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ABSTRACT  

The combination of milli-scale processing and microwave heating has been investigated for 

the Cu-catalyzed Ullmann etherification in fine-chemical synthesis, providing improved 

catalytic activity and selective catalyst heating. Wall-coated and fixed-bed milli-reactors were 

designed and applied in the Cu-catalyzed Ullmann-type C-O coupling of phenol and 4-

chloropyridine. In a batch reactor the results show clearly increased yields for the microwave 

heated process at low microwave powers, whereas high powers and catalyst loadings reduced 

the benefits of microwave heating. Slightly higher yields were found in the Cu/ZnO wall-

coated as compared to the Cu/TiO2 fixed-bed flow-reactor. The benefit here is that the reaction 

occurs at the surface of the metal nanoparticles confined within a support film making the 

nano-copper equally accessible. Catalyst deactivation was mainly caused by Cu oxidation and 

coke formation; however, at longer process times leaching played a significant role. Catalyst 
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activity could partially be recovered by removal of deposited by-product by means of 

calcination. After 6 h on-stream the reactor productivities were 28.3 and 55.1 kgprod/(mR
3•hr) 

for the fresh Cu/ZnO wall-coated and Cu/TiO2 fixed-bed reactor, respectively. Comparison of 

single- and multimode microwaves showed a three-fold yield increase for single-mode 

microwaves. Control of nanoparticles size and loading allows to avoid high temperatures in a 

single-mode microwave field and provides a novel solution to a major problem for combining 

metal catalysis and microwave heating. Catalyst stability appeared to be more important and 

provided two-fold yield increase for the CuZn/TiO2 catalyst as compared to the Cu/TiO2 

catalyst due to stabilized copper by preferential oxidation of the zinc. For this catalyst a three-

fold yield increase was observed in single-mode microwaves which, to the best of our 

knowledge, led to a not yet reported productivity of 172 kgprod/(mR
3•hr) for the microwave and 

flow Ullmann C-O  coupling.  
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1. Introduction 

Microwave and micro-processing in flow systems. Flow-chemistry in organic synthesis using 

micro processing is now well-established as a technology for continuous production of 

complex organic molecules [1-6]. Pd and Cu-catalyzed C-C, C-N, C-S and C–O  coupling 

reactions and Cu-catalyzed Simmons-Smith cyclopropanation reactions have been widely 

developed and applied in flow processes [7]. Moreover, combining milli-reactor operation and 

microwave heating as an alternative energy source, allows the accurate control of temperatures 

and residence times in chemical processes. This consequently enhances control of reactor 

performance in terms of conversion and product selectivity [8-10]. In particular, regarding the 

twelve principles of green chemistry, process intensification and novel process windows 

provide many options by which to meet sustainable processing criteria [11-15].  

The concept of combining microwave and flow-chemistry to conduct novel process operations 

in organic synthesis has recently attracted interest from a wide spectrum of research 

disciplines in both industry and academia [16-20]. Kappe and co-workers reported work on 

combined microwaves and flow systems using meso-scale reactors and microwave 

heating [21]. The authors employed the concepts of “Novel Process Windows”, as introduced 

by Hessel et al., and discussed the multiple opportunities for operating and controlling organic 

reactions at elevated temperatures and pressures [22, 23].  Organ and co-workers also 

contributed to state-of-art microwave-assisted capillary-type flow-reactors for metal-catalyzed 

organic reactions [24, 25]. Many examples have been reported of dedicated flow systems 

being used in combination with microwave heating for large-scale synthesis and industrial 

applications [26]. AstraZeneca studied various examples of microwave-assisted flow-synthesis 

for pharmaceuticals, leading to rather high productivities [27]. Earlier, Moseley et al. 

developed automated microwave “stop-flow” reactors that provided competitive 

productivities as compared to typical batch-scale reactions [28, 29]. The current successes in 
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combining microwave heating and flow systems, however, have mainly been achieved using 

multimode microwave cavities. These suffer from a non-uniform microwave field and a 

limited microwave penetration depth, resulting in an inhomogeneous temperature distribution. 

The use of single-mode microwave cavities in flow-chemistry, which provide a highly 

uniform microwave field, is currently an emerging field of investigation for efficient reaction 

operation.[30-32] Since for most organic solvents the penetration depth of microwaves is of 

the order of centimetres the optimum microwave-assisted reactor for organic reactions is 

characterized by reactors with the same or smaller dimensions [33, 34]. At these reactor sizes 

microwaves, acting as a volumetric heating source, do not suffer from heat-transfer resistance 

and, combined with a proper reaction medium, provide opportunities to heat the reaction 

mixture rapidly and efficiently (Figure 1a). Meanwhile, micro- and milli-reactors themselves 

are characterized by their low resistance to heat transfer. Taken together, these observations 

suggest the potential for highly efficient microwave assisted reactions using combined 

microwave milli-reactors that are optimized with respect to heat supply and release (Figure 

1b). 

Figure 1 

Recently, Patil et al. have demonstrated the effect of shape and dimensions of a milli-reactor 

setup on controlled and efficient microwave heating in a single-mode cavity [31]. The results 

provided experimental evidence of complete microwave penetration in a milli-sized tubular 

reactor in the direction perpendicular to the fluid flow. This resulted in rapid and controlled 

heating without the development of significant radial temperature gradients in the milli-sized 

flow-reactors used. Nevertheless, unresolved drawbacks, such as (a) limited microwave 

penetration depth, (b) high equipment costs, (c) difficult temperature measurement and control 

and (d) restriction to the use of polar solvents/reactants specific to each process, still hamper 
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applications in industrial practice. The penetration depth limitations and the restriction to the 

use only of polar solvents can be circumvented in metal-catalyzed reactions where microwave 

heating occurs via interaction of the electric/magnetic component of the microwaves with the 

metals. This resultant selective metal heating provides a unique opportunity to address these 

limitations in microwave heated reactors [35].  

Cu-catalyzed coupling reactions in flow-processing. In 2010 the Nobel Prize for Chemistry 

was awarded to the pioneers of heterogeneously catalyzed cross-coupling reactions that have 

been key to organic synthesis during the last half century [36-42]. However, the Ullmann-type 

coupling reaction using a Cu catalyst provides significant economic advantages over 

Pd-catalyzed cross-coupling processes due to the much lower catalyst price and scarcity of Cu 

(see Scheme 1) [43]. 

