

'Old wood' effect in radiocarbon dating of prehistoric cremated bones?

Olsen, J., Heinemeier, J., Hornstrup, K. M., Bennike, P., & Thrane, H. (2013). 'Old wood' effect in radiocarbon dating of prehistoric cremated bones? Journal of Archaeological Science, 40(1), 30-34. DOI: 10.1016/j.jas.2012.05.034

Published in:

Journal of Archaeological Science

Document Version: Peer reviewed version

Queen's University Belfast - Research Portal:

Link to publication record in Queen's University Belfast Research Portal

Publisher rights

This is the author's version of a work that was accepted for publication in Journal of Archaeological Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Archaeological Science, VOL 40, 01/2013

General rights

copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other

Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Accepted Manuscript

'Old wood' effect in radiocarbon dating of prehistoric cremated bones?

Jesper Olsen, Jan Heinemeier, Karen Margrethe Hornstrup, Pia Bennike, Henrik Thrane

PII: S0305-4403(12)00283-X

DOI: 10.1016/j.jas.2012.05.034

Reference: YJASC 3312

To appear in: Journal of Archaeological Science

Received Date: 6 January 2011

Revised Date: 18 April 2012

Accepted Date: 25 May 2012

Please cite this article as: Olsen, J., Heinemeier, J., Hornstrup, K.M., Bennike, P., Thrane, H., 'Old wood' effect in radiocarbon dating of prehistoric cremated bones?, *Journal of Archaeological Science* (2012), doi: 10.1016/j.jas.2012.05.034.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- Radiocarbon dating of a cremated human bone is compared with the precise dendrochronological age of an associated oak coffin.
- The cremated bone shows an age discrepancy of 73 ± 26 ¹⁴C years older than the dendrochronological age.
- The age discrepancy is best accounted for by the so called 'old wood' effect from the wood used in the cremation pyre.

1	'Old wood' effect in radiocarbon dating of prehistoric cremated bones?
2	Jesper Olsen, School of Geography, Archaeology and Palaeoecology, Queen's
3	University Belfast, 42 Fitzwilliam Street, Belfast BT9 6AX, United Kingdom,
4	jesper.olsen@phys.au.dk
5	Jan Heinemeier, AMS ¹⁴ C Dating Centre, Department of Physics and Astronomy,
6	University of Aarhus, Aarhus C, DK-8000, Denmark, jh@phys.au.dk
7	Karen Margrethe Hornstrup, Moesgaard Museum, Højbjerg, DK-8270, Denmark
8	Pia Bennike, Saxo Institute, University of Copenhagen, DK-2300 Copenhagen S,
9	Denmark
10	Henrik Thrane, Department of Prehistoric Archaeology, Moesgaard, Aarhus University,
11	Højbjerg, DK-8270, Denmark
12	
13	Abstract
14	Numerous reports of successful radiocarbon dating of cremated bones have emerged
15	during the last decade. The success of radiocarbon dating cremated bones depends on
16	the temperature during burning and the degree of recrystallisation of the inorganic
17	bone matrix. During cremation bones undergo major morphological and mineralogical
18	changes which have raised some interesting questions and discussion on the origin of
19	the carbon source in archaeologically cremated bones. Recent laboratory experiments
20	reveal that the properties of the combustion atmosphere play a significant role
21	regarding the source carbon in cremated bones. Thus radiocarbon dating cremated
22	bones is potentially dating the wood used for the cremation fire. Here we compare a
23	high precision radiocarbon dated human bone with an associated dendrochronological
24	age from an oak coffin. We find that the age discrepancy between the
25	dendrochronological age and the cremated bone of 73 \pm 26 14 C yr is best accounted for
26	by the so called 'old wood' effect.

~

27 Introduction

28 Radiocarbon dating of collagen in well-preserved human bone has routinely been 29 carried out for decades, but cremated bone samples were always excluded because cremation destroys the bone collagen. However, within the last decade successful ¹⁴C 30 31 dating of cremated bones has frequently been reported (e.g. De Mulder, et al., 2009, 32 De Mulder, et al., 2007, Lanting, et al., 2001, Olsen, et al., 2011). Furthermore, uniform 33 results of radiocarbon dating of cremated bones have been proven in laboratory 34 intercomparison tests (Naysmith, et al., 2007). The intercomparison test was designed 35 to test the dating protocol, i.e. using the same method laboratories get similar ages on 36 the same material within measurement error. Hence problems related to whether or 37 not ¹⁴C dating cremated bone yields an estimate of the true calendar age were not 38 tested. Here we present new information on a previously published cremated bone 39 sample found in an oak coffin which has been dated by dendrochronology (Olsen et al., 40 2008). Our updated results will be discussed in light of new laboratory studies suggesting that ¹⁴C dating of cremated bones reflects the burning atmosphere of the 41 42 cremation fire (e.g. Hüls et al., 2010, Van Strydonck et al., 2010). We believe that our 43 case study may represent an archaeological example supporting the recent laboratory 44 conclusions.

