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Hypercyclic operators on countably dimensional spaces

Andre Schenke and Stanislav Shkarin

Abstract

According to Grivaux, the group GL(X) of invertible linear operators on a separable infinite dimen-
sional Banach space X acts transitively on the set Σ(X) of countable dense linearly independent subsets
of X. As a consequence, each A ∈ Σ(X) is an orbit of a hypercyclic operator on X. Furthermore, every
countably dimensional normed space supports a hypercyclic operator. Recently Albanese have extended
this result to Fréchet spaces supporting a continuous norm.

We show that for a separable infinite dimensional Fréchet space X, GL(X) acts transitively on Σ(X)
if and only if X possesses a continuous norm. We also prove that every countably dimensional metrizable
locally convex space supports a hypercyclic operator.

MSC: 47A16
Keywords: Cyclic operators; hypercyclic operators; invariant subspaces; topological vector spaces

1 Introduction

All vector spaces in this article are over the field K, being either the field C of complex numbers or the field
R of real numbers. As usual, N is the set of positive integers and Z+ = N ∪ {0}. Throughout the article,
all topological spaces are assumed to be Hausdorff. For a topological vector space X, L(X) is the algebra
of continuous linear operators on X, X ′ is the space of continuous linear functionals on X and GL(X) is
the group of T ∈ L(X) such that T is invertible and T−1 ∈ L(X). By saying ’countable’, we always mean
’infinite countable’. Recall that a Fréchet space is a complete metrizable locally convex space. Recall also
that the topology τ of a topological vector space X is called weak if τ is exactly the weakest topology
making each f ∈ Y continuous for some linear space Y of linear functionals on X separating points of
X. It is well-known and easy to see that a topology of a metrizable infinite dimensional topological vector
space X is weak if and only if X is isomorphic to a dense linear subspace of ω = KN.

Recall that x ∈ X is called a hypercyclic vector for T ∈ L(X) if the orbit

O(T, x) = {Tnx : n ∈ Z+}

is dense in X and T is called hypercyclic if it has a hypercyclic vector. It is easy to see that an orbit of a
hypercyclic vector is always dense countable and linearly independent. For a topological vector space X,
we denote the set of all countable dense linearly independent subsets of X by the symbol Σ(X). Thus

O(T, x) ∈ Σ(X) if x is a hypercyclic vector for T .

For more information on hypercyclicity see books [2, 8] and references therein. For the sake of brevity, we
shall say that a subset A of a topological vector space X is an orbit if there are T ∈ L(X) and x ∈ X
such that A = O(T, x). If a group G acts on a set X and Σ is a family of subsets of X, we say that G
acts transitively on Σ if T (A) ∈ Σ for every A ∈ Σ and for each A,B ∈ Σ there exists T ∈ G such that
T (A) = B.

The starting point for this article is the theorem by Grivaux [7] stating that every countable dense
linearly independent subset of a separable infinite dimensional Banach space is an orbit of a hypercyclic
operator and thus solving a problem of Halperin, Kitai and Rosenthal [6]. This result easily follows from
another theorem in [7]:

Theorem G. For every separable infinite dimensional Banach space X, GL(X) acts transitively on Σ(X).

The above theorem leads to the following definition.
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Definition 1.1. A locally convex topological vector space X is called a G-space if Σ(X) is non-empty and
GL(X) acts transitively on Σ(X).

Thus Theorem G states that every separable infinite dimensional Banach space is a G-space. For the
convenience of the reader we reproduce the derivation of the main result in [7] from Theorem G.

Lemma 1.2. Let X be a G-space possessing a hypercyclic operator T0 ∈ L(X). Then every A ∈ Σ(X) is
an orbit.

Proof. Let x0 be a hypercyclic vector for T0 ∈ L(X) and A ∈ Σ(X). Since X is a G-space and both A
and O(T0, x) belong to Σ(X), there is J ∈ GL(X) such that J−1(A) = O(T0, x0). Let T = JT0J

−1 and
x = Jx0. Then

O(T, x) = O(JT0J
−1, Jx0) = {JTn

0 x : n ∈ Z+} = J(O(T0, x0)) = A.

Thus A is an orbit.

Recently Albanese [1] extended the result of Grivaux to Fréchet spaces with continuous norms. Namely,
she proved that if X is a separable infinite dimensional Fréchet space possessing a continuous norm then
every A ∈ Σ(X) is an orbit. Note that due to Bonet and Peris [5] every separable infinite dimensional
Fréchet space supports a hypercyclic operator. Thus Lemma 1.2 implies that for every Fréchet space X,
which is also a G-space, every A ∈ Σ(X) is an orbit of a hypercyclic operator. Just as in [7], Albanese
proves the result by means of showing that GL(X) acts transitively on Σ(X).

Theorem A. For every separable infinite dimensional Fréchet space X possessing a continuous norm,
GL(X) acts transitively on Σ(X). That is, X is a G-space.

Note that Bonet, Frerick, Peris and Wengenroth [3] constructed A ∈ Σ(ω), which is not an orbit of
a hypercyclic operator and therefore ω is not a G-space. Thus the natural question arises which Fréchet
spaces are actually G-spaces. The following theorem gives an explicit answer to this question.

Theorem 1.3. Let X be a separable infinite dimensional Fréchet space. Then the following statements
are equivalent:

(1.3.1) X possesses a continuous norm;
(1.3.2) X is a G-space;
(1.3.3) every A ∈ Σ(X) is an orbit.

Note that the implication (1.3.2) ⇐⇒ (1.3.3) is the direct consequence of the above mentioned result
of Bonet and Peris and the elementary Lemma 1.2, while the implication (1.3.1) =⇒ (1.3.2) is exactly
Theorem A of Albanese. We include our proof of the last implication since it turns out to be an immediate
consequence of the stronger Theorem 1.5 below, which we need anyway in order to prove the following
result.

Theorem 1.4. Every countably dimensional metrizable locally convex space possesses a hypercyclic oper-
ator.