Scheme 1 

The Ullmann-type C–C, C–O and C–N coupling reactions, discovered more than a century 

ago by Ullmann and Goldberg, have recently encountered a renaissance, mainly as a result of 

the exploitation of highly efficient copper-based catalysts [44-52]. However, these Ullmann-

type coupling reactions still suffer from the need for harsh reaction conditions, the use of high 

levels of catalyst (50-100 mol%) and also the need to use relatively reactive and expensive 

aryl halides. Reaction intensification, improvement of selectivity and the development of more 

stable catalysts represent the current challenges, and catalytic milli-reactors promise to address 

these challenges. In flow-processing, the major issue is to avoid the use of catalyst slurries by 

supporting catalysts on the reactor wall or by employing micro-structured fixed-beds. [53]. 

Moreover, stable catalyst performance in terms of activity and selectivity in a heterogeneously 

catalyzed flow process brings a major cost benefit in comparison to the use of homogeneous 

or slurry catalysts, which require expensive catalyst recovery procedures [43]. 
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When providing a catalyst for reaction, it is necessary also to consider how energy is supplied 

to the catalyst surface, in particular because the efficiency of this process is governed by 

classical heat-transfer limitations.  However, metal catalysts are known to absorb energy 

rapidly under microwave irradiation and, as a result, to couple the microwave energy 

selectively to the catalyst particles, leaving the surrounding environment less or even unheated 

[54-57]. In this way, microwaves selectively heat the reaction system at the locus of the 

reaction and so enhance efficiency as well as activity and conversion. A fast rise in the 

temperature of the nano-catalyst combined with a relatively low solvent bulk temperature 

leads to highly advantageous reaction conditions. This is especially true when the active 

copper catalyst, e.g. in Ullmann coupling, is supported by a non-magnetic matrix, such as 

TiO2, SiO2 or ZnO, as described by Walton et al. [58-60]. In metals with magnetic character, 

rapid microwave absorption results from so-called eddy currents and magnetic reversal loss 

mechanisms when micron-sized particles are present [61, 62]. In addition, the strong coupling 

of these metals with the microwave field has been reported, providing very fast heating but, 

dependent on particle size, unfortunately also arcing. [62, 63]. As a result, it is of importance, 

not only for sustainable use of the catalyst, but also for selective microwave absorption, to 

synthesize active Cu particles of the desired nano-size and with a uniform size distribution. 

We have recently reported on the development of monometallic and bimetallic Cu-based 

nanoparticles with a narrow size-distribution and a high resistance to oxidation during 

Ullmann-type reaction. [64]. Additionally, the use of microwave energy in the Ullmann-type 

reaction was reported for these nano-catalysts. These results have now been developed in 

terms of flow-chemistry [65]. 

We propose here an integrated system which synergizes the benefits of microwave systems (as 

a novel heating technology) and milli-processing (as a novel reactor technology) in flow-

synthesis. A tubular milli-reactor was designed, where the catalyst and support were coated 
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either onto the reactor wall or onto a packing material composed of spherical glass beads, 

leading to a wall-coated or a fixed-bed milli-reactor, respectively. More important, however, 

was the use of heterogeneous copper which, as a “metallic microwave-absorber”, permitted 

selective heating of the catalyst surface and thus provided improved activity. 

 

2. Materials and methods 

2.1. Chemical protocol 

Ullmann C–O  coupling reactions. 4-Chloropyridine was prepared from 4-chloropyridine HCl 

salt (Sigma-Aldrich, 99%) by neutralization using a 2.5 M aqueous solution of K2CO3, 

followed by filtration, extraction with diethyl ether (Sigma-Aldrich, anhydrous > 99%), solvent 

evaporation and drying. Potassium phenolate was synthesized by reacting phenol with 

potassium tert-butoxide (Sigma-Aldrich, reagent grade 95%) in THF (Sigma-Aldrich, inhibitor-

free and anhydrous, ≥ 99.9%) at 60 ºC. After solvent evaporation and vacuum drying, 

potassium phenolate was obtained quantitatively as a yellowish powder. For the activity 

experiments 20 g (0.15 mol) of potassium phenolate and 0.40 g (0.0015 mol) of 18-crown-6 

(Aldrich > 99.0%) were dissolved in 80 mL N,N-dimethylacetamide (DMA, Sigma-Aldrich, 

CHROMASOLV® Plus, for HPLC, ≥99.9%) in a continuously stirred vessel at 50-60 ºC. After 

a solution was obtained, 11.4 g (0.1 mol) of 4-chloropyridine and 1.9 g (0.01 mol) of 

tetradecane as internal standard (Fluka, analytical standard) were mixed separately with 20 mL 

DMA and slowly fed to the storage vessel. The reactants were pumped into the flow-through 

reactor (See Supporting Information). For batch experiments, the reactants were mechanically 

mixed at 500 rpm in the abovementioned concentrations, heated until the reaction temperature 

was reached and then the copper powder (99 wt.%, Aldrich) was added as the catalyst (10 

mol% with respect to 4-chloropyridine).  

2.2. Catalyst synthesis  
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Copper nanoparticles. Cu nanoparticles were synthesized as previously reported from 

copper(II) sulfate pentahydrate, sodium hypophosphite monohydrate and PVP (M(average) = 

40,000) [64, 66]. The synthesis of bimetallic CuZn nanoparticles was based on the use of 

copper sulphate pentahydrate and zinc(II) chloride following our previous work [52]. 

TiO2 based fixed-bed catalyst. Support synthesis employed titanium(IV) ethoxide (99.99%), 

isopropanol (anhydrous, 99.5%), hexamethylenetetramine (HMTA, puriss. p.a., ≥99.5%). 250 

± 12 μm spherical SiO2-beads (E&R Chemicals & Equipment B.V.) were used as support 

carriers [67]. These beads were first coated with mesoporous TiO2 by dip-coating, after which 

the Cu nanoparticles were coated by wet impregnation (See Supporting Information).  A total 

of 0.75 g (3.29 mmol) titanium(IV) ethoxide (Ti(OEt)4,) was added to 20 g of glass beads, 

followed by vacuum solvent removal at 60 ºC, overnight drying at 80 ºC and calcination at 

120-350 °C for 12 h (heating/cooling rate: 10 °C/min) (See Supporting Information).  

ZnO based wall-coated catalyst. For the growth of ZnO nanowires on the internal reactor wall, 

a seed layer of ZnO nanoparticles (mean size ~100 nm) was deposited by circulation of a 

nanoparticle suspension in iPrOH for 48h (flow speed 1.5 mL/min). Subsequently, the system 

was flushed with pure iPrOH for 30 min. After drying, an equimolar aqueous solution of 

HMTA and Zn(NO3)2 (0.025 M) was pre-heated to 90 °C and circulated through the system 

for 5 h, followed by flushing with iPrOH for 1 h (0.5 mL/min). The tube was pre-dried and 

heated in a muffle furnace (80 °C) for 1h. The reactor was coated with copper nanoparticles by 

flowing 50 mL of a Cu nanoparticle suspension in anhydrous methanol (metal mass 

concentration: 0.25 mg/mL) through the reactor tube at a flow speed of 1 mL/min. After 

solvent evaporation, the reactor was calcined at 350 °C for 12 h (heating/cooling rate: 10 

°C/min). 

2.3. Wall-coated and fixed-bed tubular reactors in oil-bath and microwave heating 

experiments 
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Quartz-glass tubular milli-reactors (L = 1.2-1.5 m, din = 1-3 mm and  dou t= 5 mm) were either 

packed with catalyst coated glass beads or wall-coated with the catalyst. Figure 2 shows the 

design procedure for both (wall-coated and fixed) reactor configurations.  

Figure 2 

Reactor inlet and outlet were extended to enable an easy connection and disconnection to the 

pump head, sampler and outlet valve. The flowrate was varied (Fv = 5-80 mL/h) to obtain 

desired residence times. Fixed-bed systems were prepared by packing the coated beads into 

the tube (Vtotal = 10.10 mL) to mimic a micro fixed-bed reactor with a bead interstitial spacing 

in the range 10-50 μm. The resulting bed void provided an experimentally determined liquid 

volume of Vliq = 3.34 mL with a catalyst loading of 2.5 mg/mLliq, which was comparable to a 

batch reactor catalyst loading of 2.7 mg/mLliq. As shown in Figure 3, the reactor was placed 

either vertically in an oil-bath (Lauda Ecoline Staredition 012, type E312, 2.3 kW with a half-

synthetic oil medium) or horizontally in a multimode microwave cavity (Milestone Multimode 

Microwave, type ETHOS 2.45 GHz, 2.5 kW). The pre-mixed (mechanical) and pre-heated 

(50 oC) reactant solution was fed into the reactor through a syringe pump (1000D; Teledyne 

ISCO Inc., Lincoln, NE/USA), which could be operated at pressures from 1 to 40 bar (see 

Figure 2, left). An argon injector was placed in the supply vessel to maintain inert atmosphere. 

At the reactor outlet, a T-splitter (T-junction, Swagelok, 1/8 in.) was connected to the sampler.  

Figure 3 

For the oil-bath reactions, temperatures were measured using K-type thermocouples (Voltcraft 

K204 data logger) placed inside the oil-bath and at the outlet of the catalyst bed. For the 

microwave experiments, a fiber-optic probe (ATC-FO sensor, Milestones) was inserted at the 

inlet and outlet of the reactor inside the microwave oven. To avoid bead floating, the catalyst 

(coated glass beads) bed was fixed to the lower reactor part by glass filters. Constant pressure 
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was maintained in the reactor using a syringe valve to avoid solvent boiling and bubble 

formation in the catalyst bed. The inlet and outlet of the quartz-glass reactor were connected 

using Swagelok Ultra-Torr (stainless steel, S.S. 316; inner diameter 1.6 mm) connections with 

chemically resistant sealing rings. For the single-mode microwave experiments, a microwave 

(Fricke und Mallah GmbH) setup consisting of a single-mode microwave cavity and operating 

at a frequency of 2.45 GHz with adjustable power settings up to 2 kW was utilized (see 

Supporting Information). Maximum microwave absorption was assured through focusing the 

resonant microwaves in the cavity by using stub-tuners and short-circuits. The reflected power 

was measured using a detector diode over the isolator. A LABVIEW interface program was 

used to control the temperature and power input in the reactor, using OPSENS fiber-optic 

sensors in the centre of the fixed-bed. The reference case batch experiments were carried out 

in a mechanically stirred (500 rpm) 100 mL jacketed batch-reactor. Identical setups were used 

for the batch experiments with oil-bath and microwave heating (see Supporting Information). 

All reactions were carried out in an argon atmosphere. 

2.4. Product analysis and catalyst characterization 

Product yield analyses. Samples were taken at the outlet of the reactor and diluted with 

dimethyl sulfoxide-d6 (DMSO-d6, Cambridge Isotope Laboratories Inc., D 99.9%) for 1H-

NMR spectroscopic analyses. 1H NMR data were collected using a Varian 400 NMR 

spectrometer (400 MHz).  The chemical shifts (in δ ppm) were based on TMS 

(tetramethylsilane) at 27 ºC as internal reference and peak integrations were converted to 

concentrations by using tetradecane (C14H30) as internal standard. The productivity and 

product yield were obtained by comparing the reactants (phenoxide and 4-chloropyridine) and 

the product (4-phenoxypyridine) signals corrected for the internal standard. The 1H NMR of 

the spectra (CDCl3; 8.4-8.6 ppm) of the reactants and product after full conversion are shown 

in the Supporting Information. The 1H NMR assignments for the product in δ (ppm, CDCl3) 
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are: 8.48 (d, J = 4.0 Hz, 2H), 7.44 (t, J = 8.0 Hz, 2H), 7.29–7.25 (m, 1H), 7.11 (d, J = 8.0 Hz, 

2H), 6.85 (d, J = 8.0 Hz, 2H). The 1H NMR data was additionally compared with GC-MS data 

to confirm product formation. 

Inductively coupled plasma (ICP) measurements. The losses of catalyst and support were 

analyzed using inductively coupled plasma measurements, combined with optical emission 

spectroscopy. A Spectro CirosCCD spectrometer was used to determine the amounts of copper 

catalyst and titania and zinc-oxide supports at 1400 W. Sample injection used a nebulizer in a 

double-pass spray chamber with a sample uptake frequency of 2 mL/min. For the fixed-bed 

reactor, the catalyst packing was used as sample material and for the wall-coated reactor, the 

reactor was dried and ca. 2 mm of the reactor was cut off for analysis. The samples were 

treated in H2SO4 (5 M) for 24 h before being taken for analysis. In addition, reactions were 

sampled by collecting an accurate amount of reaction mixture and dissolving it in H2SO4 (10 

mL, 5 M). The resulting aqueous layer was diluted with 10 mL milli-pore water and separated 

off by milli-extraction. To avoid an abundance of protonated amide signals, the sample was 

diluted using an additional 20 mL volume of milli-pore water. Calibration lines were freshly 

prepared and inserted prior to the catalyst samples.  