45 Radiocarbon dating of bio-apatite is possible because of incorporation of carbonate 46 ions into the inorganic bone matrix in living organisms. The carbonate ions originate 47 from the energy production in cells and are substituted with phosphate ions in the 48 bone matrix into the bio-apatite mineral-like bone structure (Krueger, 1991, Lee-Thorp 49 and van der Merwe, 1991, Munro, et al., 2007, Newesely, 1988, Pate and Hutton, 50 1988, Posner, 1969, Saliège, et al., 1995, Sandford, 1993, Wright and Schwarcz, 1996). 51 Radiocarbon dating of the bio-apatite fraction has in general been abandoned decades ago due to incorrect ¹⁴C results caused by contamination effects (Berger, et 52 53 al., 1964, Hassan, et al., 1977, Stafford, et al., 1987). In fossil bones, exchange reactions with the bicarbonate ions dissolved in soil waters lead to ¹⁴C contamination 54 55 (Hassan, et al., 1977, Hedges and Millard, 1995, Surovell, 2000, Tamers and Pearson, 56 1965). Apparently, the exchange reaction with the dissolved bicarbonate ions does not 57 occur for cremated bones and hence the bio-apatite fraction of cremated bone yields reliable ¹⁴C results (Lanting, et al., 2001, Olsen, et al., 2008). This is because heating of 58

59 bones results in numerous microscopic and macroscopic changes which altogether 60 yield a more robust and inert bio-apatite structure as a consequence, i.e. heating 61 results in re-crystallization of the bio-apatite bone matrix into a more robust structure 62 (Newesely, 1988, Stiner, et al., 1995, van Strydonck, et al., 2005). Crucial to 63 radiocarbon dating of calcined or burned bones is assurance about the degree of bio-64 apatite re-crystallisation. As shown characterisation and subsequent careful selection of well cremated bones is essential for reliable ¹⁴C age results (Olsen, et al., 2008, Van 65 66 Strydonck, et al., 2009). To this end the cremated bones of humans should be 67 characterised by visual inspection, IR spectroscopy (crystallinity index (CI) and the carbonate to phosphate ratio (C/P)), δ^{13} C of bio-apatite and the carbon weight 68 69 percentage (Olsen, et al., 2008, Thompson, et al., 2009). 70 For radiocarbon dating knowledge of the carbon origin is in general of utmost 71 importance because the carbon source defines the event being dated. The loss of 72 structural carbon, the major morphological and mineralogical changes occurring during 73 the cremation process has raised some interesting questions and discussion regarding 74 the origin of the carbon source in archaeologically cremated bones (e.g. Hüls, et al., 75 2010, van Strydonck, et al., 2010, Zazzo, et al., 2009). Put simply, it all boils down to 76 one plain question: What are you dating when radiocarbon dating cremated bones? It is remarkable that the δ^{13} C of charred and unburned bone apatite change from c. 77 -15‰ to δ^{13} C values around -23‰ for cremated bones (Lanting, et al., 2001, Olsen, et 78 79 al., 2008, van Strydonck, et al., 2005). This has lead to considerations about kinetic fractionation to explain the very depleted δ^{13} C values of cremated bones as favoured 80 81 by Zazzo et al. (2009). On the other hand, carbon exchange processes during the fire 82 may potentially explain the remarkable carbon isotope signature of cremated bones. 83 Carbon from atmospheric CO_2 , from bone organic matter (collagen) or from CO_2 84 evolving during combustion may all contribute even in tandem with kinetic isotope 85 fractionation. Recent laboratory experiments by Hüls et al. (2010) and Van Strydonck 86 et al. (2010) has demonstrated that the properties of the burning atmosphere plays a 87 significant role as a carbon source in cremated bones. They found that the exchange 88 processes between produced CO₂ during combustion and bio-apatite control the stable carbon isotope (δ^{13} C) signature and radiocarbon age of cremated bones. Hüls et 89 90 al. (2010) further argue that kinetic isotope fractionation is needed to fully explain

their results, but this process is much less significant than exchange reactions with the
burning atmosphere. Thus radiocarbon dating cremated bones is potentially
equivalent to dating the wood used for the cremation fire. Despite similar ¹⁴C ages has
been demonstrated of paired samples of associated context material (mostly pitch and
charcoal) and cremated bone samples (Lanting, et al., 2001, Olsen, et al., 2008, van
Strydonck, et al., 2005), this opens the possibility of the 'old wood' effect when
radiocarbon dating cremated bones.