The above theorem answers a question raised in [9] and extends the above mentioned result of Grivaux
stating that every countably dimensional normed space possesses a hypercyclic operator. It is worth noting
that Bonet, Frerick, Peris and Wengenroth [3] constructed a countably dimensional locally convex space
which supports no transitive (hence no hypercyclic) operators. It is also well-known (see, for instance,
the same paper [3]) that there are separable (uncountably!) infinite dimensional metrizable locally convex
spaces supporting no transitive operators. Theorem 1.4 is in sharp contrast with these results.

The following theorem is our main instrument. In order to formulate it we need to recall a few definitions.
A subset D of a locally convex space X is called a disk if D is bounded, convex and balanced (=is stable
under multiplication by λ ∈ K with |λ| 6 1). The symbol XD stands for the space span (D) endowed with
the norm p

D
being the Minkowski functional of the set D. Boundedness of D implies that the topology of

XD is stronger than the one inherited from X. A disk D in X is called a Banach disk if the normed space
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XD is complete. It is well-known that a sequentially complete disk is a Banach disk, see, for instance, [4].
In particular, every compact or sequentially compact disk is a Banach disk.

We say that a seminorm p on a vector space X is non-trivial if X/ker p is infinite dimensional, where

ker p = {x ∈ X : p(x) = 0}.

Note that the topology of a locally convex space X is non-weak if and only if there is a non-trivial continuous
seminorm on X.

If p is a seminorm on a vector space X, we say that A ⊂ X is p-independent if p(z1a1 + . . . + znan) ̸= 0
for any n ∈ N, any pairwise different a1, . . . , an ∈ A and any non-zero z1, . . . , zn ∈ K. In other words,
vectors x + ker p for x ∈ A are linearly independent in X/ker p.

Theorem 1.5. Let X be a locally convex space, p be a continuous seminorm on X, D be a Banach disk
in X and A,B be countable subsets of X such that both A and B are p-independent and both A and B are
dense subsets of the Banach space XD. Then there exists J ∈ GL(X) such that J(A) = B and Jx = x for
every x ∈ ker p.

We prove Theorem 1.5 in Section 2. In Section 3 we show that GL(ω) acts transitively on the set of
dense countably dimensional subspaces of ω. Section 4 is devoted to the proof of Theorem 1.3. We prove
Theorem 1.4 in Section 5 and discuss open problems in Section 6.

2 Proof of Theorem 1.5

For a continuous seminorm p on a locally convex space X, we denote

X ′
p = {f ∈ X ′ : p∗(f) = sup{|f(x)| : x ∈ X, p(x) 6 1} < ∞}.

Note that p∗(f) (if finite) is the smallest non-negative number c such that f(x) 6 cp(x) for every x ∈ X.

Lemma 2.1. Let X be a locally convex space, p be a continuous seminorm on X, D be a Banach disk in

X and {xn}n∈N and {fn}n∈N be sequences in XD and X ′ respectively such that c =
∞∑

n=1
p∗(fn)pD(xn) < ∞.

Then the formula Tx =
∞∑

n=1
fn(x)xn defines a continuous linear operator on X. Furthermore, if p is

bounded by 1 on D and c < 1, then the operator I + T is invertible.

Proof. Clearly pD(fn(x)xn) = |fn(x)|pD(xn) 6 p(x)p∗(fn)pD(xn). It follows that the series defining Tx
converges in XD and

pD(Tx) 6 cp(x) for every x ∈ X.

Thus T is a well-defined continuous linear map from X to XD. Since the topology of XD is stronger than
the one inherited from X, T ∈ L(X).

Assume now that p is bounded by 1 on D and c < 1. Then from the inequality p(x) 6 pD(x) and the
above display it follows that pD(Tnx) 6 cnp(x) for every x ∈ X and n ∈ N. Since c < 1, the formula

Sx =
∞∑

n=1
(−T )nx defines a linear map from X to XD satisfying pD(Sx) 6 c

1−cp(x) for x ∈ X. Thus S

is continuous as a map from X to XD and therefore S ∈ L(X). It is a routine exercise to check that
(I + S)(I + T ) = (I + T )(I + S) = I. That is, I + T is invertible.

Lemma 2.2. Let ε > 0, X be a locally convex space, D be a Banach disk in X, Y be a closed linear
subspace of X, M ⊆ Y ∩XD be a dense subset of Y such that M is pD-dense in Y ∩XD, p be a continuous
seminorm on X, L be a finite dimensional subspace of X and T ∈ L(X) be a finite rank operator such that
T (Y ) ⊆ Y ∩XD, T (ker p) ⊆ ker p and ker (I + T ) = {0}. Then

(1) for every u ∈ Y ∩ XD such that (u + L) ∩ ker p = ∅, there are f ∈ X ′ and v ∈ Y ∩ XD such that
p∗(f) = 1, f

∣∣
L

= 0, pD(v) < ε, (I + R)u ∈ M and ker (I + R) = {0}, where Rx = Tx + f(x)v;
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(2) for every u ∈ Y ∩ XD such that (u + (I + T )(L)) ∩ ker p = ∅, there are f ∈ X ′, a ∈ M and
v ∈ Y ∩XD such that p∗(f) = 1, f

∣∣
L

= 0, pD(v) < ε, (I + R)a = u and ker (I + R) = {0}, where
Rx = Tx + f(x)v.

