor MS, Hsu J, Rick PD, Miller VL (2005) Identification of Klebsiella

pneumoniae virulence determinants using an intranasal infection model. Mol
Microbiol 58: 1054–1073.

17. Benghezal M, Fauvarque MO, Tournebize R, Froquet R, Marchetti A, et al.

(2006) Specific host genes required for the killing of Klebsiella bacteria by

phagocytes. Cell Microbiol 8: 139–148.

18. Hsieh PF, Lin TL, Yang FL, Wu MC, Pan YJ, et al. (2012) Lipopolysaccharide
O1 antigen contributes to the virulence in Klebsiella pneumoniae causing pyogenic

liver abscess. PLoS ONE 7: e33155.

19. Pan YJ, Lin TL, Hsu CR, Wang JT (2011) Use of a Dictyostelium model for
isolation of genetic loci associated with phagocytosis and virulence in Klebsiella

pneumoniae. Infect Immun 79: 997–1006.

20. Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification

systems in gram-negative bacteria. Annu Rev Biochem 76: 295–329.

21. Gunn JS, Lim KB, Krueger J, Kim K, Guo L, et al. (1998) PmrA-PmrB-
regulated genes necessary for 4-aminoarabinose lipid A modification and

polymyxin resistance. Mol Microbiol 27: 1171–1182.

22. Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI (2000) Genetic
and functional analysis of a PmrA-PmrB-regulated locus necessary for

lipopolysaccharide modification, antimicrobial peptide resistance, and oral
virulence of Salmonella enterica serovar typhimurium. Infect Immun 68: 6139–6146.

23. Guo L, Lim KB, Poduje CM, Daniel M, Gunn JS, et al. (1998) Lipid A acylation

and bacterial resistance against vertebrate antimicrobial peptides. Cell 95: 189–

98.

24. Lee H, Hsu FF, Turk J, Groisman EA (2004) The PmrA-regulated pmrC gene
mediates phosphoethanolamine modification of lipid A and polymyxin resistance

in Salmonella enterica. J Bacteriol 186: 4124–4133.

25. Nizet V (2006) Antimicrobial peptide resistance mechanisms of human bacterial
pathogens. Curr Issues Mol Biol 8: 11–26.

26. Llobet E, Campos MA, Gimenez P, Moranta D, Bengoechea JA (2011) Analysis

of the networks controlling the antimicrobial peptide-dependent induction of

Klebsiella pneumoniae virulence factors. Infect Immun 79: 3718–3732.

27. Lin J, Huang S, Zhang Q (2002) Outer membrane proteins: key players for
bacterial adaptation in host niches. Microbes Infect 4: 325–331.

28. Smith SG, Mahon V, Lambert MA, Fagan RP (2007) A molecular Swiss army

knife: OmpA structure, function and expression. FEMS Microbiol Lett 273: 1–
11.

29. Hernandez-Alles S, Alberti S, Alvarez D, Domenech-Sanchez A, Martinez-
Martinez L, et al. (1999) Porin expression in clinical isolates of Klebsiella

pneumoniae. Microbiology 145 (Pt 3): 673–679.

30. Llobet E, March C, Gimenez P, Bengoechea JA (2009) Klebsiella pneumoniae

OmpA confers resistance to antimicrobial peptides. Antimicrob Agents
Chemother 53: 298–302.

31. March C, Moranta D, Regueiro V, Llobet E, Tomas A, et al. (2011) Klebsiella

pneumoniae outer membrane protein A is required to prevent the activation of
airway epithelial cells. J Biol Chem 286: 9956–9967.

32. Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions

and insertions in the genome of wild-type Escherichia coli: application to open
reading frame characterization. J Bacteriol 179: 6228–6237.

33. Moranta D, Regueiro V, March C, Llobet E, Margareto J, et al. (2010) Klebsiella

pneumoniae capsule polysaccharide impedes the expression of b-defensins by

airway epithelial cells. Infect Immun 78: 1135–1146.

34. Izquierdo L, Coderch N, Pique N, Bedini E, Corsaro MM, et al. (2003) The
Klebsiella pneumoniae wabG gene: role in biosynthesis of the core lipopolysaccharide

and virulence. J Bacteriol 185: 7213–7221.

35. Regue M, Izquierdo L, Fresno S, Pique N, Corsaro MM, et al.(2005) A second
outer-core region in Klebsiella pneumoniae lipopolysaccharide. J Bacteriol 187:

4198–4206.

36. Perez-Gutierrez C, Llobet E, Llompart CM, Reines M, Bengoechea JA (2010)

Role of lipid A acylation in Yersinia enterocolitica virulence. Infect Immun 78:
2768–2781.

37. Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, et al. (2005) A Tn7-

based broad-range bacterial cloning and expression system. Nat Methods 2:
443–448.

38. Dennis JJ, Zylstra GJ (1998) Plasposons: modular self-cloning minitransposon

derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl

Environ Microbiol 64: 2710–2715.

39. Valdivia RH, Falkow S (1996) Bacterial genetics by flow cytometry: rapid
isolation of Salmonella typhimurium acid-inducible promoters by differential

fluorescence induction. Mol Microbiol 22: 367–378.

40. Valdivia RH, Falkow S (1997) Fluorescence-based isolation of bacterial genes
expressed within host cells. Science 277: 2007–2011.

41. Marolda CL, Lahiry P, Vines E, Saldias S, Valvano MA (2006) Micromethods

for the characterization of lipid A-core and O-antigen lipopolysaccharide.
Methods Mol Biol 347: 237–252.

42. Froquet R, Lelong E, Marchetti A, Cosson P (2009) Dictyostelium discoideum: a

model host to measure bacterial virulence. Nat Protoc 4: 25–30.

43. Sussman R, Sussman M (1967) Cultivation of Dictyostelium discoideum in axenic

medium. Biochem Biophys Res Commun 29: 53–55.

44. Lelong E, Marchetti A, Gueho A, Lima WC, Sattler N, et al. (2011) Role of
magnesium and a phagosomal P-type ATPase in intracellular bacterial killing.

Cell Microbiol 13: 246–258.

45. Ravanel K, de CB, Cornillon S, Benghezal M, Zulianello L, et al. (2001)
Membrane sorting in the endocytic and phagocytic pathway of Dictyostelium

discoideum. Eur J Cell Biol 80: 754–764.

46. Fischer M, Haase I, Simmeth E, Gerisch G, Muller-Taubenberger A (2004) A

brilliant monomeric red fluorescent protein to visualize cytoskeleton dynamics in
Dictyostelium. FEBS Lett 577: 227–232.

47. Marti-Lliteras P, Regueiro V, Morey P, Hood DW, Saus C, et al. (2009) Non-

typable Haemophilus influenzae clearance by alveolar macrophages is impaired by
exposure to cigarette smoke. Infect Immun

48. Kabha K, Nissimov L, Athamna A, Keisari Y, Parolis H, et al. (1995)

Relationships among capsular structure, phagocytosis, and mouse virulence in

Klebsiella pneumoniae. Infect Immun 63: 847–852.

49. Lin JC, Chang FY, Fung CP, Xu JZ, Cheng HP, et al. (2004) High prevalence of
phagocytic-resistant capsular serotypes of Klebsiella pneumoniae in liver abscess.

Microbes Infect 6: 1191–1198.

50. Froquet R, Cherix N, Burr SE, Frey J, Vilches S, et al. (2007) Alternative host
model to evaluate Aeromonas virulence. Appl Environ Microbiol 73: 5657–5659.

51. Fresno S, Jimenez N, Izquierdo L, Merino S, Corsaro MM, et al. (2006) The

ionic interaction of Klebsiella pneumoniae K2 capsule and core lipopolysaccharide.
Microbiology 152: 1807–1818.

52. Regue M, Climent N, Abitiu N, Coderch N, Merino S, et al. (2001) Genetic

characterization of the Klebsiella pneumoniae waa gene cluster, involved in core

lipopolysaccharide biosynthesis. J Bacteriol 183: 3564–3573.

53. Shankar-Sinha S, Valencia GA, Janes BK, Rosenberg JK, Whitfield C, et al.
(2004) The Klebsiella pneumoniae O antigen contributes to bacteremia and lethality

during murine pneumonia. Infect Immun 72: 1423–1430.

54. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, et al. (2006)
Identification of a conserved bacterial protein secretion system in Vibrio cholerae

using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103: 1528–

1533.

55. de AB, Cortes G, Crespi C, Saus C, Rojo JM, et al. (2004) C3 promotes
clearance of Klebsiella pneumoniae by A549 epithelial cells. Infect Immun 72: 1767–

1774.

56. Evrard B, Balestrino D, Dosgilbert A, Bouya-Gachancard JL, Charbonnel N, et
al. (2010) Roles of capsule and lipopolysaccharide O antigen in interactions of

Klebsiella and Professional Phagocytes

PLOS ONE | www.plosone.org 15 February 2013 | Volume 8 | Issue 2 | e56847



human monocyte-derived dendritic cells and Klebsiella pneumoniae. Infect Immun

78: 210–219.
57. Lugo JZ, Price S, Miller JE, Ben-David I, Merrill VA, et al. (2007)

Lipopolysaccharide O-antigen promotes persistent murine bacteremia. Shock

27: 186–191.
58. Skurnik M, Venho R, Bengoechea J-A, Moriyón I (1999) The lipopolysaccha-

ride outer core of Yersinia enterocolitica serotype O:3 is required for virulence and
plays a role in outer membrane integrity. Mol Microbiol 31: 1443–1462.

59. Hansen DS, Mestre F, Alberti S, Hernandez-Alles S, Alvarez D, et al. (1999)

Klebsiella pneumoniae lipopolysaccharide O typing: revision of prototype strains
and O-group distribution among clinical isolates from different sources and

countries. J Clin Microbiol 37: 56–62.

60. Robey M, O’Connell W, Cianciotto NP (2001) Identification of Legionella

pneumophila rcp, a pagP-like gene that confers resistance to cationic antimicrobial

peptides and promotes intracellular infection. Infect Immun 69: 4276–4286.

61. Appleyard RK (1954) Segregation of new lysogenic types during growth of

doubly lysogenic strain derived from Escherichia coli K12. Genetics 39: 440–452.

62. Nassif X, Fournier JM, Arondel J, Sansonetti PJ (1989) Mucoid phenotype of

Klebsiella pneumoniae is a plasmid-encoded virulence factor. Infect Immun 57: 546–

552.

63. Llobet E, Tomas JM, Bengoechea JA (2008) Capsule polysaccharide is a

bacterial decoy for antimicrobial peptides. Microbiology 154: 3877–3886.

Klebsiella and Professional Phagocytes

PLOS ONE | www.plosone.org 16 February 2013 | Volume 8 | Issue 2 | e56847