Sample preparation follows procedures described in Olsen et al. 2008: Cremated bone

98

100

99 Method

101 samples (2 grams) are soaked in a 1.5% sodium hypochlorite solution to dissolve 102 remaining organic material (48h, 20°C). The sample is then washed and submerged in 103 1M acetic acid to remove post-depositional carbonates as well as less crystalline, 104 soluble fractions of bio-apatite (24h, 20°C). Next the sample is washed and dried (12 h, 105 80°C) with a bio-apatite yield of approximately 96%. The pre-treated sample is crushed 106 and 1.5 g is treated with 100% de-hydrated phosphoric acid (8h, 25° C) to liberate CO₂ 107 from which sulphur impurities are removed prior to conversion to graphite for AMS targets (Lanting, et al., 2001). Part of the resulting CO₂ gas was used for δ^{13} C analysis 108 on a GV Instruments Isoprime stable isotope mass spectrometer to a precision of 109 0.15‰, while the rest was converted to graphite for AMS ¹⁴C measurements via 110 reduction with H₂ using cobalt as a catalyst (Vogel, et al., 1984). The AMS 14 C 111 measurements were carried out using the EN tandem accelerator at Aarhus University 112 (Denmark). The dating results are reported as conventional ¹⁴C dates in ¹⁴C yr BP based 113 on the measured ${}^{14}C/{}^{13}C$ ratio corrected for the natural isotopic fractionation by 114 normalising the result to the standard δ^{13} C value of –25‰ PDB (Andersen, et al., 115 116 1989). 117 The samples have been visually inspected for surface and interior colour and burn 118 cracks and IR-spectroscopy was performed on powdered pretreated sample material, 119 i.e. bio-apatite. The sample material was mixed with KBr and hydraulically pressed into 120 pellets prior to measurement of infrared spectra with a Perkin Elmer FTIR 121 spectrometer (PARAGON 1000). The spectrum of KBr was automatically subtracted by 122 an online computer. IR spectra on the bio-apatite bone fraction provide information on the crystallinity index (CI) and carbon to phosphor ratio (C/P) (Garvie-Lok, et al., 2004,
Olsen, et al., 2008).

125

126 Results and discussion

A well-preserved coffin from Egtved, Denmark, consisting of a hollowed-out oak trunk 127 128 was excavated in 1921 by the Danish National Museum. It contained the famous 129 Egtved girl, dressed in full costume covered with a woollen blanket and wrapped in a 130 cow skin (Thomsen, 1929, Alexandersen et al., 1983, Aner and Kersten, 1990, 131 No.4357A). The grave goods consisted of a belt-plate, a small bronze earring, two arm 132 rings, an awl in a wooden handle, and a horn comb. The archaeological date is the Bronze Age, period II (1500 – 1300 BC, Randsborg, 2006). At her feet there was a 133 134 bucket of bark, which contained residues from honey sweetened beer, and at her left 135 leg a bundle of cloth with the cremated bones of a child. There was another bucket of 136 bark at her head also with a few cremated bones, the mentioned awl and remains of a 137 hair net (Figure 1). Consistent with the archaeological finds, the coffin has been dated 138 to 1370 BC by dendrochronology (Christensen, 2006). The investigation carried out by Kjeld Christensen showed that the lower part as well as the lid was well preserved. 110 139 140 tree rings were preserved and 9 of these were sapwood rings. Moreover, the 141 preserved bark ring consisted of early wood as well as a very narrow zone of latewood 142 indicating that the tree presumably was felled in July or August prior to the end of the 143 growth season (Christensen 2006). All Danish dendrochronological dates of oak coffins 144 resulted in a master curve comprising 419 years, and this curve was anchored to a 145 German reference chronology (Christensen 2006). 146 The human remains of the young (16-18 years old) woman in the coffin were rather 147 poor due to the humid and acid peat bog environmental conditions from which she 148 was retrieved. