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The growth of magnetic fields in the density gradient of a rarefaction wave has been observed in

simulations and in laboratory experiments. The thermal anisotropy of the electrons, which gives

rise to the magnetic instability, is maintained by the ambipolar electric field. This simple

mechanism could be important for the magnetic field amplification in astrophysical jets or in the

interstellar medium ahead of supernova remnant shocks. The acceleration of protons and the

generation of a magnetic field by the rarefaction wave, which is fed by an expanding circular

plasma cloud, is examined here in form of a 2D particle-in-cell simulation. The core of the plasma

cloud is modeled by immobile charges, and the mobile protons form a small ring close to the

cloud’s surface. The number density of mobile protons is thus less than that of the electrons. The

protons of the rarefaction wave are accelerated to 1/10 of the electron thermal speed, and

the acceleration results in a thermal anisotropy of the electron distribution in the entire plasma

cloud. The instability in the rarefaction wave is outrun by a TM wave, which grows in the dense

core distribution, and its magnetic field expands into the rarefaction wave. This expansion drives a

secondary TE wave. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769128]

I. INTRODUCTION

Magnetic instabilities in expanding plasmas or in den-

sity gradients are of interest for laser fusion, where magnetic

fields can reduce the particle’s mobility,1 and for astrophysi-

cal plasmas, where they can generate magnetic fields from

noise levels. Magnetic field generation in the interstellar me-

dium (ISM)2 by the interplay of the electrons of the hot ion-

ized medium with the spatially nonuniform (ISM) plasma or

the amplification of magnetic fields in the turbulent plasma

close to supernova remnant (SNR) shocks3–5 are examples.

The growth of magnetic fields in rarefaction waves on

an electron timescale6–9 has recently been observed experi-

mentally10 and with particle-in-cell (PIC) simulations.7,11

The instability is driven by a thermal anisotropy of a single

electron distribution rather than by counterstreaming elec-

tron beams12 and is thus similar to the Weibel instability in

its original form.13–17 It is the result of the electron’s slow-

down by the ambipolar electrostatic field, which is sustained

by the plasma density gradient of the rarefaction wave. This

electrostatic field counteracts the charge separation along the

plasma density gradient that arises from the difference in the

thermal speeds of electrons and ions. It accelerates the ions

and slows down the electrons along this direction, which

generates the thermal anisotropy.

Previous simulations6,7,11 have considered systems, in

which hot electrons accelerate an equal number of initially

cold ions. Here, the acceleration of protons, which are dis-

tributed in form of a hollow ring, by the ambipolar electro-

static field is examined with a PIC simulation. This proton

ring distribution is a good approximation of the cross section

of the ions of a laser-heated wire, as long as it is located far

away from the laser impact point.

The ablation of the wire and the resulting magnetic

instabilities have been examined experimentally in Ref. 10.

The wire in the experiment is composed of heavy ions,

which can not be accelerated to high speeds by the expand-

ing electrons. The light protons that feed the rarefaction

wave originate from surface impurities and they are approxi-

mated here by the hollow ring distribution. The low number

of mobile protons dilutes the rarefaction wave. This is also

observed in the experiment where its number density is

�1018cm�3,10 which is well below the solid ion number den-

sity. The electrons have the temperature 32 keV and are spa-

tially uniform within the plasma cloud, while the electrons in

the experiment have MeV energies and are confined to the

wire’s surface.18 The initial conditions of the simulation are

thus not an exact representation of the experimental condi-

tions. Reducing the electron temperature and distributing the

electrons over a wide interval is computationally efficient,

and it ensures that the overall thermal energies in the experi-

ment and simulation are comparable.

The purpose of our simulation is threefold. We want to

determine if the gradient-driven magnetic instability always

develops in the rarefaction wave or if competing instabilities

can outrun it. Second, we want to determine if the lower pro-

ton density results in a weaker thermal anisotropy of the

electrons and, third, if and how the expansion of the dilute

rarefaction wave differs from the dense one in Ref. 11.