X-Ray Photoelectron Spectroscopy (XPS) analyses. XPS was used to analyze the catalyst 

surface and establish the oxidation state of the copper. Various XPS samples were analyzed 

either using known amounts (in mg) of the wall-coated tubular reactor or by measuring exact 

quantities of catalyst beads deposited on a carbon holey film in a glove-box (< 10 ppm O2). 

The samples were transported in a closed holder for oxygen-free analysis. XPS data was 

obtained with a Kratos AXIS Ultra spectrometer equipped with a monochromatic Al Kα X-ray 

source (1486.6 eV at 150 W) using a delay-line detector (DLD). Constant pass energies of 160 

eV and 40 eV were applied for survey and region scans, respectively, at a background pressure 
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of 2 x 10-9 mbar.  Based on the spectral intensities of the Cu, conclusions were drawn with 

respect to losses observed by ICP analysis and the recorded drops in activity.  

Electron microscopy analyses. Scanning electron microscopy (SEM) images were obtained 

using a FEI Quanta series (FEG 3D G2 SEM) with an acceleration voltage of 5 kV and 

magnifications in the range 5-100 x 103. The images were used to determine the surface 

morphology and coating thickness of the wall-coating and the catalyst support beads at a 

lateral resolution of 50 nm2. Simultaneously, surface elemental composition analysis was 

carried out using energy-dispersive X-ray (EDX) spectroscopy at an image spot size of 50 nm2 

and an interaction-volume of 100 μm (all EDX spectra are provided in the Supplementary 

Information). Leaching of the catalytic layer was surveyed by comparing the coating thickness 

and the Cu, Ti and Zn signals in the EDX spectra. Both the fresh and spent catalysts were 

analyzed using SEM. The surface structure of spent samples was also investigated to probe the 

effects of microwave irradiation on morphology changes due to arcing or sintering. The same 

samples as used for XPS analyses were surveyed and the acquired SEM-EDX results were 

then compared with the XPS data. In particular the presence of an oxidized or graphitized 

surface-covering upper layer was compared to either oxidation or the deposition of carbon due 

to degradation of the solvent as a result of arcing. High resolution transmission electron 

microscopy (HR-TEM) images, obtained with a FEI Tecnai G2 Sphera electron microscope 

operating at 200 kV acceleration voltage, were used to examine the particle size and structure 

of the pre-synthesized Cu nanoparticles. Nanoparticles supported on the reactor wall and the 

glass beads were also examined. Samples of fresh and spent catalysts were analyzed. The 

samples were prepared by scratching the catalyst coating from the reactor wall or by crushing 

glass beads, respectively, and by suspending the resulting powders in 2 mL ethanol before 

coating and drying the solvent onto a 200 mesh molybdenum grid (30 µL of the suspension). 

The obtained images provided information on the dispersion of particles on the supports. 
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3. Results and discussion 

In this study two catalytic flow-reactors were investigated, i.e. a fixed-bed reactor based on a 

TiO2 coating as copper catalyst support and a wall-coated reactor where ZnO was used as 

copper catalyst support. Initially, both reactors were tested in a conventionally heated (i.e. oil-

bath) setup, wherein the catalyst stability and activity were optimized. At process times of up 

to 12 hr by-product coverage of the surface, oxidation of the catalyst and particle 

agglomeration were found to be the main causes for catalyst deactivation. The catalyst could 

partially be regenerated by thermal treatment. At higher on-stream times, leaching played a 

major role in leading to permanent deactivation of the catalyst. 

3.1. Catalyst design and stability measurements for flow-chemistry  

Zinc oxide wall-coating as Cu support. Figure 4 shows selected SEM images of as-grown ZnO 

nanowires on the glass reactor surface. Figures 4a and 4b show monodisperse, rod-like 

crystals (lav = 500 nm, dav = 20 nm) with a high surface dispersion. However, after 12 h on-

stream (Figure 4c) the catalytic wall appeared to be covered with a substance, which, after 

EDX analysis, was confirmed to be KCl formed as by-product during the reaction. Treatment 

with DMA, drying, calcination (at 350 oC) and reduction with a hydrogen flow at 200 oC 

removed most of this salt from the surface as can be seen in Figure 4d (EDX spectra are 

provided in the Supporting Information). At higher processing times (> 24 h) ICP analysis 

confirmed a considerable decrease in the levels of both Cu catalyst and ZnO support due to 

irreversible leaching. 

Figure 4 

ZnO nanowires grown on the internal wall of a tubular glass reactor provided catalyst loadings 

similar to those for TiO2 on the glass-bead packing, i.e. 1.26 and 1.38 mgCu/mLreactor for the 

wall-coated and the fixed-bed reactors, respectively.  Although for the wall-coated reactor the 
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overall available reaction surface was much lower than for the fixed-bed reactor, similar Cu 

loadings on ZnO and TiO2 were achieved during catalyst deposition onto the supports.  

Titania bead-coating as Cu support. Relatively low absolute amounts of both support (TiO2) 

and catalyst (Cu nanoparticles) were deposited on the titania-coated glass beads (dP ~ 250 μm). 

As described in Section 2.2 the catalyst was prepared using a TiO2 support matrix and the 

metallic nanoparticles were impregnated after the support was deposited onto silica beads. In 

this way, the catalyst loading (1.38 ± 0.15 mgCu/mLreactor) could be accurately controlled in 

order to obtain a loading that approximated to that of the wall-coated reactor. Figures 5a, 5b and 

5c show the coated beads before and after reaction. The effect of by-product formation, i.e 

surface coverage by KCl, is clearly visible also in this case. SEM-EDX analysis further 

confirmed the abundant presence of KCl salt crystals.   

Figure 5 

Copper nanoparticle deposition and stability. In Figure 6, representative TEM images of the 

nanoparticles are shown for both the fresh and spent Cu catalysts. 

Figure 6 

Figures 6a and 6c show the fresh and spent catalyst of the fixed-bed Cu/TiO2 system, 

respectively. The fresh catalyst clearly demonstrates uniformly dispersed Cu nanoparticles in 

the titania matrix. The particle size was found to be 7.6 ± 0.8 nm based on measurements for 

200 particles in various TEM images. However, after 12 h on-stream in the fixed-bed reactor, 

the catalyst particles have significantly agglomerated. Figures 6b and 6d show TEM images of 

the fresh and spent wall-coated Cu/ZnO catalyst. Clearly, the fresh Cu/ZnO wall-coated 

coated catalyst demonstrates a much higher particle density than does the fresh Cu/TiO2 

catalyst (Figure 6a and 6b). The higher copper loading in the wall-coated reactor was prepared 

in order to compensate for the lower macroscopic reaction surface in that system. Figure 6b 
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however shows partial nanoparticle agglomeration already occurring in the fresh catalyst. 

