
Adaptive Dialogue Strategy Selection through Imprecise
Probabilistic Query Answering

O'Neill, I., Yue, A., Liu, W., & Hanna, P. (2011). Adaptive Dialogue Strategy Selection through Imprecise
Probabilistic Query Answering. In Symbolic and Quantitative Approaches to Reasoning with Uncertainty: 11th
European Conference, ECSQARU 2011, Belfast, UK, June 29–July 1, 2011. Proceedings. (Vol. 6717, pp. 675-
687). Springer. DOI: 10.1007/978-3-642-22152-1_57

Published in:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:16. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/10081348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/adaptive-dialogue-strategy-selection-through-imprecise-probabilistic-query-answering(965e465a-d400-47cb-863a-cb2b89aee7ea).html

Adaptive dialogue strategy selection through imprecise
probabilistic query answering

Ian O’Neill1, Anbu Yue1, Weiru Liu1, and Phil Hanna1

1School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast BT7 1NN, UK

{i.oneill, a.yue, w.liu, p.hanna}@qub.ac.uk

Abstract. In a human-computer dialogue system, the dialogue strategy can range
from very restrictive to highly flexible. Each specific dialogue style has its pros
and cons and a dialogue system needs to select the most appropriate style for a
given user. During the course of interaction, the dialogue style can change based
on a user’s response and the system observation of the user. This allows a di-
alogue system to understand a user better and provide a more suitable way of
communication. Since measures of the quality of the user’s interaction with the
system can be incomplete and uncertain, frameworks for reasoning with uncer-
tain and incomplete information can help the system make better decisions when
it chooses a dialogue strategy. In this paper, we investigate how to select a di-
alogue strategy based on aggregating the factors detected during the interaction
with the user. For this purpose, we use probabilistic logic programming (PLP)
to model probabilistic knowledge about how these factors will affect the degree
of freedom of a dialogue. When a dialogue system needs to know which strat-
egy is more suitable, an appropriate query can be executed against the PLP and
a probabilistic solution with a degree of satisfaction is returned. The degree of
satisfaction reveals how much the system can trust the probability attached to the
solution.

1 Introduction
There are many different ways in which a computer can talk to people. Often dialogue
strategies can be categorized as finite-state or frame-based. Additionally, for very fluid,
discursive dialogues, a free-form dialogue strategy is appropriate: this may be cou-
pled to techniques for topic recognition as well as mechanisms for transferring to more
structured or constrained dialogue once a known transaction context has been identified
e.g., [PR03, OHSG].

This paper describes work undertaken by Queen’s University Belfast as part of a 3-
month collaborative research project commissioned by AUDI AG, Ingolstadt, Germany.
While a business-strength solution would entail a functionally richer application and an
extensive evaluation programme, the exploratory dialogue system that resulted from this
short collaboration served to illustrate how a probabilistic logic program (PLP) might be
used to drive a dialogue strategy selection mechanism based on uncertain observations
and inputs.

In particular, we were interested in investigating how probabilistic logic program-
ming might be able to draw together, into one decision-making process, dialogue-
influencing inputs of quite disparate natures and modalities. A dialogue system capable

of replicating a good human listener’s sensitivity towards the needs and expectations of
a dialogue partner, as well as replicating a human listener’s awareness of her/his own
limitations, might have to take into account a number of influencing factors. The re-
search programme was not concerned in the first instance with how these factors might
be measured or quantified, rather it is on how together these factors influence the selec-
tion of a dialogue strategy. The eight core dialogue factors, and the values they could
take, are shown below.

Table 1. Dialogue-influencing factors

Factor Values Explanations
Experience (Proficiency) high (2), med (1), low (0) How effectively does the user

interact with the system?
Recognition confidence high (2), med (1), low (0) How confident is the system that it

has recognised what the user said?
Key values multiple (2), one (1), none (0) How many usable values does

the user provide per turn?
Affect good (2), ok (1), bad (0) Is the user in a good or bad mood?
Response Type good (3), talkative (2), What is the relationship between speech

thinking (1), wondering (0) and silence in the user’s utterances?
Productivity t0 yes (0), no (1) A turn is productive if a keyword

is provided incontext.
Productivity t−1 yes (0), no (1) A turn is productive if a keyword

is provided incontext.
Productivity t−2 yes (0), no (1) A turn is productive if a keyword

is provided incontext.

Productivity t0 , Productivity t−1 , and Productivity t−2 , indicate whether or not
usable keywords were identified by the system in the current dialogue turn (t0), and in
the two preceding turns (t−1 and t−2). In the experiment, non-productivity (a failure in
dialogue development) was regarded as more significant than productivity (normal dia-
logue flow). Non-productivity was therefore represented by ‘1’, rather than the default
assignment ‘0’.