Our results are as follows. The protons at the front of the

dilute rarefaction wave are accelerated to about the same

speed within the same time interval as those in the dense one

in Ref. 11. This confirms our expectation. The electrostatic

potential of the plasma with respect to the surrounding

vacuum is fully determined by the thermal pressure of the

electrons, which is the same here and in our simulation in

Ref. 11. The stronger reduction of the electron’s thermala)Electronic mail: Mark.E.Dieckmann@itn.liu.se.
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energy in Ref. 11 compared to the one here does not lead to

detectable differences in the plasma expansion. The same

magnitude of the electrostatic potential and the therefrom

resulting equal deceleration of the electrons in the direction

of the density gradient imply that the electron’s thermal ani-

sotropies here and in Ref. 11 are equally strong. However,

the much lower electron number density in the rarefaction

wave we model here delays the onset of the gradient-driven

magnetic instability. It develops instead in the dense core of

the plasma cloud and the strong magnetic fields diffuse out

into the rarefaction wave.

The magnetic fields grow in the radial interval of the

plasma cloud in which the temperature anisotropy and the

number density of the electrons are large. The magnetic field

source is thus a Weibel-type instability and not the compet-

ing thermoelectric instability.19 The latter is inefficient in

our case study, because the electron density gradient is

aligned with the electron temperature gradient and because

the expanding rarefaction wave is circularly symmetric.

We also observe here the same secondary magnetic

instability as in Ref. 11, which yields the growth of in-plane

magnetic fields. Our present simulation setup confines the

secondary wave in the plasma cloud’s core, while it devel-

oped in the expanding rarefaction wave in Ref. 11. This con-

finement simplifies the interpretation of the data. Our results

suggest that the in-plane magnetic fields are generated by a

mode conversion of a transverse-magnetic (TM) wave into a

transverse-electric (TE) wave. This is a well-known process

in waveguides with a variable cross section, which are im-

portant in antenna theory.20 The variable cross section is

here the result of the proton expansion.

The structure of this paper is as follows. The PIC simu-

lation scheme and the initial conditions are summarized in

Sec. II. Section III presents the simulation results, which are

discussed in Sec. IV.

II. THE SIMULATION CODE AND THE INITIAL
CONDITIONS

A PIC code approximates a plasma by an ensemble of

computational particles (CPs) and it uses their collective

charge distribution qðxÞ and current distribution J(x) to

evolve in time the electromagnetic fields on a spatial grid.

The electric E and magnetic B fields update in turn the mo-

mentum of each CP through the relativistic Lorentz force

equation. The PIC scheme is discussed in detail in Ref. 21.

Most codes evolve the electromagnetic fields through

the discretized forms of the Amp�ere’s and Faraday’s laws

@E

@t
¼ 1

ðl0�0Þ
r � B� 1

�0

J; (1)

@B

@t
¼ �r� E; (2)

and they fullfill Gauss’ law r � E ¼ q=�0 and r � B ¼ 0 ei-

ther as constraints or through correction steps. The relativis-

tic Lorentz force equation

dpj

dt
¼ qi½EðxjÞ þ vj � BðxjÞ� (3)

is used to update the momentum pj of the jth particle of spe-

cies i. The collective behavior of the ensemble of the CPs of

species i approximates well that of a plasma species, pro-

vided that the charge-to-mass ratio of the plasma particles

equals the ratio qi=mi of the CPs, that the plasma is collision-

less and that the statistical representation of the computa-

tional plasma is adequate. We use the numerical scheme dis-

cussed in Ref. 22.

Our initial conditions and their connection to the experi-

ment are visualized in Fig. 1. The axis of the wire on the left

hand side is parallel to z. The simulation resolves a cross-

section of this wire in the x-y plane with an origin x¼ 0,

y¼ 0 in the center of the wire. This cross-section has a

z-coordinate that is sufficiently far away from that of the

laser impact point, so that we do not have to model the laser

pulse in the simulation.

In the experiment, the hot electrons stream uniformly

from the laser impact point along the wire’s surface18 to the

cross section that corresponds to our simulation plane. We

thus approximate the wire’s cross section by the circular

plasma cloud shown on the right hand side of Fig. 1. Hot

electrons fill the entire cross section of the plasma cloud with

radius r ¼ rW . Their spatially uniform number density n0

within the cloud gives the plasma frequency xp. The mobile

protons fill a hollow ring with the outer radius r ¼ rW and

with the inner radius r ¼ 0:95rW . The interior r < 0:95rW of

the hollow ring contains an immobile positive charge back-

ground. The charge density of the electrons equals at any

location x, y with x2 þ y2 < r2 that of the positive charge

carriers and the mean speeds of both mobile species are zero.