After 12 h on-stream the Cu/ZnO wall-coated catalyst showed higher nanoparticle 

agglomerates up to sizes of ca.150 nm (see Figure 6d).  

Catalyst and support leaching. The catalyst and support losses are shown in Figure 7. ICP 

measurements provided the amounts of Cu, Zn (from ZnO) and Ti (from TiO2) for samples 

taken during the total process time. 

Figure 7 

For the ICP analyses, multiple catalyst samples were taken from the fixed-bed reactor or from 

the wall-coated reactor as described in Section 2.4. Neither Cu/TiO2 nor Cu/ZnO catalysts 

leached more than 10 % after 12 h of run. Figure 7a shows a significant drop of ca. 30 wt% of 

the Cu signal in the Cu/TiO2 system after only 24 h on-stream, whereas ca. 10 wt% of the 

TiO2 support was lost. However, after 48 h on-stream roughly 60 wt% of the copper was lost 

while only 20 wt% of the Ti had leached. After 72 h on-stream, both catalyst and support had 

completely leached from the glass beads. Generally, however, for the TiO2-based fixed-bed 

reactor, the Cu nanoparticles appeared to leach prior to the TiO2 support. The opposite was 

observed for the ZnO-supported system (Figure 7b), where after 48 h ca. 60 wt% of the ZnO 

nanowires were removed while only 40 wt% of the Cu nano-catalyst was lost. This 

observation could only be explained by the fact that although the ZnO layer was uniformly 

distributed, the Cu nanoparticles formed islands that stabilized the ZnO-glass interface. As a 

result, a much higher ZnO fraction leached. After 72 h, about 22 wt% of ZnO and 36 wt% of 

Cu remained, showing that much less shearing occurred in the wall-coated reactor as 

compared to the fixed-bed reactor. Overall, at higher process times, adhesion appears to be 

weak at the Cu/TiO2-glass interface for the fixed-bed catalyst system and at the ZnO-glass 

surface for the wall-coated catalyst system. As a result, the subsequent activity experiments 
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were only done using processing times lower than 12 h, after which a fresh batch of catalyst 

was used. 

3.2. Activity experiments 

Initially, the influence of multimode microwave heating and conventional oil-bath heating on 

catalyst productivity was compared using a continuously stirred batch reactor and a 

commercial copper catalyst. In the next step, activity measurements on a supported Cu catalyst 

were done in an oil-bath using a fixed bed reactor and a wall-coated reactor as examples of 

flow-type reactors based on titania and zinc oxide support materials, respectively. Finally, 

microwave flow-experiments were carried out in both a multimode and a single-mode 

microwave cavity. 

3.2.1. Batch experiments using conventional and microwave heating 

Thermal effects that are caused by microwaves in liquids are straightforwardly stemming from 

the fact the liquid molecules posses a dipole, which, in an alternating microwave field, would 

lead to movement, friction and consequently to heating. In the first place the solvent 

dimethylacetamide and the potassium phenolate possess a dipole-moment and lead to dipolar 

movement and ionic translation, respectively [68]. Conversely, “non-thermal effects” (e.g. 

entropic effects) are related to the orientation of the reacting molecules to the electric field and 

consequently facilitate the reaction pathway. These latter “microwave effects” have been a 

topic of debate where many authors in the mid-90s argued that the presence of an electric field 

leads to orientation effects of dipolar molecules to influence the pre-exponential factor [69] or 

activation energy [70] in the rate coefficient. However, we believe that these “special effects” 

are difficult, if not impossible, to prove and appeared in many cases to be incorrectly 

interpreted due to inaccurate temperature measurements [71, 72]. In case of solids heating the 

microwave effect could not be attributed to the entropic effect, due to their condensed 
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structure, but only to thermal effects stemming both from eddy current loss (in 

alternating magnetic-field) and magnetic reversal loss (in alternating electric-field) 

mechanisms in metals [61]. The influence of microwave heating and conductive heating on 

product yield was investigated at three different reaction temperatures. Figure 8 shows the 

results of experiments conducted at 110, 120 and 140 oC for both heating methods, where a 

clear trend can be observed in yields with respect to time. Figure 8a demonstrates that the use 

of microwave irradiation instead of oil-bath heating gives an average yield increase of 20 % at 

110 oC. At 120 oC (Figure 8b) the discrepancy between microwave and oil-bath heating is far 

less than at 110 oC, and it disappears completely at 140 oC (Figure 8c).  

Figure 8 

The difference in yield between microwave and conductive heating experiments can be 

attributed to the differential absorption of energy by the catalyst and liquid reaction mixture 

[54]. Thus, better yields are recorded for microwave heated experiments because higher 

temperatures are obtained at the locus of the reaction (i.e. catalyst surface) due to selective 

heating of the catalyst [59-61, 73]. This trend vanishes at higher reaction temperature probably 

on account of now being a low temperature difference between the catalyst surface and the 

bulk liquid [74-77]. Figure 9a shows the temperature time histories for a microwave power of 

120 W and various Cu catalyst loadings in a batch reactor. The initial heating rates (in oC/min) 

obtained from microwave irradiation appeared to be strongly dependant on the amount of 

copper catalyst used in a 30 mL batch reactor, demonstrating an optimum heating rate for low 

amounts of metallic copper. The decay in heating rate at increased Cu loadings, shown in 

Figure 9b, is mostly due to arcing effects. 

Figure 9 

Although it is difficult, if not impossible, to quantify the energy absorption by copper, the 

heating rates of the liquid in the presence and absence of the catalyst provide an insight into 
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the thermal contribution of microwave absorption by the metal [78]. Based on the heating 

profiles, the microwave heating efficiency [79] has been determined to the work of 

Stankiewicz et al [80]. For these experiments a jacketed and insulated mechanically stirred 

batch reactor was used (see Supporting Information), allowing energy losses to the 

environment to be neglected. Additionally, the microwave heating calculations were based on 

a cavity-to-reactor power input that ignored losses from the grid to the magnetron. Figure 9b 

shows the heating rate as a function of the amount of catalyst in the reactor and indicates that 

the use of 20 mg Cu catalyst increased the heating rate from 67 to 87 oC/min relative to the 

heating rate obtained in the absence of catalyst. However, the heating rate stabilizes at higher 

catalyst loadings, reaching ca. 71 oC/min for 100 mg catalyst. While heating efficiency 

decayed, an almost linear increase in the frequency of arcing was observed, indicating a 

breakdown in microwave energy accumulation in the catalyst particles, but not necessarily an 

increase in thermal energy or conversion [56]. This also explains why in Figure 8 better yields 

were observed for microwave heating at lower powers than for oil-bath heating; microwave 

energy heated the catalyst surface at lower powers (without arcing), leading to higher yields 

than expected from the measured temperatures in the bulk liquid. 