For each of the factors indicated above, developers were able to suggest whether a
high or low value would be a positive or negative influence on (i.e. should increase or
decrease) the degree of dialogue freedom in the exchanges between system and user.
A freer dialogue would be characterised by system turns that included minimal system
prompts, similar to a frame-based dialogue (i.e. just ask the user for the information
required, without setting out specific options), while a less-free dialogue would entail
a high level of system guidance - to the extent of asking the user for a yes/no response
to a very specific question. The role of the PLP was to calculate an overall degree
of dialogue freedom based on these disparate input factors (which may be uncertain)
and their supposed individual influences on the dialogue strategy. In turn the degree of
freedom was used to determine the basic dialogue strategy. Braking factors were added
to the degree of freedom calculation, so as to prevent too fast a transition from one
dialogue strategy to another. In addition, a manner of system delivery (the particular
form of words used to realize the dialogue strategy) was influenced by the user’s own
dialogue manner, perceived affective state, and the frequency with which they used the
system. These additional influences on the precise form of the system utterance are

2

not considered in this paper. Later, however, taking some simplified examples, we will
examine the techniques used to calculate the degree of freedom itself.

Since these factors affecting the selection of a dialogue strategy can be modelled
using conditional formulae with probabilistic intervals, our research and development
is concerned with the appropriateness of using a PLP to help select a dialogue strategy.

Conditional probabilistic logic programming is a framework to represent and reason
with imprecise (conditional) probabilistic knowledge. An agent’s knowledge is repre-
sented by a probabilistic logic program (PLP) which is a set of (conditional) logical
formulae with probability intervals. The impreciseness of the agent’s knowledge is ex-
plicitly represented by assigning a probability interval to every logical formula (repre-
senting a conditional event) indicating that the probability of a formula will be in the
given interval.

To intuitively explain how PLP can be used to model probabilistic knowledge, we
take the common knowledge typically Birds fly, magpies and penguins are birds, but
penguins do not fly as an example to illustrate the meanings of notations. Assume that
based on common knowledge, we know that over 98% of birds can fly (so not all birds
can fly), and we also know that every magpie is a bird. Then this knowledge can be
modelled using a PLP as

{(fly(X)|bird(X))[0.98, 1], (bird(X)|magpie(X))[1, 1]}

which can be used to answer queries like Can a magpie fly? (e.g., ?(fly(t)|magpie(t))).

Similarly, within the context of dialogue systems, the relationship between a factor
and a dialogue strategy can be modelled using conditional probabilistic logical formulae
too. For instance,

(dss(t1, free)|exp(t0, high), recog(t0, high))[0.85, 1]

states that when both a user’s experience and the systems’s recognition confidence are
high, then the degree of dialogue freedom suggests that a free dialogue strategy should
be chosen with a probability in the interval [0.85, 1].

The main contributions of this paper are as follows. First, we designed a Dialogue
Manager for an in-car dialogue system that choose a dialogue strategy dynamically
considering factors observed during interaction with the user. With a freer dialogue, the
user can provide ’over-informative answers’ in response to a single question: however,
with a more restricted dialogue, the user needs to answer the question directly. Second,
since there is an exponentially large number of combinations of correlated properties
in a dialogue, our system allows experts to use PLPs to state probabilistically how each
individual property will affect the selection of the dialogue strategy. Third, our PLP
ignorance analysis tool provides a mechanism that allows experts to judge the quality
of the knowledge on which the choice of dialogue strategy is based. Finally, with the
assistance of the degree of satisfaction, the user can easily configure this system to be
freer or more restricted at any time.

This paper is organized as follows. After a brief review of probabilistic logic pro-
gramming in Section 2, we discuss the role PLPs can play dialogue systems in Section
3. The experiment and simulated evaluations are discussed in Section 4. We compare
our work with related research and conclude the paper in Section 5.

3

2 Preliminaries
We briefly review conditional probabilistic logic programming here [Luk98, Luk01,
KIL04].

Let Φ be a finite set of predicate symbols and constant symbols, and V be a set
of variables. An event or logic formula can be defined from Φ ∪ V using none or any
connectives ¬,∧,∨ as usually done in first-order logics. We use φ, ψ, ϕ for events. For
instance, let Peter be a person’s name, then man(Peter) is a logical formula saying
that Peter is a man or let X be a variable, then man(X) states that predicate man is
applied to variable X . When reasoning, the variable can be bound to a constant. For
instance, man(Peter) can be considered as the result of assigning Peter to X .