Proof. Let u ∈ Y ∩XD be such that (u+L)∩ker p = ∅. The Hahn–Banach theorem provides f ∈ X ′ such
that p∗(f) = 1, f(u) ̸= 0 and f

∣∣
L

= 0. First, observe that there is δ > 0 such that the only solution of the
equation Tx+x+f(x)v = 0 is x = 0 whenever v ∈ XD and pD(v) < δ. Indeed, assume the contrary. Then
there exist sequences {xn}n∈N and {vn}n∈N in XD such that pD(xn) = 1 for every n ∈ N, pD(vn) → 0 and
Txn + xn + f(xn)vn = 0 for each n ∈ N. Since {Txn}n∈N is a bounded sequence in the finite dimensional
subspace T (X) of XD, passing to a subsequence, if necessary, we can without loss of generality assume
that xn converges to x ∈ T (X) ⊂ XD with respect to pD. That is, pD(x) = 1 and pD(xn − x) → 0.
Passing to the pD-limit in Txn + xn + f(xn)vn = 0, we obtain Tx + x = 0, which contradicts the equality
ker (I + T ) = {0}. Thus there is δ > 0 such that the only solution of the equation Tx + x = f(x)v is
x = 0 whenever v ∈ XD and pD(v) < δ. Since M is pD-dense in Y ∩ XD and u + Tu ∈ Y ∩ XD, there
is r ∈ M such that pD(r − u − Tu) < min{δ|f(u)|, ε|f(u)|}. Define v = 1

f(u)(r − u − Tu) ∈ Y ∩XD and
Rx = Tx + f(x)v. Clearly, pD(v) < ε. Since pD(v) < δ, ker (I + R) = {0}. A direct computation gives
(I + R)u = u + Tu + 1

f(u)f(u)(r − u− Tu) = r ∈ M . Thus f and v satisfy all desired conditions.
Now assume that u ∈ Y ∩XD is such that (u+(I +T )(L))∩ker p = ∅. The fact that T has finite rank

and ker (I + T ) = {0} implies that I + T is invertible. Furthermore, the inclusion T (X) ⊆ Y ∩XD and
the finiteness of the rank of T imply that (I + T )−1(Y ) ⊆ Y and (I + T )−1(XD) ⊆ XD. Thus there is a
unique w ∈ Y ∩XD such that (I + T )w = u. Since (u + (I + T )(L))∩ ker p = ∅ and T (ker p) ⊆ ker p, we
have (w +L)∩ ker p = ∅. The Hahn–Banach theorem provided f ∈ X ′ such that p∗(f) = 1, f(w) ̸= 0 and
f
∣∣
L

= 0. Exactly as in the first part of the proof, we observe that there is δ > 0 such that the only solution
of the equation Tx + x + f(x)v = 0 is x = 0 whenever v ∈ XD and pD(v) < δ. Since f(w) ̸= 0 and M is
pD-dense in Y ∩XD, we can find a ∈ M (close enough to w with respect to pD) such that pD(v) < δ and
pD(v) < δ, where v = 1

f(a)(I + T )(w− a). Now set Rx = Tx + f(x)v. Since pD(v) < δ, ker (I + R) = {0}.
A direct computation gives (I + R)a = a + Ta + 1

f(a)f(a)(I + T )(w− a) = (I + T )w = u. Thus f , a and v
satisfy all desired conditions.

Now we are ready to prove Theorem 1.5. Without loss of generality, we may assume that p is
bounded by 1 on D. Equivalently, p(x) 6 pD(x) for every x ∈ XD.

Fix arbitrary bijections a : N → A and b : N → B and a sequence {εn}n∈N of positive numbers such that
∞∑

n=1
εn < 1. We shall construct inductively sequences {nk}k∈N and {mk}k∈N of positive integers, {vk}k∈N

in XD, {fk}k∈N in X ′
p and {Tn}n∈Z+ in L(X) such that T0 = 0 and for every k ∈ N,

mj ̸= ml and nj ̸= nl for 1 6 j < l 6 2k; (2.1)
{1, . . . , k} ⊆ {n1, . . . , n2k} ∩ {m1, . . . , m2k} for k > 1; (2.2)
pD(vj) < εj and p∗(fj) 6 1 for 1 6 j 6 2k; (2.3)
(Tk − Tk−1)x = f2k−1(x)v2k−1 + f2k(x)v2k; (2.4)
(I + Tk)a(nj) = b(mj) for 1 6 j 6 2k. (2.5)

T0 = 0 serves as the basis of induction. Let q > 1 and assume that mj , nj , vj , fj , Tj for j 6 2q − 2
satisfying (2.1–2.5) are already constructed. By (2.4) with k < q,

Tq−1x =
2q−2∑

j=1

fj(x)vj .

According to (2.3) with k = q − 1,
2q−2∑
j=1

p∗(fj)pD(vj) <
2n−2∑
j=1

εj < 1. By Lemma 2.1, I + Tq−1 is invertible.

Since each p∗(fj) is finite, Tq−1 vanishes on ker p. In particular, Tq−1(ker p) ⊆ ker p. Since each vj belongs
to XD, Tq−1(X) ⊆ XD. Clearly Tq−1 has finite rank. Set Y = X, n2q−1 = min(N \ {n1, . . . , n2q−2}) and
m2q = min(N \ {m1, . . . , m2q−2}). Since A is p-independent (u + L) ∩ ker p = ∅, where u = a(n2q−1)
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and L = span {a(n1), . . . , an2q−2}. Applying the first part of Lemma 2.2 with the just defined u, Y and
L and with T = Tq−1, ε = ε2q−1 and M = B \ {b(m2q), b(m1), b(m2), . . . , b(m2q−2)}, we find f2q−1 ∈ X ′

and v2q−1 ∈ XD such that p∗(f2q−1) = 1, f2q−1

∣∣
L

= 0, pD(v2q−1) < ε2q−1 and (I + S)u ∈ M , where
Sx = Tq−1x + f2q−1(x)v2q−1. The inclusion (I + S)u ∈ M means that (I + S)u = b(m2q−1) for some
m2q−1 ∈ N \ {m2q,m1,m2, . . . , m2q−2}. Since u = a(n2q−1) and f2q−1

∣∣
L

= 0, (2.5) with k = q − 1 implies
that

(I + S)a(mj) = b(nj) for 1 6 j 6 2q − 1.

By definition of S, Sx =
2q−1∑
j=1

fj(x)vj with
2q−1∑
j=1

p∗(fj)pD(vj) <
2q−1∑
j=1

εj < 1. By Lemma 2.1, I+S is invertible.