3.2.2. Batch versus continuous reactors with oil-bath heating 

Heterogeneously catalyzed flow-reactors have been developed with the intention both of 

increasing process productivity and ease of catalyst regeneration in comparison to what is 

achievable with conventional batch-type reactors. For this reason, different flow parameters 

have received special attention in this study. Firstly, the performance of the catalyst carrier 

(ZnO wall coating versus TiO2 fixed-bed coating) in a tubular reactor was investigated to 

improve the productivity per unit catalyst mass as compared to traditional batch reactors for 

fine-chemical operations. Secondly, the influence of mixing was investigated by comparing a 
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fixed-bed (disturbed-flow) with a wall-coated (laminar-flow) continuous reactor. The results 

for these continuous systems were also compared with those obtained using a mechanically 

stirred and jacket-heated batch reactor, as described in the previous section. Figure 10 shows 

the product yields as a function of residence time at 130 oC for a continuous fixed-bed, wall-

coated and slurry-type continuous reactor in comparison with those of a slurry-type batch 

reactor containing metallic copper powder as catalyst.  

Figure 10 

Compared to the 58 % (± 2) yield obtained after 30 min using the batch reactor, the yield 

stagnates at ca. 18 % after 10 min (at flowrates of 5-80 mL/h) for both the fixed-bed and the 

wall-coated batch-loop flow-reactors. In these cases the highest turnovers are achieved in the 

first two cycles, while further recycling of the reaction mixture did not lead to a significant 

yield increase. This flattening of the yield, after only the second cycle, was clearly caused by 

catalyst deactivation due to oxidation and coke deposition. For these reactor types, catalyst 

deactivation and regeneration were evaluated through variation of the pre-treatment and post-

treatment methods. 

3.2.3. Fixed-bed and wall-coated continuous reactors with oil-bath heating  

Cu/TiO2 fixed-bed flow reactor. In most heterogeneous catalyst systems, the conversion drops 

noticeably when the catalyst surface is subjected to a fluid flow that leads to catalyst oxidation 

or deactivation due to coke deposition. Catalyst leaching also results from the high shear 

forces applied to the catalyst surface by the flow. Moreover, catalyst deactivation by surface 

oxidation occurs when the chemical components possess oxidative properties. This causes 

physicochemical changes to the active metal and leads to CuI or CuII species which have an 

increased solubility in the amide-containing solvent, facilitating catalyst leaching from the 

support. To avoid leaching, catalyst regeneration is usually performed by slow heating (to 



  

20 
 

>200 °C) until all surface contaminants have been removed through evaporation and, finally, 

by combustion of adsorbed organic compounds. Parameters such as calcinations temperature 

and time have to be optimized for regeneration of the deactivated catalyst. The effect of a 

calcination procedure (at 350 oC for 12 h) on the product yield was investigated for a fresh-

catalyst with reference to a non-calcined fresh catalyst sample. Figure 11 demonstrates clearly 

enhanced yields and the necessity of catalyst calcination at 350 oC. 

Figure 11 

These results show clearly that catalyst stability was improved by an optimized calcination 

during catalyst synthesis. Enhanced catalyst activity was found to result in a yield increase of 

roughly 10 % after 30 min on-stream (see Figure 11). Lastly spent catalyst (on-stream for ca. 

8 h) was regenerated at 350 ºC and its performance was compared with that of fresh catalyst 

calcined at at 350 ºC (Figure 12). The regenerated catalyst now showed a yield drop of ca. 8 % 

in comparison to the fresh catalyst. This shows that the high-temperature calcination was 

necessary to retain catalyst activity in the flow-through reactor. However, at longer reaction 

times catalyst regeneration by calcination permitted only the partial retention of activity. 

Therefore, the main limitation in processing this fixed-bed reactor would be catalyst 

deactivation and leaching. 

Figure 12 

Cu/ZnO wall-coated flow-reactor. Yields obtained using the ZnO wall-coated reactor were 

comparable to those seen with the fixed-bed type reactor up to 60-min operation (Figure 13). 

More importantly, the ZnO-supported catalyst appears to retain its activity for operation times 

longer than those for the TiO2-supported fixed-bed systems, leading to yields up to 40 % (±2 

%) after ca. 90 min on-stream. 

Figure 13 
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Similar to the fixed-bed system (Figure 12), regenerated wall-coated catalyst demonstrated a 

slight drop in activity comparable to the analogous fresh catalyst. A steady state product yield 

of 30 % (±3 %) instead of 39 % (±2 %) was maintained until 124 min (Figure 13).  Catalyst 

regeneration could also be improved by extending the 350 °C calcination step to 24 h. This led 

to a yield of 61 % (±1 %) after 71 min using a fresh catalyst (Figure 13, ∆) and of 57 % (±1 %) 

after a further 71 min if the spent catalyst was regenerated by calcination at 350 oC for 24 h 

(Figure 13, ○). These values represent yield increases of ca. 50 % with respect to those obtained 

when fresh and spent catalysts were calcined for only 12 h. Table 1 compares the productivities 

of fresh and regenerated catalysts for both reactor types.  

Table 1 

Although the yields obtained from the Cu/ZnO wall-coated catalyst was slightly higher than the 

Cu/TiO2 fixed-bed catalyst, the reactor productivities, however, showed higher performance for 

the latter. While the catalyst loading per volume reactor was comparable for both reactors, 

unequal reactor to liquid volume fractions (VL/VR) led to different overall reactor 

productivities. For both reactors, however, a productivity decrease around 30 % was observed 

for a total time on process of 12 hr. 

Calcination of both the Cu/TiO2 fixed-bed and Cu/ZnO wall-coated reactors at 200 oC resulted 

in an obvious drop in yield, although a 24 h calcination treatment at 200 oC led to stable 

catalyst activities for four consecutive runs with a residence time of 70 min. However, much 

higher yields were obtained for the latter (Figure 14). 