Given a PLP and a query against the PLP, traditionally, either a probability interval
or a maximum entropy based probability (denoted as MEP below) is returned as the
answer. An interval implies that the true probability of the query shall be within the
given interval. However, when this interval is too wide, it provides no useful informa-
tion. On the other hand, when the knowledge in a PLP is very imprecise, providing a
single probability as the solution to a query can be misleading. In [YLH08, YLH10],
we developed a new approach which can measure the degree of satisfaction of a single
probability solution w.r.t the knowledge provided in a PLP.

A probability distribution Pr satisfies probabilistic formula (ψ|φ)[l, u] iff Pr(ψ|φ)
∈ [l, u]. We say that a probabilistic formula (ψ|φ)[l, u] is a consequence of a PLP P , de-
noted as P |= (ψ|φ)[l, u], iff every probability distribution Pr that satisfies P also satis-
fies the probabilistic formula. A probabilistic formula (ψ|φ)[l, u] is a tight consequence
of P , denoted as P |=tight (ψ|φ)[l, u], iff P |= (ψ|φ)[l, u] and for all [l′, u′] ⊂ [l, u],
P 6|= (ψ|φ)[l, u]. For simplicity, if P |= (φ|>)[0, 0], we denote P |=tight (ψ|φ)[1, 0].

We use me[P] to denote the probability distribution with maximum entropy among
those that satisfy P . Let P be a PLP, we say that (ψ|φ)[l, u] is a me-consequence of P ,
denoted as P |=me (ψ|φ)[l, u], iff P is unsatisfiable or me[P] |= (ψ|φ)[l, u]. We say
that (ψ|φ)[l, u] is a tight me-consequence of P , denoted as P |=me

tight (ψ|φ)[l, u], iff one
of the following conditions holds:

– P |= (φ|>)[0, 0], l = 1, u = 0,
– me[P](φ) > 0 and me[P](ψ|φ) = l = u.

Example 1. Let PLP P be defined as follows:

P =

 (fly(X)|bird(X))[0.98, 1]
(bird(X)|penguin(X))[1, 1]
(penguin(X)|bird(X))[0.1, 1]

Based on this knowledge base, a user can query the likelihood that a penguin can fly,
e.g, ?(fly(t)|penguin(t)).

The results of using our prediction tool based on this knowledge base is
P |=tight (fly(t)|penguin(t))[0, 1], andP |=me

tight (fly(t)|penguin(t))[0.98, 0.98].

In [KIL04, Luk98, Luk01], approaches were provided to calculate the probability
interval and probability with maximum entropy for any query. In [YLH08, YLH10], a
formal method was provided to analyze the PLP and the maximum entropy principle as

4

well as to calculate the degree of ignorance and degree of sastisfaction reviewed in this
section.

First, an ignorance value is provided to evaluate the extent to which the answer given
under maximum entropy is reliable. Second, a measure of the degree of satisfaction is
provided to evaluate how reliable an interval is to serve as the answer of the query.

Definition 1 (Ignorance). Let PL be the set of all PLPs and E be a set of conditional
events. Function IG : PL × E 7→ [0, 1] is called the measure 1of ignorance, iff for any
PLP P and conditional event (ψ|φ) it satisfies the following postulates

[Bounded] IG(P,ψ|φ) ∈ [0, 1].
[Preciseness] IG(P,ψ|φ) = 0 iff P |=tight (ψ|φ)[u, u] or P |= φ→ ⊥.
[Totally Ignorance] IG(∅, ψ|φ) = 1, if 6|= φ→ ψ and 6|= φ→ ¬ψ.
[Sound] If IG(P,ψ|φ) = 1 then P |= (ψ|φ)[0, 1].
[Irrelevance] If P and another PLP P ′ do not contain common syntaxes,

i.e.Φ ∩ Φ′ = ∅, then IG(P,ψ|φ) = IG(P ∪ P ′, ψ|φ).
If P = ∅, only tautologies can be inferred from P . Therefore, from any PLP P ,

IGP (ψ|φ) ≤ IG∅(ψ|φ), which means that an empty PLP has the biggest ignorance
value for any conditional event. When IGP (ψ|φ) = 0, event (ψ|φ) can be inferred
precisely from P , since a single precise probability for (ψ|φ) can be obtained from p.
The ignorance measurement focuses on the knowledge about (ψ|φ) contained in P ,
which means that irrelevant knowledge does not provide a better understanding of this
conditional event.
Definition 2 (Degree of Satisfaction). Let PL be the set of all PLPs and F be a set of
probabilistic formulae. Function SAT : PL×F 7→ [0, 1] is called the measure of degree
of satisfaction iff for any PLP P and ground probabilistic formula µ = (ψ|φ)[l, u], it
satisfies the following postulates:

[Reflexive] SAT(P, µ) = 1, iff P |= µ.
[Rational] SAT(P, µ) = 0 if P ∪ {µ} is unsatisfiable.
[Monotonicity]
SAT(P, µ) ≥ SAT(P, (ψ|φ)[l′, u′]), if [l′, u′] ⊆ [l, u].
SAT(P, µ) > SAT(P, (ψ|φ)[l′, u′]), if [l′, u′] ⊂ [l, u]
and SAT(P, (ψ|φ)[l′, u′]) < 1.

[Cautious Monotonicity] Let P ′ = P ∪ {(ψ|φ)[l′, u′]}, where P |=me (ψ|φ)[l′, u′]
If 1 ≥ SAT(P, µ) ≥ 0 then SAT(P ′, µ) ≥ SAT(P, µ),

The reflexive property says that every consequence is totally satisfied. The rational
property says that 0 is given as the degree of satisfaction of an unsatisfiable probabilistic
formula.

Monotonicity says that if we expect a more precise interval for a query, then the
chance that the exact probability of the query is not in the interval is getting bigger.

1 In mathematical analysis, a measure m is a function, such that m : 2S 7→ [0,∞] and
1. m(E1) ≥ 0 for any E ⊆ S;
2. m(∅) = 0;
3. If E1, E2, . . . is a countable sequence of pairwise disjoint subsets of S, the measure of
the union of Ei’s is equal to the sum of the measures of each Ei, that is, m(

⋃∞
i=1 Ei) =∑∞

i=1 m(Ei)

5

Cautious monotonicity says that, if P and P ′ are equivalent except for the bound of
(ψ|φ), and if P ′ contains more knowledge about (ψ|φ), then the degree of satisfaction
of µ under P ′ should be bigger than that of µ under P .
Example 2. Let P and query ?Q be the same as in Example 1. Then, the degree of
satisfaction for the query answer [0.7, 1] is 0.8.
If we require that the degree of satisfaction of a query answer must be above a threshold
γ, then the PLP reasoning system can produce a tightest interval for which its degree
of satisfaction is not less than γ. When γ = 0.5, the returned interval is [MEP, 1] (the
upper bound is set to 1 in our system), so we obtain both an interval and the MEP
value. This kind of consequence relation is an extension to |=tight. Details about the
calculation of degree of satisfaction are available in [YLH08, YLH10].

3 Dialogue systems
A fully implemented spoken dialogue system requires a delicately balanced interaction
between a number of main components. These typically include a speech recogniser, a
semantic parser, a dialogue manager, a natural language generator, a speech synthesiser
and an underlying database. More recently, components intended to capture and synthe-
sise non-verbal interaction - affect recognisers, embodied conversational agents, and so
on - may also feature in the configuration. In the experiment described here, we focus
on the behaviour manifested by the Dialogue Manager, which takes a co-ordinating and
decision-making role, determining how the system should ask the user questions and
respond to the user’s answers.

We were particularly interested in the degree of freedom that the Dialogue Manager
should offer the user as they conducted their conversation. Thus the Dialogue Manager
had at its disposal a number of dialogue strategies, ranging from several flavours of
tightly system-led ’finite state’ approaches, which required that the user choose just one
of the options presented on a particular dialogue turn, to freer ’frame-based ’solutions,
where, without being explicitly told the available options, the user could supply the
system with one or more values needed to populate ’slots’ in a notional enquiry frame.

3.1 Using probabilistic logic programs to represent imprecise data
The permutations of all dialogue-influencing factors are exponentially large in number
and far exceed the experts’ power to define a strategy for each of them. Developers can
however provide PLP representations of the typical effect on dialogue style of key indi-
vidual dialogue-influencing factors and of key combinations of these factors. Using this
information the system can calculate degrees of dialogue freedom for all combinations
of dialogue-influencing factors.

One problem in using traditional probabilistic logic programming [CPQC03,Luk01]
is that, only a loose and uninformative interval or an unreliable single probability value
can be extracted as the answer. However, by using PLP to model the domain knowledge
and by then applying our reasoning method, we obtain more reliable intervals and single
values in response to a query.

3.2 Observation vs. a priori facts
In PLPs, we use ground formulae to state a priori facts from statistics, i.e., something
that must be true (statistically) is regarded as a fact. These facts are treated differently
from observations about individuals. Observing an event (such as the total number of

6

recognized keywords by a user) does not infer that the event would happen for sure. So,
observations cannot be represented as formulae of the form (ψ(a)|>)[1, 1] in a PLP:
doing so implies that we know ψ(a) to be true even before it is observed. In other
words, taking ψ(a) as a probabilistic event, we cannot predict if ψ(a) is true or false
before we observe it. In dialogue systems, observations are very important for choosing
dialogue strategies. In our framework, all observations are stored in a database (named
OBS) that is separate from a PLP containing statistical knowledge. When querying
(ψ|φ)[l, u] on PLP P , this observation database OBS is automatically called, with the
effect that querying (ψ|φ)[l, u] is equivalent to querying (ψ|φ ∧

∧
OBS)[l, u] on P .

4 The Experiment and Evaluation of our Framework
4.1 Conducting the experiment and constructing a PLP
For each possible permutation of the values of the eight factors, the Dialogue Manager
would use the answer to the query as its degree of dialogue freedom and would select
its dialogue strategy accordingly. We interpret the answer to a query as: With a given
degree of satisfaction, what is the best estimation of the probability that a free dialogue
strategy would be appropriate in these circumstances? With a 0.5 degree of satisfaction,
the result equals the Maximum Entropy Probability.

However, rather than have the Dialogue Manager generate degrees of dialogue free-
dom live (a computationally very intensive process), it acquired the answers for the
queries from a look-up table, generated beforehand by the PLP Reasoner and Ana-
lyzer [YLH08, YLH10]. and covering all possible permutations of the values of the
eight dialogue-influencing factors.

Thus, values generated off-line by our Reasoning Engine would subsequently be
used live by the Dialogue Manager, as it selected its dialogue strategy. In the following
example we concentrate on just a handful of dialogue-influencing factors, the PLP used
by the Reasoning Engine, and the output generated by the Reasoning Engine. In the
PLP, predicates exp, recog, and key are used to state respectively the user’s experience
(strictly speaking, the user’s proficiency: elsewhere we have used the term experience
in a simpler sense to represent the number of times the user has interacted with the
system); the system’s recognition confidence; and the number of keywords recognized
from the user’s response. The sample probabilistic formulae below reflect these con-
ventions. These formulae represent the effect of combinations of dialogue-influencing
factors, and similar formulae are used to represent the typical effect on dialogue free-
dom of individual dialogue-influencing factors:

Table 2. Probability intervals for a free dialogue strategy given a selection of dialogue-influencing
factors.

Factor: User Experience
Level High Medium Low

Factor: High [0.85, 1] [0.80, 0.95] [0.75, 0.85]
ProbabilityRecognition Medium [0.65, 0.85] [0.6, 0.8] [0.55, 0.75]

Confidence Low [0.45, 0.65] [0.4, 0.6] [0.35, 0.55]
IntervalFactor: Multiple [0.95, 1] [0.90, 0.95] [0.80, 0.95]

Number of Single [0.90, 1] [0.85, 1] [0.60, 0.90]
Recognized Keywords None [0.80, 1] [0.70, 0.90] [0.20, 0.70]

7

If the recognition confidence is high and user experience is high too, then the prob-
ability that a free dialogue strategy is appropriate is in the interval [0.8,1]. A PLP cap-
turing this probabilistic knowledge can be created as follows.

(dss(t1, free)|exp(t0, high), recog(t0, high)) [0.85, 1]
(dss(t1, free)|exp(t0, high), recog(t0,med)) [0.65, 0.85]
(dss(t1, free)|exp(t0, high), recog(t0, low)) [0.45, 0.65]
(dss(t1, free)|exp(t0,med), recog(t0, high)) [0.80, 0.95]
(dss(t1, free)|exp(t0,med), recog(t0,med)) [0.60, 0.80]
(dss(t1, free)|exp(t0,med), recog(t0, low)) [0.40, 0.60]
(dss(t1, free)|exp(t0, low), recog(t0, high)) [0.75, 0.85]
(dss(t1, free)|exp(t0, low), recog(t0,med)) [0.55, 0.75]
(dss(t1, free)|exp(t0, low), recog(t0, low)) [0.35, 0.55]
(dss(t1, free)|exp(t0, high), key(t0,multiple)) [0.95, 1.00]
(dss(t1, free)|exp(t0, high), key(t0, single)) [0.90, 1.00]
(dss(t1, free)|exp(t0, high), key(t0, none)) [0.80, 1.00]
(dss(t1, free)|exp(t0,med), key(t0,multiple)) [0.90, 0.95]
(dss(t1, free)|exp(t0,med), key(t0, single)) [0.85, 1.00]
(dss(t1, free)|exp(t0,med), key(t0, none)) [0.70, 0.90]
(dss(t1, free)|exp(t0, low), key(t0,multiple)) [0.80, 0.95]
(dss(t1, free)|exp(t0, low), key(t0, single)) [0.60, 0.90]
(dss(t1, free)|exp(t0, low), key(t0, none)) [0.20, 0.70]

The probability of dss(t1, free) stands for the degree of freedom of the dialogue strat-
egy at the next time point t1, while, for our initial trial, the values [min,max] represent
the range within which developers believe dialogue freedom should lie, given the cur-
rent level (high, medium, low, etc.) of the dialogue-influencing factor under considera-
tion in the formula.

In order to facilitate reasoning, we need to include some background knowledge in
this PLP for example, that the system’s recognition confidence cannot be both high and
medium simultaneously. This background knowledge is represented as the following
additional probabilistic formulae:

recog(t0, high), recog(t0,med)[0, 0]
recog(t0, low), recog(t0,med)[0, 0]
recog(t0, high), recog(t0, low)[0, 0]
exp(t0, high), exp(t0,med)[0, 0]
exp(t0, low), exp(t0,med)[0, 0]
exp(t0, high), exp(t0, low)[0, 0]
key(t0,multiple), key(t0, single)[0, 0]
key(t0,multiple), key(t0, none)[0, 0]
key(t0, single), key(t0, none)[0, 0]

Now assume that we have a user, A, whose experience is medium at time point t0,
assume also that keywords recognition is multiple, and recognition confidence is low.
To determine which dialogue strategy is most suitable, we query

Q =?(dss(t1, free)|exp(t0,med), key(t0,multiple), recog(t0, low))

8

This can be executed against the PLP constructed above. For simplicity, let E be the
conditional event in this query (i.e., Q =?E). For this query, we find P |=tight E[0, 1]
and P |=me

tight E[0.8667, 0.8667]. That is, we get a non-informative interval [0, 1] and a
precise probability 0.8667 as two possible answers to this query.

Note that the statistical (or, in the test system, heuristic) knowledge in the PLP states
that for a user of medium experience, if the system’s recognition confidence is low, then
the next round of dialogue freedom should be relatively low ([0.40, 0.60]). However, if
multiple keywords are recognized by the system then the freedom of the next round
should be relatively high ([0.80, 0.95]). These two rules state two possible degrees of
freedom for the next round, but how these two factors should be integrated, in order to
determine the degree of freedom of next turn, remains unclear. The value 0.8667 given
by the maximum entropy principle, suggests a degree of compromise.

Now, we examine the degree of satisfaction and ignorance of ?E[l, u]. When l =
u = 0.8667, the ignorance of this query is bigger than 0. Thus the value 0.8667 is
possibly not a very accurate degree of dialogue freedom. To find a probabilistic interval
within which the true probability might lie and to quantify our satisfaction with this
interval, we assign different values to l and u and calculate the degree of satisfaction and
ignorance for each pair l and u. Details of the calculation are given in Table 3. From this
table, the system can choose a dialogue strategy based on these degrees of satisfaction.
For instance, we have p(Pr(E) ∈ [0.4, 1] = 0.8034, which means the probability (that
a degree of dialogue freedom of 0.4 in the next dialogue turn will be appropriate to this
user) is 0.8034. From another perspective, it may be the case that there is a very high
probability that the system has clearly recognised the user’s response. If this is so, a
strategy with freedom 0.4 may be too restrictive. Therefore, a dialogue system should
choose a strategy that balances both the degree of satisfaction and the level of freedom
that it affords the user. For a user who prefers a less restricted dialogue, the threshold of
the degree of satisfaction can be low and for a user who prefers a system-led dialogue,
the threshold can be higher.

Table 3. Probability interval for ?E and the degree of satisfaction of Pr(E) ∈ [l, u]

Probability interval Degree of satisfaction Probability interval Degree of satisfaction
[0.1, 1] 0.9586 [0.2, 1] 0.9138
[0.3, 1] 0.8621 [0.4, 1] 0.8034
[0.5, 1] 0.7310 [0.6, 1] 0.6552
[0.7, 1] 0.5759 [0.8, 1] 0.5142
[0.81, 1] 0.5104 [0.82, 1] 0.5072
[0.83, 1] 0.5045 [0.84, 1] 0.5024
[0.85, 1] 0.5010 [0.86, 1] 0.5002

4.2 Evaluating the results

However, in our initial experiment we accepted the figure for MEP at face value and
used it to help us select our dialogue strategy. We were particularly interested in the
manner in which the precise probability, the MEP, changed according to the dialogue
influencing factors that were input. Since we (and the system) take this precise value as
answering the question How probable is it that a free dialogue strategy would be appro-
priate in these circumstances?, then, if the value turned out to be 1 (entirely probable),