Since each p∗(fj) is finite and each vj belongs to XD, S vanishes on ker p and S(X) ⊆ XD. Clearly S has
finite rank. Since B is p-independent the above display ensures that (u + (I + S)(L)) ∩ ker p = ∅, where
u = b(m2q) and L = span {a(nj) : 1 6 j 6 2q − 1}. Applying the second part of Lemma 2.2 with Y = X
and the just defined u and L and with T = S, ε = ε2q and M = A \ {a(nj) : 1 6 j 6 2q − 1}, we find
f2q ∈ X ′

p, v2q ∈ XD and w ∈ M such that p∗(f2q) = 1, f2q

∣∣
L

= 0, pD(v2q) < ε2q and (I + Tq)w = u, where
Tqx = Sx + f2n(x)v2n. The inclusion w ∈ M means that w = a(n2q) for some n2q ∈ N \ {n1, . . . , n2q−1}.
Since u = b(m2q) and f2n

∣∣
L

= 0, the above display yields

(I + Tq)a(mj) = b(nj) for 1 6 j 6 2q.

Since n2q−1 ̸= n2q, m2q−1 ̸= m2q, n2q−1, n2q /∈ {n1, . . . , n2q−2} and m2q−1,m2q /∈ {n1, . . . , m2q−2}, (2.1)
with k = q follow from (2.1) with k = q−1. By construction, (2.3), (2.4) and (2.5) with k = q are satisfied.
Since n2q−1 = min(N \ {n1, . . . , n2q−2}) and m2q = min(N \ {m1, . . . , m2q−2}), (2.2) for k = q follows from
(2.2) with k = q − 1. Thus (2.1–2.5) are all satisfied for k = q. This concludes the inductive construction
of mj , nj , vj , fj , Tj for j ∈ N.

By (2.1) and (2.2), the map nj 7→ mj is a bijection from N to itself. By (2.3) and (2.4), the sequence

{Tn} converges pointwise to the operator T ∈ L(X) given by the formula Tx =
∞∑

j=1
fj(x)vj . Since

∑
εj < 1,

(2.3) and Lemma 2.1 imply that J = I + T is invertible. Since p∗(fj) < ∞ for every j, T vanishes on
ker p and therefore Jx = x for x ∈ ker p. Passing to the limit in (2.5), we obtain that Ja(nj) = b(mj) for
every j ∈ N. Since nj 7→ mj is a bijection from N to itself, we get J(A) = B. Thus J satisfies all required
conditions. The proof of Theorem 1.5 is now complete.

3 Countably dimensional subspaces of ω

The main result of this section is the following theorem.

Theorem 3.1. GL(ω) acts transitively on the set of dense countably dimensional linear subspaces of ω.

Note that according to [3, Proposition 3.3], GL(ω) does not act transitively on Σ(ω). In order to prove
the above result we need few technical lemmas. As usual, we identify ω with KN. For n ∈ N, the symbol δn

stands for the nth coordinate functional on ω. That is, δn ∈ ω′ is defined by δn(x) = xn. By φ we denote
the linear subspace of ω consisting of sequences with finite support. That is, x ∈ φ precisely when there is
n ∈ N such that xm = 0 for all m > n.

Lemma 3.2. Let f1, . . . , fn+1 be linearly independent functionals on a vector space E, A ⊆ E be such that
span (A) = E and x1, . . . , xn ∈ E be such that the matrix {fj(xk)}16j,k6n is invertible. Then there exists
xn+1 ∈ A such that {fj(xk)}16j,k6n+1 is invertible.

Proof. Since the matrix B = {fj(xk)}16j,k6n is invertible, the vector (fn+1(x1), . . . , fn+1(xn)) ∈ Kn is a
linear combination of the rows of B. That is, there exist c1, . . . , cn ∈ K such that g(xj) = 0 for 1 6 j 6 n,

where g = fn+1 −
n∑

j=1
cjfj . Since fj are linearly independent, g ̸= 0. Since span (A) = E, we can find

xn+1 ∈ A such that g(xn+1) ̸= 0. Consider the (n + 1) × (n + 1) matrix C = {γj,k}16j,k6n+1 defined by
γj,k = fj(xk) for 1 6 j 6 n, 1 6 k 6 n + 1 and γn+1,k = g(xk) for 1 6 k 6 n + 1. Since {γj,k}16j,k6n = B
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is invertible, γn+1,k = g(xk) = 0 for 1 6 k 6 n and γn+1,n+1 = g(xn+1) ̸= 0, C is invertible. Indeed,
detC = g(xn+1)detB. It remains to notice that B+ = {fj(xk)}16j,k6n+1 is obtained from C by adding a
linear combination of the first n rows to the last row. Hence detB+ = detC ̸= 0 and B+ is invertible as
required.

Applying Lemma 3.2 and treating the elements of a vector space E as linear functionals on a space of
linear functionals on E, we immediately get the following result.

Lemma 3.3. Let x1, . . . , xn+1 be linearly independent elements of a vector space E, A be a collection of
linear functionals on E separating the points of E and f1, . . . , fn be linear functionals on E such that the
matrix {fj(xk)}16j,k6n is invertible. Then there exists fn+1 ∈ A such that {fj(xk)}16j,k6n+1 is invertible.

Lemma 3.4. Let {un}n∈N be a Hamel basis in a vector space E and {fn}n∈N be a linearly independent
sequence of linear functionals on E separating the points of E. Then there exist bijections α : N → N and
β : N → N such that for every n ∈ N, the matrix {fα(j)(xβ(k))}16j,k6n is invertible.

Furthermore, there exist complex numbers cj,k for j 6 k such that cj,j ̸= 0 and fα(j)(vj) = 1 for j ∈ N

and fα(j)(vk) = 0 for j, k ∈ N and j < k, where vk =
k∑

m=1
cm,kuβ(m).

Proof. We shall construct inductively two sequences {αj}j∈N and {βk}k∈N of natural numbers such that

{1, . . . , n} ⊆ {α1, . . . , α2n} ∩ {β1, . . . , β2n} for each n ∈ N; (3.1)
{fαj (xβk

)}16j,k6n is invertible for every n ∈ N. (3.2)

Basis of induction. Take α1 = 1. Since f1 ̸= 0 and the vectors un span E, there is β1 ∈ N such that
fα1(uβ1) ̸= 0. Now we take β2 = min(N\{β1}). By Lemma 3.3, there is α2 ∈ N such that {fαj (xβk

)}16j,k62

is invertible. Clearly, 1 ∈ {α1, α2} ∩ {β1, β2}. Thus α1, α2, β1, β2 satisfy (3.1) and (3.2).
The induction step. Assume that m ∈ N and α1, . . . , α2m, β1, . . . , β2m satisfying (3.1) with n 6 m

and (3.2) with n 6 2m are already constructed. The latter implies that βj are pairwise distinct and αj

are pairwise distinct. First, take α2m+1 = min(N \ {α1, . . . , α2m}). By Lemma 3.2, there is β2m+1 ∈
N such that {fαj (xβk

)}16j,k62m+1 is invertible. Automatically, βm+1 /∈ {β1, . . . , β2m}. Next, we take
β2m+2 = min(N \ {β1, . . . , β2m+1}). By Lemma 3.3, there is α2m+2 ∈ N such that {fαj (xβk

)}16j,k62m+2

is invertible. Since {1, . . . ,m} ⊆ {α1, . . . , α2m} ∩ {β1, . . . , β2m}, α2m+1 = min(N \ {α1, . . . , α2m}) and
β2m+2 = min(N \ {β1, . . . , β2m+1}), we have {1, . . . ,m + 1} ⊆ {α1, . . . , α2m+2} ∩ {β1, . . . , β2m+2}. Thus
α1, . . . , α2m+2, β1, . . . , β2m+2 satisfy (3.1) with n 6 m + 1 and (3.2) with n 6 2m + 2.

This concludes the inductive construction of {αj}j∈N and {βk}k∈N satisfying (3.1) and (3.2). According
to (3.2), αj are pairwise distinct and βj are pairwise distinct. By (3.1), {αj : j ∈ N} = {βk : k ∈ N} = N.
Hence the maps α, β : N → N defined by α(j) = αj and β(j) = βj are bijections. By (3.2), the matrix
{fα(j)(xβ(k))}16j,k6n is invertible for every n ∈ N.

Now let m ∈ N. Since Am = {fα(j)(xβ(k))}16j,k6m is invertible, we can find c1,m, c2,m, . . . , cm,m such that
the linear combination of the columns of Am with the coefficients c1,m, . . . , cm,m is the vector (0, . . . , 0, 1).
Note that cm,m can not be 0. Indeed, otherwise a non-trivial linear combination of the columns of the
invertible matrix Am−1 is 0. The fact that the linear combination of the columns of Am with the coefficients
c1,m, . . . , cm,m is (0, . . . , 0, 1) can be rewritten as fα(m)(vm) = 1 and fα(j)(vm) = 0 for j < m, where

vm =
m∑

j=1
cj,muβ(j). Doing this for every m ∈ N, we obtain the numbers {cj,m} and the vectors vm

satisfying all desired conditions.

Lemma 3.5. Let E be a dense countably dimensional linear subspace of ω. Then there is a Hamel basis
{vn}n∈N in E and a bijection α : N → N such that δα(n)(vn) = 1 and δα(k)(vn) = 0 whenever n ∈ N and
k < n.

Proof. Take an arbitrary Hamel basis {un}n∈N in E. Applying Lemma 3.4 with fn = δn, we find bijections
α, β : N → N and complex numbers cj,k for j 6 k such that cj,j ̸= 0 and fα(j)(vj) = 1 for j ∈ N and

fα(j)(vk) = 0 for j, k ∈ N and j < k, where vk =
k∑

m=1
cm,kuβ(m).
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It remains to notice that since {un} is a Hamel basis in E, {vn} is also a Hamel basis in E. Indeed, it
is straightforward to verify that uβ(n) ∈ span {v1, . . . , vn} \ span {v1, . . . , vn−1} for every n ∈ N. Thus the
Hamel basis {un} and the bijection α satisfy all desired conditions.

Proof of Theorem 3.1. Let E be a dense countably dimensional subspace of ω. By Lemma 3.5, there is
a Hamel basis {vn}n∈N in E and a bijection α : N → N such that δα(n)(vn) = 1 and δα(k)(vn) = 0 whenever
n ∈ N and k < n. Consider T : ω → ω defined by the formula

Tx =
∞∑

n=1

xα(n)vn =
∞∑

n=1

δα(n)(x)vn.

If {ej}j∈N is the standard basis of ω, then it is easy to see that the matrix of T with respect to the
’shuffled’ basis {eα(j)}j∈N is lower-triangular with all entries 1 on the main diagonal. It follows that T is a
well-defined invertible continuous linear operator on ω. It remains to observe that T (φ) = E. Hence each
dense countably dimensional subspace of ω is the image of φ under an isomorphism of ω onto itself. Hence
isomorphisms of ω act transitively on the set of dense countably dimensional linear subspaces of ω.

4 Proof of Theorem 1.3

The most of the following lemma (density bit excluded) is a particular case of a number of well-known
stronger results, see, for instance, [4, Section 3.2]. For example, it is known that in a sequentially complete
locally convex space X the closed balanced convex hull D of a pre-compact metrizable subset A is compact
and metrizable and therefore is a Banach disk. In this generality though the linear span of A may turn
out to be non-dense in XD. We include the complete proof of the particular case when A is a convergent
to 0 sequence for the sake of the reader’s convenience.

Lemma 4.1. Let {xn}n∈Z+ be a sequence in a sequentially complete locally convex space X such that
xn → 0. Then the set

K =
{ ∞∑

n=0

anxn : a ∈ ℓ1, ∥a∥1 6 1
}

is a Banach disk. Moreover, E = span {xn : n ∈ Z+} is a dense linear subspace of the Banach space XK .

Proof. Let Q = {a ∈ ℓ1 : ∥a∥1 6 1} be endowed with the coordinatewise convergence topology. Then Q is
metrizable and compact as a closed subspace of the compact metrizable space DZ+ , where D = {z ∈ K :

|z| 6 1}. Obviously, the map Φ : Q → K, Φ(a) =
∞∑

n=0
anxn is onto. Moreover, Φ is continuous. Indeed, let

p be a continuous seminorm on X, a ∈ Q and ε > 0. Since xn → 0, there is m ∈ Z+ such that p(xn) 6 ε
for n > m. Set δ = ε

1+p(x0)+...+p(xm) and W = {b ∈ Q : |aj − bj | < δ for 0 6 j 6 m}. Then W is a
neighborhood of a in Q and for each b ∈ W , we have

p(Φ(b)− Φ(a)) = p

( ∞∑

n=0

(bn − an)xn

)
6

∞∑

n=0

|bn − an|p(xn).

Since p(xn) < ε for n > m, |an − bn| < δ for n 6 m and ∥a∥1 6 1, ∥b∥1 6 1, we obtain

p(Φ(b)− Φ(a)) 6 δ
m∑

n=0

p(xm) + ε
∞∑

n=m+1

|bn − an| 6 2ε + δ
m∑

n=0

p(xm).

Using the definition of δ, we see that p(Φ(b)−Φ(a)) 6 3ε. Since a, p and ε are arbitrary, Φ is continuous.
Thus K is compact and metrizable as a continuous image of a compact metrizable space. Obviously, K
is convex and balanced. Hence K is a Banach disk (any compact disk is a Banach disk). It remains to

show that E is dense in XK . Take u ∈ XK . Then there is a ∈ ℓ1 such that u =
∞∑

k=0

akxk. Clearly,

un =
n∑

k=0

akxk ∈ E. Then pK(u − un) = pK

( ∞∑
k=n+1

akxk

)
6

∞∑
k=n+1

|ak| → 0 as n → ∞. Hence E is dense

in XK .
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Lemma 4.2. Let X be a Fréchet space and A and B be dense countable subsets of X. Then there exists
a Banach disk D in X such that both A and B are dense subsets of the Banach space (XD, pD).

Proof. Let C be the set of all linear combinations of the elements of A ∪ B with rational coefficients.
Obviously, C is countable. Pick a map f : N → C such that f−1(x) is an infinite subset of N for
every x ∈ C. Since A and B are dense in X, we can find maps α : N → A and β : N → B such
that 4m(f(m) − α(m)) → 0 and 4m(f(m) − β(m)) → 0. Since A and B are countable, we can write
A = {xm : m ∈ N} and B = {ym : m ∈ N}. Using metrizability of X, we can find a sequence {γm}m∈N of
positive numbers such that γmxm → 0 and γmym → 0. Enumerating the countable set

{2m(f(m)− α(m)) : m ∈ N} ∪ {2m(f(m)− β(m)) : m ∈ N} ∪ {γmxm : m ∈ N} ∪ {γmym : m ∈ N}

as one (convergent to 0) sequence and applying Lemma 4.1 to this sequence, we find that there is a
Banach disk D in X such that XD contains A and B, the linear span of A ∪ B is pD-dense in XD and
f(m)−α(m) → 0 and f(m)− β(m) → 0 in XD. The pD-density of the linear span of A∪B in XD implies
the pD-density of C in XD. Taking into account that f−1(x) is infinite for every x ∈ C and that α takes
values in A, the pD-density of C in XD and the relation p

D
(f(m)−α(m)) → 0 implies that A is pD-dense

in XD. Similarly, B is pD-dense in XD. Thus D satisfies all required conditions.

Lemma 4.3. Let X be a separable Fréchet space and p be a non-trivial continuous seminorm on X. Then
for every dense countable set A ⊂ X, there is B ⊆ A such that B is p-independent and dense in X.

Proof. Let {Un}n∈N be a countable basis of the topology of X. We shall construct (inductively) a sequence
{xn}n∈N of elements of A such that for every n ∈ N,

xn ∈ Un and x1, . . . , xn are p-independent. (4.1)

Note that in every topological vector space, the linear span of a dense subset of a non-empty open set
is a dense linear subspace. It follows that for each n ∈ N,

a proper closed linear subspace of X can not contain A ∩ Un. (4.2)

Hence A ∩ U1 ̸⊆ ker p. Thus we can pick x1 ∈ (A ∩ U1) \ ker p, which will serve as the basis of induction.
Assume now that m ∈ N and x1, . . . , xm satisfying (4.1) for n 6 m are already constructed. Let L be the
linear span of x1, . . . , xm. Since the sum of a closed subspace of a topological vector space and a finite
dimensional subspace is always closed and the codimension of ker p in X is infinite, L + ker p is a proper
closed linear subspace of X. By (4.2), we can pick xm+1 ∈ (A ∩ Um+1) \ (ker p + L). It is easy to see
that x1, . . . , xm, xm+1 satisfy (4.1) for n 6 m + 1, which concludes the inductive construction of {xn}n∈N
satisfying (4.1) for every n ∈ N. It remains to observe that B = {xn : n ∈ N} ⊆ A, B is dense in X since
it meets each Un and B is p-independent.

4.1 Proof of the implications (1.3.1)=⇒(1.3.2) and (1.3.2)=⇒(1.3.3)

Assume that a separable infinite dimensional Fréchet space X possesses a continuous norm p and that
A,B ∈ Σ(X). By Lemma 4.2, there is a Banach disk D in X such that both A and B are dense subsets of
the Banach space XD. By Theorem 1.5, there exists J ∈ GL(X) such that J(A) = B. Thus GL(X) acts
transitively on Σ(X). Since X is separable and metrizable, Σ(X) is non-empty. Hence X is a G-space,
which proves the implication (1.3.1)=⇒(1.3.2). Since every separable infinite dimensional Fréchet space
supports a hypercyclic operator [5], Lemma 1.2 provides the implication (1.3.2) =⇒ (1.3.3).

4.2 Proof of the implication (1.3.3)=⇒(1.3.1)

Let X be a separable Fréchet space possessing no continuous norm. The implication (1.3.3)=⇒(1.3.1) will
be verified if we show that there exists A ∈ Σ(X), which is not an orbit of a continuous linear operator. If X
is isomorphic to ω, the job is already done by Bonet, Frerick, Peris and Wengenroth [3, Proposition 3.3]. It
remains to consider the case of X non-isomorphic to ω. Since X is a Fréchet space possessing no continuous
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norm and non-isomorphic to ω, the topology of X can be defined by an increasing sequence {pn}n∈N of
seminorms such that p1 is non-trivial and ker pn/ker pn+1 ̸= {0} for each n ∈ N. By Lemma 4.3, there is a
dense in X countable p1-independent set B. Since ker pn/ker pn+1 ̸= {0} for each n ∈ N, for each n ∈ N,
we can pick xn ∈ ker pn \ ker pn+1. Let C = {xn : n ∈ N} and A = B ∪ C. Obviously A is a countable
subset of X. Since B is dense in X and B ⊆ A, A is dense in X. Finally, the p1-independence of B and the
inclusions xn ∈ ker pn \ker pn+1 imply that A is linearly independent. Thus A ∈ Σ(X). It suffices to verify
that A is not an orbit. Assume the contrary. Then there are T ∈ L(X) and x ∈ X such that A = O(T, x).
Let M = {n ∈ Z+ : Tnx ∈ C, Tn+1x ∈ B}. Since B does not meet ker p1, p1(Tn+1x) > 0 for every
n ∈ M . Thus we can consider the (finite or countable) series S =

∑
n∈M

T nx
p1(T n+1x)

. Since Tnx for n ∈ M are

pairwise distinct elements of C and every pk vanishes on all but finitely many elements of C, the series S
converges absolutely in X. Since T : X → X is a continuous linear operator and every continuous linear
operator on a locally convex space maps an absolutely convergent series to an absolutely convergent series,
the series T (S) =

∑
n∈M

T n+1x
p1(T n+1x)

is also absolutely convergent. Hence the application of p1 to the terms of

T (S) gives a convergent series of non-negative numbers. But the latter series is
∑

n∈M

p1(T n+1x)
p1(T n+1x)

=
∑

n∈M

1.

Its convergence is equivalent to the finiteness of M . Thus M is finite. Let m = max(M) if M ̸= ∅ and
m = 0 if M = ∅. Since C ⊂ O(T, x) and C is infinite, there is k ∈ Z+ such that k > m and T kx ∈ C.
Since M ∩ {j ∈ Z+ : j > k} = ∅, from the definition of M it follows that T jx ∈ C for every j > k. Hence
T jx ∈ C for all but finitely many j. It follows that B = O(T, x)\C is finite, which is a contradiction. This
contradiction shows that A is not an orbit and completes the proof of the implication (1.3.3)=⇒(1.3.1) and
that of Theorem 1.3.

5 Proof of Theorem 1.4

Lemma 5.1. Let p be a continuous seminorm on a locally convex space X and E be a countably dimensional
subspace of X such that E ∩ ker p = {0}. Then there exist a Hamel basis {un}n∈N in E and a sequence
{fn}n∈N in X ′

p such that fn(um) = δn,m for every m,n ∈ N.

Proof. Begin with an arbitrary Hamel basis {yn}n∈N in E. The proof is a variation of the Gramm–Schmidt
procedure. Clearly, it suffices to construct (inductively) two sequences {un}n∈N in E and {fn}n∈N in X ′

p

such that for every n ∈ N,

un ∈ yn + span {yj : j < n}; (5.1)
fj(uk) = δj,k for j, k 6 n. (5.2)

Indeed, (5.1) ensures that {un : n ∈ N} is also a Hamel basis in E.
First, we set u1 = y1 and note that p(u1) ̸= 0. Then we use the Hahn–Banach theorem to find

f1 ∈ X ′
p such that f1(u1) = 1. This gives us the basis of induction. Assume now that m > 2 and un, fn

satisfying (5.1) and (5.2) for n < m are already constructed. Condition (5.2) for n < m allows us to pick
um ∈ ym + span {yn : n < m} such that fj(un) = 0 for every j < n. Since yn are linearly independent,
um ∈ E \ {0}. Since E ∩ ker p = {0}, p(um) ̸= 0. Since u1, . . . , um are linearly independent elements of
E and p(um) ̸= 0, the Hahn–Banach theorem allows us to choose fm ∈ X ′

p such that fm(um) = 1 and
fm(uj) = 0 for j < m. Clearly, un and fn for n 6 m satisfy (5.1) and (5.2) for n 6 m. This completes the
inductive procedure of constructing the sequences {un}n∈N in E and {fn}n∈N in X ′

p satisfying (5.1) and
(5.2) for every n ∈ N.

The following lemma features as [2, Theorem 2.2].

Lemma 5.2. Let X be a separable Fréchet space and T ∈ L(X) be such that the linear span of the union
of Tn(X) ∩ kerTn for n ∈ N is dense in X. Then I + T is hypercyclic.

Lemma 5.3. Let p be a non-trivial continuous seminorm on a separable locally convex space X for which
there exists a Banach disk D in X such that XD is a dense subspace of X and the Banach space (XD, pD)
is separable. Then there exists T ∈ L(X) such that T is hypercyclic and Tx = x for every x ∈ ker p.
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Proof. Since XD is dense in X and the Banach space topology on XD is stronger than the one inherited
from X, the restriction of p to XD is a non-trivial continuous seminorm on the Banach space XD. By
Lemma 4.2, there is a dense countable subspace A of the Banach space XD such that A is p-independent.
Let E = span (A). Then E is a dense in (XD, pD) and therefore in X countably dimensional subspace of
XD. Since A is p-independent, E ∩ ker p = {0}. By Lemma 5.1, there is a Hamel basis {un}n∈N in E and
a sequence {fn}n∈N in X ′

p such that fn(um) = δn,m for every m,n ∈ N.
Consider the linear map S : X → XD defined by the formula:

Sx =
∞∑

n=1

2−nfn+1(x)
pD(un)p∗(fn+1)

un.