No net charge and no net current are initially present. All ini-

tial electromagnetic fields are thus set to zero. The cloud is

immersed in a vacuum, and the boundary conditions of the

simulation box are periodic.

The outer cloud radius rW ¼ 14:2ke, where ke ¼ c=xp is

the electron skin depth within the cloud. The temperature of

the relativistic Maxwellian distribution that represents the

electrons is 32 keV and their thermal speed is ve ¼ c=4. This

relativistic Maxwell-J€uttner distribution is f ðpÞ ¼ ð4pm3

c3h ~K2ð1=hÞÞ�1
expð�cðpÞ=hÞ with cðpÞ ¼ ð1þ ðp=mcÞ2Þ1=2;

h ¼ kT=mc2 and the modified Bessel function of the second

kind ~K2ðhÞ. The bulk of the electrons thus moves at nonrela-

tivistic speeds, which allows us to easily decompose their

FIG. 1. The initial conditions: The experimental setup is shown to the left,

where we assume that a long wire is aligned with z. The initial electron dis-

tribution in the simulation is shown to the upper right and the proton ring

distribution (dark gray shade) and the positively charged immobile back-

ground (light gray shade) to the lower right.
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radial and azimuthal velocity components. The electron

Debye length kd ¼ ve=xp equals 5:6Dx, where Dx is the side

length of a quadratic grid cell. We use the correct mass ratio

between the electrons and the protons in the ring distribution.

The proton temperature is 10 eV and their thermal speed

vp ¼ 3:1� 104 m=s. The Maxwell-J€uttner distribution we

use also to initialize the initial speeds of the computational

ions practically equals a Maxwell velocity distribution due

to the nonrelativistic ion speeds.

The quadratic area L� L of the 2D simulation box with

the side length L ¼ 75:5ke is resolved by Ng ¼ 1700 grid

cells in the x and y directions. We represent the electrons by

Ne ¼ 8� 108 CPs and the protons by Np ¼ Ne particles.

Since the protons occupy a smaller volume, their numerical

weight is lower. A time interval txp ¼ 800 is resolved. We

normalize time to xp, space to the initial cloud radius rW ,

and the electron and proton velocities to their respective ini-

tial thermal speeds ve and vp. The electric and magnetic

fields are normalized to mexpc=e and mexp=e, respectively.

III. SIMULATION RESULTS

The kinetic energy of electrons with the mass m1 is

K1ðtÞ ¼ m1c2
PNe

j¼1½Cj � 1�, where the summation is over all

computational electrons with the Lorentz factors Cj and

K0 � K1ð0Þ. The kinetic energy of the mobile protons with

mass m2 is K2ðtÞ ¼ m2c2
PNp

j¼1½Cj � 1�. We use the relativis-

tic expression of the proton kinetic energy the code is solving

for even though they do not reach a relativistic speed. The

charge-to-mass ratio of the computational electrons is 1836

times larger than that of the protons. The energy of the

in-plane electric field is EE?ðtÞ ¼ ðD3
x=2�0Þ

PNg

i;j¼1 E2
pði:j:tÞ,

where Epði; j; tÞ ¼ ½E2
xði; j; tÞ þ E2

yði; j; tÞ�
1=2

. The energy den-

sity of the out-of-plane magnetic field EBzðtÞ ¼ ðD3
x=2l0ÞPNg

i;j¼1 B2
z ði:j:tÞ.

Figure 2 shows their time evolution. The electrons sus-

tain a rapid energy loss during 0 < t < 20. This energy is

transferred to the ambipolar electric field, which grows and

saturates during this time. This field accelerates the protons

and the electrons have transferred about 10% of their initial

energy to them at t¼ 800. The initial oscillations of EE?
have damped out at t � 200 and EE? reaches a steady state

value of �10�2K0. EBz grows initially slowly. The faster

growth of the magnetic energy in the time interval 400 < t <
700 is followed by its saturation. The magnetic energy

remains well below that found in Ref. 11 and about two orders

of magnitude below the electric one. We will examine now in

more detail the field and particle distributions at the time

t¼ 27 when the electrostatic field reaches its peak value, at

t¼ 500 when the magnetic field grows fastest and at t¼ 800

when the magnetic field saturates.

A. Early time t 5 27

The modulus of the in-plane electric field at t¼ 27 is

shown in Fig. 3. The electric field has the expected circular

symmetry. It peaks at r � rW . It gradually decreases for

increasing values of r and reaches noise levels at r � 2rW .

Circular electric field oscillations are visible in the cloud’s

core r < rW . Since the positive charged background is

immobile in this region, these electrostatic waves must be

Langmuir waves. The magnetic field remains at noise levels

at this time (not shown).

The phase space density distributions feðr; vrÞ and

fpðr; vrÞ of electrons and protons, which are functions of the

radius r ¼ ðx2 þ y2Þ1=2
and of the radial velocity component

vr ¼ ðv2
x þ v2

yÞ
1=2

, are displayed in Fig. 4. They are derived

as follows. The circular symmetry of the cloud and the

energy exchange between electrons (s¼ e) and the mobile

protons (s¼ p), which is at least initially limited to the x,y-

plane and a function of the radius, imply that distributions

0 200 400 600 800
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0.95

1

(a) Time

K
1(t
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/ K

0

0 200 400 600 800
0
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FIG. 2. Energy densities in units of the initial electron thermal energy: The

electron energy (a), the proton energy (b), the energy density of the in-plane

electric field, (c) and of the out-of-plane magnetic field (d).

FIG. 3. The 10-logarithmic modulus of the electric field jEpðx; yÞj sampled

at the time t¼ 27 (enhanced online) [URL: http://dx.doi.org/10.1063/

1.4769128.1].
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f̂ sðr; vr; vzÞ will develop for both species. We neglect the vz

direction and define the average over the azimuthal angle q

fsðr; vrÞ ¼ ð2prÞ�1

ð2p

q¼0

f̂ sðr; vrÞrdq; (4)

which greatly improves the visualized dynamical range of

the phase space densities. We normalize fsðr; vrÞ by its maxi-

mum value at t¼ 0. The resulting phase space densities are

thus constant as a function of r at t¼ 0 within the radial

interval the mobile species occupy.

The protons have been accelerated to several times vp at

t¼ 27 and their mean speed increases with r. The protons

have, however, not moved far beyond rW during this short

time. The fastest electrons have reached a radius r � 2:3rW .

Their density profile shows a straight line from r � 1:5rW

and vr � 0 to r � 2:3rW and vr � 4. These are the electrons

that have escaped from the cloud before the ambipolar elec-

tric field has fully developed. The linear density profile sim-

ply reflects that faster electrons have propagated to larger

radii during t¼ 27. The ambipolar electric field, which has

been built up after the first electrons escaped into the vacuum

(see Fig. 2(c)), affects the electrons at lower r, and we can

observe a decrease of the peak electron speed as we go from

r � 2:3rW to r � 1:5rW . The electrons lose kinetic energy as

they overcome the electrostatic ambipolar potential. This

potential is also responsible for the drastic drop of the elec-

tron number density at r � rW . It is evident from Fig. 4 that

the electron charge for r > 1:03rW is not compensated by a

proton charge. The electric field at r > 1:03rW in Fig. 3 is

thus sustained by the electron sheath.

The online enhancement of Fig. 4 shows that the elec-

trons cross the simulation box boundary shortly after t¼ 27.

Their low number density implies that the electron two-

stream instability does not develop during the simulation

time due to a low growth rate. The electrons are accelerated

by the electrostatic field of the rarefaction wave as they re-

enter the plasma cloud. The low number density of these

accelerated electrons implies again that no plasma instabil-

ities develop. We can thus neglect effects introduced by the

boundary conditions.

B. Intermediate time t 5 500

The electron and proton phase space density distribu-

tions feðr; vrÞ and fpðr; vrÞ at the time t¼ 500 are shown in

Fig. 5. The majority of the electrons in Fig. 5(a) is confined

by the immobile positive charge background in the interval

r < 0:95rW . Their phase space density and the characteristic

electron speed decrease drastically at r � rW but remain rela-

tively high up to r � 1:5rW . The phase space density

decreases by another two orders of magnitude as we go to

even larger radii. The radial interval 1 < r=rW < 1:5 with

the elevated electron phase space density and mean speed

coincides with the radial interval that is occupied by the dis-

tribution of mobile protons. An almost closed circular proton

phase space structure is present at r � 1:03rW in Fig. 5(b)

that is sustained by a local excess of negative charge. The

profile of the proton phase space density distribution in Fig.

5(b) increases linearly with the radius for r > 1:05rW , which

is characteristic for a rarefaction wave. The protons reach a

peak speed �200vp, which is comparable to ve=10 and about

the same as that in Ref. 11. Only a small fraction of the pro-

tons reaches this speed, which limits the loss of electron ther-

mal energy at this time (see Fig. 2). The low electron phase

space density for r > 2rW implies that all electron processes

close to the boundary are slow and do not carry much

energy.

The densities of the mobile particle species at t¼ 500

are shown in Fig. 6. They are obtained from the integration

of the phase space densities in Fig. 5 over vr. They are nor-

malized to their initial value. The electron density decreases

by an order of magnitude close to the boundary of the immo-

bile positive charge background at r ¼ 0:95rW . It increases

again for r > rW and reaches a local maximum at around

r � 1:15rW , close to the peak of the mobile proton’s density.

Both densities decrease gradually beyond this radius. The

proton density falls off steeply at its front at r � 1:5rW (see

also Fig. 5(b)).

Figure 7 shows the in-plane electric field distribution at

t¼ 500. The electric field modulus shows a more complex

pattern than at the earlier time. The electric field peaks at

r � rW , and it is sustained by the electron density gradient

close to the boundary of the immobile positively charged

FIG. 4. The 10-logarithmic phase space densities feðr; vrÞ of the electrons

(a) and fpðr; vrÞ of the protons (b). The densities are normalized to their ini-

tial value. The simulation time is t¼ 27 (enhanced online) [URL: http://

dx.doi.org/10.1063/1.4769128.2].

FIG. 5. The 10-logarithmic phase space densities feðr; vrÞ of the electrons

(a) and fpðr; vrÞ of the protons (b). The densities are normalized to their ini-

tial value. The simulation time is t¼ 500.
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background at r ¼ 0:95rW . The electric field modulus goes

through a minimum at a slightly larger radius. The reason for

this radial oscillation is that we have two regions with an

excess of positive charge, which are separated by a radial

interval with a negative excess charge at r � rW (see Fig. 6).

An electric field with a significant amplitude modulus that

extends over a large radial interval is observed at 1:1
< r=rW < 2. The electric field modulus in this band peaks at

r � 1:5rW , which coincides with the front of the proton dis-

tribution in Fig. 6. It thus corresponds to the ambipolar elec-

tric field driven by this density gradient, and it decreases for

larger radii where we only find electrons. The electric field

modulus reaches its minimum at r � 2rW .

Figure 8 displays the distribution of Bz at t¼ 500. We

observe a strong localized magnetic field structure. Its ampli-

tude peaks at r � 0:8rW and it decreases as we go to r � rW

and beyond. The amplitude oscillates once in the azimuthal

direction and the associated wavelength kq � 2prW is thus

much larger than the one in the radial direction, which we

can estimate as follows. We find a magnetic field maximum

at x � �0:3rW and y � 0:3rW and a minimum at x � �0:6rW

and y � 0:6rW . The wavelength of the radial oscillation is

thus kr � 0:5rW . The magnetic amplitude outside this radial

interval is at noise levels. The magnetic noise is distributed

over the entire simulation box, while the magnetic structure

is localized in a small radial interval. This explains why we

do not observe a more pronounced growth of the magnetic

field energy in Fig. 2(d).

It is instructive to compare the radial interval, in which

the magnetic field grows, with the one that shows a thermal

anisotropy. We determine for this purpose the thermal

energy densities of the electrons in the radial and azimuthal

directions. We consider only the in-plane component of the

speed vp;j ¼ ðvx; vyÞj of the jth computational electron. The

radial component of the thermal energy Kr;j ¼ v2
r;j is com-

puted from the projection vr;j ¼ vp;j � rj=rj, where rj is the

position vector of the electron in circular coordinates, and

Kq;j ¼ v2
p;j � Kr;j. The partial thermal energies and the anisot-

ropy A are then obtained from the summations

KrðidrÞ ¼
XNe

j¼1

Kr;jdi;j; (5)

KqðidrÞ ¼
XNe

j¼1

Kq;jdi;j; (6)

A ¼ Kr=Kq; (7)

where di;j ¼ 1, if ði� 1Þdr 	 rj < idr and zero otherwise.