9

the Dialogue Manager would, if unchecked by any braking factor, chose the freest strat-
egy; if the value were 0 (entirely improbable), it would choose the most restrictive strat-
egy; and if somewhere between 0 and 1, it would choose a restrictive or non-restrictive
strategy corresponding to the band within which the freedom value fell. In reality this
raw freedom value was generally modified by a braking factor, which varied according
to user proficiency, in order, as we have mentioned, to avoid jarringly rapid shifts be-
tween quite different dialogue strategies: thus a raw freedom value was converted by
means of the appropriate braking factor, to a current freedom value and it was this that
was used to select the dialogue strategy for the next turn. In future the braking factor
might be replaced by an additional dialogue-influencing factor to be considered by the
PLP Reasoner and Analyzer.

To judge the correctness of the raw system behaviour, we monitored the manner in
which the unmodified MEP rose or fell depending on the combinations of dialogue in-
fluencing factors that were input. In the PLP for the experiment, some individual factors
and some combinations of factors had been identified as placing raw dialogue freedom
within particular ranges (probability intervals). In this way the PLP represented the de-
velopers’, and by extension the Dialogue Manager’s, basic decision-making heuristics
or rules of thumb.

Table 4 illustrates the system’s raw behaviour in one typical sequence of eight dia-
logue moves. Input to the system is shown for each move in the form of an eight-element
feature vector. In each feature vector the input elements are ordered and have values as
described previously in Table 1. Each feature vector is followed by the corresponding
raw output MEP.

Table 4 represents eight moves in a dialogue with a proficient user. In user turns
U1, U2 and U3 the dialogue is progressing well (raw freedom value 1). In user turns
U4 and U5 there is no dialogue product (i.e. no usable user input) and the user’s af-
fective state worsens (the freedom value falls). In user turn U6 there is product and the
user’s affective state improves (the freedom value rises). In user turns U7 and U8 the
user’s affective state worsens again, and other dialogue factors are also sub-optimal (the
freedom value falls again).

Table 4. The effect on MEP of different levels of dialogue-influencing factor across eight user-
turns

Dialogue-Influencing Factors
User Turn 1 2 3 4 5 6 7 8 0.5 (MEP)

U1 2 2 2 2 3 0 1 1 1.00000
U2 2 2 2 2 3 0 0 1 1.00000
U3 2 2 2 2 3 0 0 0 1.00000
U4 2 0 0 2 3 1 0 0 0.82560
U5 2 0 0 1 3 1 1 0 0.62300
U6 2 1 1 2 3 0 1 1 0.83770
U7 2 0 0 1 1 1 0 1 0.70000
U8 2 1 1 0 0 0 1 0 0.64080

Level

10

This scenario and others like it indicate that the degree of raw dialogue freedom, as
represented by the generated MEP, is indeed a reasonable interpretation of the develop-
ers’ rules of thumb for determining when freer dialogue strategies should be allowed,
and when more restrictive system-led dialogue strategies should be considered.

5 Related Work and Conclusion
Related work: Logic programming is now a well established knowledge representation
and reasoning formalism in artificial intelligence and deductive databases. The need for
representing uncertainty in the logic programming framework is already reported by a
great number of publications [Luk98, BGR04, BH07, RKT07, Fuh00], [DD04] etc.

Our PLP analytical and reasoning system [YLH08] is based on conditional prob-
abilistic logic programming [CPQC03, Luk01], in which knowledge is represented by
interval restrictions for probabilities on conditional events in the form of (ψ|φ)[l, u].
In traditional probabilistic logic programming, the answer for a query is either a very
uninformative wide interval or an unreliable probability value. In contrast, our method
can provide an ignorance degree to evaluate how useful a PLP is to answer a query, and
furthermore provide a reasoning method to give a more informative (narrower) interval
as the answer that is acceptable to a user.

A few IT systems have been implemented that model and query probabilistic knowl-
edge, for example, SPIRIT [RRK06] and PIT [SF97].

In order to manage imprecise probabilistic reasoning, an expert system shell, SPIRIT,
was implemented which uses the principle of maximum entropy to avoid the request
of precise probability distributions. Knowledge acquisition is performed by specifying
probabilistic facts and rules on discrete variables in an extended propositional logic
syntax. The shell generates the unique probability distribution which respects all facts
and rules and maximizes entropy. After creating this distribution the shell is ready for
answering simple and complex queries. System PIT (Probability Induction Tool) was
implemented based on propositional logic, the probability calculus and the concept of
model-quantification. The task of PIT is to deliver decisions under incomplete knowl-
edge but to keep the necessary additional assumptions as minimal as possible.