The series in the above display converges absolutely in XD since |fn+1(x)| 6 p(x)p∗(fn+1). Furthermore
pD(Sx) 6 p(x) for every x ∈ X. Hence S is a well-defined continuous linear map from X to XD. In
particular, S ∈ L(X) and the restriction SD of S to XD is a continuous linear operator on the Banach
space XD. Moreover, analyzing the action of S on uk, it is easy to see that S(E) = SD(E) = E and therefore
E ⊆ Sn

D(XD) for every n ∈ N. Furthermore, un ∈ kerSn
D for every n ∈ N. Hence E ⊆ ∪

n∈N
kerSn

D. Since

E is dense in XD, Lemma 5.2 implies that TD = I + SD is a hypercyclic operator on the Banach space
XD. Since the topology of XD is stronger than the one inherited from X and XD is dense in X, every
hypercyclic vector for TD is also hypercyclic for T = I + S ∈ L(X). Thus T = I + S is hypercyclic.
Next, p-boundedness of each fk implies that each fk vanishes on ker p. Hence ker p ⊆ kerS and therefore
Tx = x for every x ∈ ker p.

Now we are ready to prove Theorem 1.4. Let E be a countably dimensional metrizable locally
convex space. Denote the completion of E by the symbol X. That is, X is a separable infinite dimensional
Fréchet space and E is a dense countably dimensional subspace of E.

Case 1: X is non-isomorphic to ω. In this case the topology of X is non-weak and therefore X supports
a non-trivial continuous seminorm p. By Lemma 4.3, there is a countable dense in X p-independent set B
such that B ⊆ E. A standard application of Zorn’s lemma provides a maximal by inclusion p-independent
subset A of E containing B. Since B ⊆ A, A is dense in X. Since E is countably dimensional, A is countable
(p-independence implies linear independence). By Lemma 4.2, every separable infinite dimensional Fréchet
space contains a Banach disk K such that XK is a separable Banach space and XK is dense in X. Now
by Lemma 5.3 there is a hypercyclic T ∈ L(X) such that Tx = x for every x ∈ ker p. Let u be a
hypercyclic vector for T . First, we shall verify that O(T, u) is p-independent. Assume the contrary.
Then there exists a non-zero polynomial r such that r(T )u ∈ ker p. Then for every n ∈ Z+, we can write
tn = r(t)q(t)+v(t), where q and v are polynomials and deg v < deg r = d. Hence Tnu = q(T )r(T )u+v(T )u.
Since r(T )u ∈ ker p and ker p is invariant for T , q(T )r(T )u ∈ ker p. Hence O(T, u) ⊆ L + ker p, where
L = span {u, Tu, . . . , T d−1u}. Since L is finite dimensional and ker p is a closed subspace of X of infinite
codimension, L + ker p is a proper closed subspace of X. We have obtained a contradiction with the
density of O(T, u). Thus the countable dense in X set O(T, u) is p-independent. Recall that A is also
countable, dense in X and p-independent. By Lemma 4.2, there is a Banach disk D in X such that both
A and O(T, u) are dense subsets of the Banach space (XD, pD). By Theorem 1.5, there exists J ∈ GL(X)
such that J(O(T, u)) = A and Jx = x for every x ∈ ker p. Let S = JTJ−1. Exactly as in the proof of
Lemma 1.2, one easily sees that Ju is a hypercyclic vector for S and that O(S, Ju) = A. In particular,
Ju ∈ A ⊂ E. It remains to verify that S(E) ⊆ E. Indeed, in this case the restriction of S to E provides a
continuous linear operator on E with Ju being its hypercyclic vector.

Let x ∈ E. It suffices to show that Sx ∈ E. The maximality of A implies that we can write x = y + z,
where y ∈ span (A) and z ∈ ker p. Since A ⊂ E, y ∈ E and therefore z = x− y ∈ E. Since A = O(S, Ju),
S(A) ⊆ A. Hence S(span (A)) ⊆ span (A) ⊆ E. It follows that Sy ∈ E. Since Tv = Jv = v for v ∈ ker p,
we have Sv = v for v ∈ ker p and therefore Sz = z. Thus Sx = Sy + Sz = Sy + z ∈ E, as required. This
completes the proof for Case 1.

Case 2: X is isomorphic to ω. It is well-known (see, for instance, [5]) that ω supports a hypercyclic
operator. Actually, it is easy to see that the shift S ∈ L(KN), (Sx)n = xn+1 is hypercyclic. Thus, we can
take S ∈ L(X) and x ∈ X such that x is a hypercyclic vector for S and let F = span (O(S, x)). Then
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F is another dense countably dimensional subspace of X. Obviously F supports a hypercyclic operator
(the restriction of S to F ). By Theorem 3.1, E and F are isomorphic. Hence E supports a hypercyclic
operator. The proof of Theorem 1.4 is now complete.

6 Open problems and remarks

Note that the locally convex direct sum φ of countably many copies of the one-dimensional space K is a
complete countably dimensional locally convex space. A number of authors, see, for instance, [5], have
observed that φ supports no hypercyclic operators.

Problem 6.1. Characterize countably dimensional locally convex spaces supporting a hypercyclic operator.

The following is an interesting special case of the above problem.

Problem 6.2. Are there any complete countably dimensional locally convex spaces supporting a hypercyclic
operator?

The following question also seems to be interesting.

Problem 6.3. Characterize complete G-spaces. Characterize complete G-spaces supporting a hypercyclic
operator.

Note that although ω is not a G-space, Theorem 3.1 shows that GL(ω) acts transitively on the set of
dense countably dimensional subspaces of ω.

Problem 6.4. Characterize complete locally convex spaces X with the property that GL(X) acts transitively
on the set of dense countably dimensional subspaces of X.
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587–595
[6] I. Halperin, C. Kitai and P. Rosenthal, On orbits of linear operators, J. London Math. Soc. 31 (1985), 561-565
[7] S. Grivaux, Construction of operators with prescribed behaviour, Arch. Math. (Basel) 81 (2003), 291–299
[8] K. Grosse-Erdmann and A. Peris, Linear Chaos, Springer, Berlin, 2011
[9] S. Shkarin, Hypercyclic operators on topological vector spaces, J. London Math. Soc. 2012;

doi:10.1112/jlms/jdr082

Andre Schenke and Stanislav Shkarin
Queen’s University Belfast
Pure Mathematics Research Centre
University road, Belfast, BT7 1NN, UK
E-mail address: s.shkarin@qub.ac.uk, aschenke01@qub.ac.uk

11