The width of a radial bin dr ¼ Dx. We thus obtain a histo-

gram A(i) of the radial distribution of the thermal anisotropy.

The anisotropy A(r) is compared with the magnetic energy

PBzðndrÞ ¼ ðD3
x=2l0Þ

XNg

i;j¼1

B2
z ði� Ng=2; j� Ng=2Þdi:j;n; (8)

where di;j;n ¼ 1 if Iðði� Ng=2Þ2 þ ðj� Ng=2Þ2Þ ¼ n2, with I
being a round-off operation. This azimuthal integration,

rather than the azimuthal average, emphasizes magnetic

fields at larger radii.

Figure 9 demonstrates that the magnetic field starts to

grow at t � 200, when an anisotropy AðrÞ < 1 has formed

that is sufficiently strong and wide. The magnetic field grows

initially in the interval 0:7 < r=rW < 1:1 but it expands later

on in both radial directions. Its front reaches r � 1:5rW at

0.8 1 1.2 1.4 1.6
0

0.02

0.04

0.06

0.08

0.1

r / r
W

n e , 
n p

FIG. 6. The electron density neðrÞ and the proton density npðrÞ (dashed

curve) sampled at the time t¼ 500 and normalized to the respective initial

density values.

FIG. 7. The 10-logarithmic modulus of the electric field jEpðx; yÞj sampled

at the time t¼ 500.

FIG. 8. The magnetic field amplitude Bzðx; yÞ sampled at the time t¼ 500.

Overplotted is a circle of radius r ¼ rW (enhanced online) [URL: http://

dx.doi.org/10.1063/1.4769128.3].
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t¼ 500, which coincides with the tip of the proton distribu-

tion in Fig. 6. It is thus confined to within the rarefaction

wave. The radial interval where PBZ � 1 is initially station-

ary but the magnetic field distribution changes after t � 500.

What appears to be a sidelobe develops at r � 1:4rW . This

change takes place on a few tens of x�1
p . The plasma fre-

quency in the rarefaction wave is about xp=4 at t¼ 500 (see

Fig. 6) and the growth time of the sidelobe is thus faster than

that expected from any instability. Indeed, the on-line

enhancement of Fig. 8 shows that the magnetic Bz-field leaks

out from within the cloud into the rarefaction wave.

C. Late time t 5 800

Figure 10 shows its distribution at t¼ 800. The extrema

of Bz are located within r ¼ rW , and the amplitude of Bz is

constant as a function of r for 1 < r=rW < 1:5. The peak of

the normalized magnetic amplitude at the saturation time of

the instability is �7� 10�3 and thus about 50% of the one

observed in Ref. 11. The peak magnetic energy density is

thus significantly lower in the present simulation. The mag-

netic energy has been confined to within r � rW until

t � 600, and it forms a TM mode until then (see Fig. 8). The

rapid expansion of the magnetic energy after t � 600 implies

that this TM mode suddenly expands.

We can understand the circular plasma cloud as the

cross section of a cylindrical waveguide with an axis that is

aligned with z. The expansion of the mobile protons implies

that the radius of the cross-section of this waveguide

increases in time. It is well-known that changes in the radius

of a waveguide induce a coupling of TM and TE modes.20

The magnetic field of a TE mode would be oriented in the

simulation plane.

Figure 11 evidences that a TE wave is indeed present at

t¼ 800. A structure is visible in the distribution of the in-

plane magnetic field Bp ¼ ðB2
x þ B2

yÞ
1=2

. It is located in the

same radial interval as the magnetic field of the TM mode.

The magnetic field patterns in Bz and Bp have the same azi-

muthal wave number and both are phase-shifted by 90
 rela-

tive to each other. The magnetic energy of the TE mode

grows after t¼ 800 to values exceeding that of the TM wave

(not shown). We do not discuss the evolution for t > 800.

The TE wave expands out to the boundaries shortly after this

time, which results in finite box effects, while the TM wave

remains confined by the rarefaction wave as discussed

previously.11

The different behaviour of the TM and TE modes can be

explained by the different plasma response to their electric

fields in our 2D box geometry. An electric field orthogonal

to the simulation box plane cannot result in charge density

modulations, since we do not resolve the z-direction. It, thus,

only affects the current distribution. An in-plane electric

field does, however, modulate also the charge density. The

dilute electron plasma between the front of the rarefaction

wave and the boundaries cannot support strong charge den-

sity waves but it can easily support the large currents from

the TE wave and the latter can expand more easily.