Figure 14 

Figures 12, 13 and 14 show that the sustainability of both Cu/ZnO and Cu/TiO2 catalysts are 

mainly governed by the duration, rather than the temperature, of the calcination procedure. The 

first part of the regeneration process (80 oC, 10 mbar) was mainly done to evaporate all 
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components of the reaction mixture. In a second step, residual coke was burned (at 350 oC) in 

an air-flow (22 % O2 in N2). In the final step, a stable catalyst-support matrix was achieved by a 

slow cooling trajectory (see the Supporting Information for a detailed scheme).  

3.3. Multimode versus single-mode microwave heating in continuous processesing 

Although the Cu/ZnO-based wall-coated reactor showed a better catalyst performance in terms 

of yields, its application in microwave heating may still be limited of their being large 

temperature gradients between the centre of the reactor and the wall. In such a case, a fixed-

bed reactor would provide a more uniform heating profile due to internal mixing and the 

presence of highly dispersed copper microwave absorber. Therefore, a fixed-bed reactor was 

tested in both a single-mode and in a multimode cavity microwave-heated flow system. The 

reactor inlet and outlet were slightly modified to fit the microwave cavity dimensions. Figure 

15a shows the temperature-time and power-time histories for the use of multimode microwave 

cavity. In Figure 15b temperature-time and power-time histories for the single-mode 

microwave cavity setup are given. The microwave power requirements for a multimode 

microwave experiment were found to be 10 times more (300 W) due to the non-uniform and 

low-density microwave irradiation in comparison to the monomode microwave experiment 

(30 W). Although the single-mode microwaves showed slightly larger temperature and power 

fluctuations, these equated to less than 5 oC.   

Figure 15 

 

Figure 16a shows that for the Cu/TiO2/SiO2 fixed-bed catalyst a threefold yield increase 

resulted when single-mode microwave irradiation was utilized. This could be explained by the 

fact that in a multimode cavity the microwaves are non-uniformly distributed. As a result of 

non-uniform “microwave distribution” in a multimode microwave oven, the reactor is 



  

23 
 

irregularly subjected to high-density and low-density energy zones which result in “cold-

spots” and “hot-spots” in the reactor tube. The catalyst deactivation and product yield decrease 

in multimode microwaves are mainly caused by “the hotspots”, which lead to arcing and 

consequently burning of the reactants resulting in coke formation onto the catalyst. This 

explains the reduced yields in a multimode microwave cavity in flow-reactors as compared to 

reaction in single-mode microwave cavities [81]. Single-mode microwaves, on the other hand, 

are uniformly distributed in the cavity and cause the entire reactor to be irradiated with an 

equal microwave density. As a consequence, in a single-mode microwave cavity far less 

energy input is required to attain the reaction temperature as compared to multimode 

microwave cavities leading to sufficient energy to heat the catalyst. In this way destructive 

arcing and reactants decomposition is avoided. This effect has been confirmed recently by 

Chen et al. who showed that at excessive microwave powers subjected to diamagnetic and 

paramagnetic metallic particles leads to complete discharges and destructive arcing [75]. 

Conversely, at lower microwave power input the particles would heat up very fast but would 

not lead to arcing and, dependent on the type of metal and the reaction medium, leads to 

desirable catalyst temperatures. The use of lower power in case of multimode microwaves 

could not attain the desired reaction temperatures, whilst at higher powers (> 300 W) arcing 

limits the productivity. Also clearly visible is the yield flattening at around 35 % yield, which, 

as discussed in section 3.2.3, was mainly due to oxidation and poisoning of the catalyst.  

Figure 16 

Previously, it has been reported that the Cu catalyst could be protected against oxidation and 

that leaching could be minimized by adding 50 wt% of Zn to the catalyst as a sacrificial 

reducing agent [53, 82, 83].  Consistent with this view, Figure 16b shows that a considerable 

yield increase was achieved when a CuZn-based heterogeneous catalyst was used in the fixed-
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bed reactor. Although for low residence times (< 60 min) no major improvement was 

obtained, at longer residence times two-fold yield increases were achieved for both single-

mode and multimode systems. Comparing Figure 16b with Figure 11 signifies that the main 

reason for this improvement is indeed that, regardless of the heating method, catalyst 

deactivation is retarded when a CuZn catalyst is used. Figure 15 demonstrates that the energy 

efficiency achieved using the single-mode microwave cavity of the Fricke-Mallah instrument 

reached 82 % (± 4 %) with an average power input of 16 W, while the multimode cavity 

system could at best be operated with an energy efficiency of only 8.2 % (± 0.8 %)  (following 

notes [73] and [74]). Use of the single-mode microwave cavity for a Cu-based heterogeneous 

catalyst gave a yield of 33 % (± 1 %) for a residence time of ca. 120 min with a productivity 

of 130 kgprod/(mR
3

•h). Only 37 kgprod/(mR
3

•h) was obtained in the case of the multimode cavity 

system. However, a highest yield of 62 % (± 3 %) and a productivity of 172 kgprod/(mR
3

•h) 

could be achieved using a CuZn-based catalyst in combination with single-mode microwave 

heating. These high space-time yields have, to the best of our knowledge, not yet been 

reported for Ullmann-type coupling reactions using flow-processing.  

 

4. Conclusions 

In this work two flow milli-reactors for microwave-assisted Ullmann-type C–O coupling 

reaction are presented. A wall-coated (ZnO support) and a fixed-bed (TiO2 support) milli-

reactor were developed and impregnated with Cu nanoparticles as active catalyst. These 

catalytic reactors allowed feasible catalyst regeneration by repetition of oxidation and reduction 

cycles and shows novelty, in particular, as it is able to deal with development of well-defined 

supported catalysts. Copper catalyst leaching for both reactors appeared to be only significant 

after 24 h on-stream and this could partially be avoided by thermal treatment of the reactor after 

each cycle. Up to 60 % yield could be obtained using the Cu/ZnO wall-coated reactor for two 
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consecutive runs without there being a significant activity drop if a thermal pre-treatment of the 

reactor (350 oC for 24 h) was undertaken prior to testing. The Cu/TiO2 fixed-bed reactor 

showed lower yields due to catalyst leaching, however reactor productivities of up to 55 

kgprod/(mR
3•h) suggested a better performance than the Cu/ZnO wall-coated reactor. 