In contrast, our system deploys a reasoning mechanism in conditional probabilistic
logic programming, which is based on first order logic, rather than propositional logic.

From a dialogue perspective, the need to give a dialogue system the correct amount
of user-led and system-led interaction is important. An experienced user will become
frustrated, if in ideal conditions he or she is unduly restricted by the system, but so will
an inexperienced user, if, in adverse conditions, the system does not curtail dialogue
freedom (the paths along which the dialogue might progress) by providing assistance
and guiding the dialogue more closely to a successful conclusion.

Conclusion: For the authors this has been a useful first exploration of the issues
involved in PLP-based natural language dialogue management. Some advantages, and
potential challenges, for live system development have emerged.

From a dialogue modelling perspective, the decision-making engine, the PLP, can
be regarded as a black box. In other words, for those concerned with implementing a
naturalistic dialogue, one which can at least pass as a reasonable sequence of spoken
exchanges between system and user in pursuance of some task, it is immaterial how
the figure representing the level of dialogue freedom is derived, so long as it might

11

reasonably be regarded (by an external observer) as a sensible compromise between
factors that individually pull towards greater dialogue restriction or push towards greater
dialogue flexibility.

However in the longer term, logic programmers and dialogue modelers will have to
embark on a demanding dialogue of their own, as they attempt to understand each others
capabilities as knowledge engineers and meet each others requirements as providers of
usable software systems.

Besides furthering this inter-disciplinary dialogue, future work will entail using
more realistic, live inputs to represent the various factors that influence the human-
computer dialogue. It will also involve attempting to assess how satisfied different cat-
egories of actual user are with the variety of dialogue styles that the system adopts in
varied and evolving circumstances.
References

[BGR04] Chitta Baral, Michael Gelfond, and J. Nelson Rushton. Probabilistic reasoning with
answer sets. In LPNMR, pages 21–33, 2004.

[BH07] Chitta Baral and Matt Hunsaker. Using the probabilistic logic programming language
p-log for causal and counterfactual reasoning and non-naive conditioning. In IJCAI,
pages 243–249, 2007.

[CPQC03] Vı́tor Santos Costa, David Page, Maleeha Qazi, and James Cussens. CLP(BN):
Constraint logic programming for probabilistic knowledge. In UAI, pages 517–524,
2003.

[DD04] Alex Dekhtyar and Michael I. Dekhtyar. Possible worlds semantics for probabilistic
logic programs. In ICLP, pages 137–148, 2004.

[Fuh00] Norbert Fuhr. Probabilistic datalog: Implementing logical information retrieval for
advanced applications. JASIS, 51(2):95–110, 2000.

[KIL04] Gabriele Kern-Isberner and Thomas Lukasiewicz. Combining probabilistic logic pro-
gramming with the power of maximum entropy. Artificial Intelligence, 157(1-2):139–
202, 2004.

[Luk98] Thomas Lukasiewicz. Probabilistic logic programming. In ECAI, pages 388–392,
1998.

[Luk01] Thomas Lukasiewicz. Probabilistic logic programming with conditional constraints.
ACM Trans. Comput. Log., 2(3):289–339, 2001.

[OHSG] I.M. O’Neill, P.J. Hanna, D.W. Stewart, and X. Gu. Use of the quads architecture for
multimodal output generation.

[PR03] M. Pantic and L.J.M. Rothkrantz. M. pantic and l.j.m. rothkrantz. In IEEE, pages
1370–1390, 2003.

[RKT07] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic
prolog and its application in link discovery. In IJCAI, pages 2462–2467, 2007.

[RRK06] Wilhelm Rödder, Elmar Reucher, and Friedhelm Kulmann. Features of the expert-
system-shell spirit. Logic Journal of the IGPL, 14(3):483–500, 2006.

[SF97] Manfred Schramm and Volker Fischer. Probabilistic reasoning with maximum entropy
- the system pit (system description). In WLP, 1997.

[YLH08] Anbu Yue, Weiru Liu, and Anthony Hunter. Measuring the ignorance and degree of
satisfaction for answering queries in imprecise probabilistic logic programs. In SUM,
pages 386–400, 2008.

[YLH10] Anbu Yue, Weiru Liu, and Anthony Hunter. Imprecise probabilistic query answering
using measures of ignorance and degree of satisfaction. Annals of Mathematics and
Artificial Intelligence, accepted, 2010.

12