IV. DISCUSSION

We have modeled here with a 2D PIC simulation the

expansion of a circular plasma cloud into a vacuum, which

has been driven by the thermal pressure of the electrons. It is

a follow-up study of a previous simulation experiment. It

FIG. 9. The ratio A between the mean radial energy and the mean perpendic-

ular energy of electrons is shown on a linear color scale in (a). The spatio-

temporal evolution of the magnetic energy density is shown on a

10-logarithmic color scale in (b).

FIG. 10. The magnetic field amplitude Bzðx; yÞ sampled at the time t¼ 800.

Overplotted is a circle of radius r ¼ rW .

FIG. 11. The magnetic field amplitude jBpðx; yÞj sampled at the time

t¼ 800. Overplotted is a circle of radius r ¼ rW (enhanced online) [URL:

http://dx.doi.org/10.1063/1.4769128.4].
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aimed at explaining the growth of magnetic fields in the rare-

faction wave, which is generated by the ablation of a wire by

a laser pulse.10 It considered the expansion of a circular

plasma cloud, which consisted of spatially uniform hot

(32 keV) electrons and cool (10 eV) protons. Here, we have

confined the mobile protons to the border of the plasma

cloud. This hollow ring distribution is a more accurate

approximation of the experimental conditions. The rarefac-

tion wave observed in Ref. 10 contains primarily the light

ions from the surface impurities, which have been ionized by

the strong surface electric field and current.18 However, com-

putational constraints require us to represent here the elec-

trons as a hot (32 keV) species that is uniformly distributed

over the entire plasma cloud. The electrons in the experiment

reach MeV temperatures but they are confined to the wire’s

surface. Choosing cooler electrons reduces the difference

between the electron and proton Debye lengths, which is

computationally efficient, while it ensures that the thermal

energy that drives the expansion is comparable in simulation

and experiment.

Our results are as follows. The ambipolar electric field

driven by the electron’s thermal expansion results in the for-

mation of a rarefaction wave. The fastest protons reach a

speed that is comparable to about a tenth of the electron ther-

mal speed, which equals the value observed in Ref. 11. The

proton acceleration is thus not affected by the choice of the

initial proton distribution. However, the density of the rare-

faction wave is limited by the number of available mobile

protons. The spatially uniform proton distribution in Ref. 11

provided a continuous feed of mobile protons, while the

number of mobile protons we introduce here is limited. The

plasma density in the rarefaction wave is thus lower than that

in Ref. 11. The lower plasma frequency implies a slowdown

of the instabilities in the rarefaction wave.

Although the thermal anisotropy in the electron distribu-

tion here and in Ref. 11 has been comparable, the Weibel-

type instability could apparently not develop in the rarefaction

wave during the simulation time. This instability started

instead in the dense core of the plasma cloud and the magnetic

field diffused out into the rarefaction wave. The simulation

has shown that the magnetic instability driven by the thermal

anisotropy is robust against significant changes in the initial

conditions, which is important with respect to magnetic field

growth in turbulent astrophysical plasma.

The present simulation sheds light on the mechanism by

which the in-plane magnetic fields grew in Ref. 11. A TE

mode can probably not be driven by a plasma instability.

The electromagnetic forces and the plasma flow are confined

to within the simulation plane. No current can thus develop

in the orthogonal direction. Orthogonal plasma currents are,

however, needed to maintain the in-plane magnetic field.

The present simulation hints at wave-wave coupling as

the cause to the TE wave. The plasma in the radial interval

r < 0:95rW with the immobile positive charge background is

equivalent to a cylindrical waveguide, and the thermal ani-

sotropy of the electrons results in the growth of a TM wave

inside the wave guide. The plasma of the dilute rarefaction

wave is a perturbation of the waveguide’s cross section. A

varying radius of a waveguide can couple TM and TE

modes.20 Here, this coupling results in the growth of in-

plane magnetic fields. A wave coupling between a TM and a

TE wave drives orthogonal electric fields, which can acceler-

ate electrons in this direction. Future work will address this

wave coupling with a larger simulation box. The evolution

of the TE wave can then be examined for a longer time with-

out finite box effects.
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