Microwaves were therefore applied to the Cu/TiO2 fixed-bed reactor as an alternative energy 

source for liquid and selective catalyst heating. The use of high density single-mode 

microwaves showed a three-fold yield increase in the Cu/TiO2 fixed-bed reactor relative to the 

use of multimode microwaves. Furthermore, the use of metallic copper in the microwave 

cavities appeared to be only advantageous at low microwave powers and catalyst loadings; at 

higher powers and catalyst loadings arcing was observed, leading to rapid catalyst deactivation 

and inefficient heating. A linear relation between the arcing frequency and the catalyst loading 

was found. It was demonstrated that yields obtained using microwave heating at 140 W were 

almost 30 % higher than those achieved using oil-bath heating, whereas no significant yield 

increase was observed at 300 W. More important was the use of CuZn/TiO2 based catalyst, 

where the Zn acted as a sacrificial anode against Cu oxidation. In this case a three-fold yield 

increase could be demonstrated in highly dense single-mode microwave cavity which, to the 

best of our knowledge, resulted to not yet reported productivity of up to 172 kgprod/(mR
3•hr) for 

microwave-assisted flow synthesis in the Ullmann C–O  coupling. 
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Figure 1. Temperature profiles for conventional (surface) and microwave (volumetric) heating 

(a) shows major benefits at mm-to-cm scale reactors. Nevertheless an important balance must be 

struck between fast energy supply by the microwaves and fast heat release owing to the micro- 

and milli-reactor dimensions (b). 

Scheme 1. The Cu-catalyzed Ullmann-type coupling reaction towards 4-phenoxypyridine.  

Figure 2. The catalyst coating procedure for fixed-bed and wall-coated catalytic reactors. Cu 

nanoparticles were deposited on a ZnO nanowire support in the wall-coated reactor, and on a 

TiO2 support in the fixed-bed reactor. 

Figure 3. A schematic process flow diagram of the oil-bath heated and multimode heated 

microwave setups. 

Figure 4. ZnO nanowires grown on the SiO2 reactor wall show a highly disperse nanowire film 

in low (a) and high (b) magnification SEM images. Reactor wall becomes covered with by-

product KCl (c), which could be partially removed (d) by thermal treatment and reduction with 

hydrogen. 

Figure 5. SEM images of the fresh (a) and spent (b) Cu/TiO2-coated glass beads, demonstrating 

considerable deposition of KCl by-product. Catalyst deposition (c) also shows relatively low 

catalyst density for the Cu/TiO2 when compared to that of the Cu/ZnO system. 

Figure 6. Representative TEM images of fresh (a) and spent (c) catalysts used in the Cu/TiO2 

fixed-bed reactor and the fresh (b) and spent (d) catalyst used in the Cu/ZnO wall-coated 

reactor.  

Figure 7. Losses of Cu catalyst and TiO2 support for the fixed-bed reactor (a) and of Cu catalyst 

and ZnO support for the wall-coated reactor (b) during time-on processing. 

Figure 8. Yield vs. time for batch-type experiments using microwave heating and oil-bath 

heating at (a) 110 
o
C, (b) 120 

o
C and (c) 140 

o
C. At lower powers, microwave heating has the 

benefit of selectively heating the metal catalyst. At higher powers, microwave absorption by the 

solvent removes this advantage. 
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Figure 9. Temperature profiles (a) and initial heating rates/arcing frequencies (b) at various 

powdered Cu loadings, demonstrating increased initial heating rates (for one minute) at low Cu 

levels. Decay in heating rates is mainly due to arcing effects at increased Cu loadings. 

Figure 10. Performance as a function of residence time for continuous fixed-bed (◊), wall-coated 

(∆) and slurry-type continuous reactors (○) shown with reference to the slurry-type batch 

reactor (□). The 4-chloropyridine and potassium phenolate concentrations were kept at 1.0 and 

1.5 mol/L at 130 
o
C for all experiments. For batch operation, the catalyst loading was 2.5 

mg/mLreactor and the stirring rate was 500 rpm. For continuous operations, a catalyst loading of 

1.2 mg/mLreactor and a flow rate of 10-40 mL/hr were applied. 

Figure 11. Cu/TiO2 fixed-bed catalytic performance for a fresh catalyst (non-calcined (□) and 

calcined (◊) at 350 °C for 12h). 

Figure 12. Catalytic performance of fresh Cu/TiO2 fixed-bed catalyst calcined at 350 
o
C (□) and 

regenerated catalyst calcined at 350 °C (◊) for 12 h. 

Figure 13. Performance of the Cu/ZnO wall-coated reactor after calcination of fresh catalyst (□) 

and regeneration of spent catalyst (◊) at 350 °C for 12 h. Calcination of fresh catalyst for 24 h at 

350 °C showed an impressive yield increase to 61% (∆) and regeneration of spent catalyst under 

similar conditions provided a yield of 57% (○), demonstrating the importance of the calcination 

time. 

Figure 14. Catalytic performance of the Cu/TiO2 fixed-bed (○) and the Cu/ZnO wall-coated (∆) 

reactors for four consecutive runs with a residence time () of 71 min (calcination: 24 h, 200 °C).  

Figure 15. Reactor designs for microwave-assisted flow-chemistry. A coiled fixed-bed reactor was 

used in a multi-mode microwave system (a) and a tubular fixed-bed reactor was applied in a 

single-mode microwave system (b). Input powers are given in green and temperature profiles 

inside the catalyst beds are in red. 

Figure 16. A comparison of single-mode and multi-mode microwave cavities for a conventional 

Cu/TiO2 fixed-bed catalyst (a) shows almost a three-fold yield increase for the single-mode 

microwave cavity due the high and uniform field density achieved. However, these yields were 

almost doubled (b) using a CuZn catalyst. 

 



  

Table 1. Reactor productivity for catalysts calcined at 350 
o
C for 12 hr. 

  

 

Average productivity (kgprod/(mR
3•h))b 

Cu/ZnO wall-coated reactor Cu/TiO2 fixed-bed reactor 

Fresha  28.3 ± 1.9 55.1 ± 2.4 

Regenerateda  20.1 ± 2.2 37.3 ± 1.2 

a) 6 h time-on-process for both fresh and regenerated catalyst  
b) Referring to the volume of empty tubes for both reactors  
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Figure 11 
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Figure 12 
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Highlights 

  Active Cu nanocatalyst was applied in the microwave flow-type Ullmann C-O 
coupling  

  Added value of single-mode over multi-mode microwaves is investigated and 
discussed 

  We propose nano-Cu stable against arcing for sustainable  microwave applications 
  We investigate the major causes and solution in destructive microwave metal arcing 

 


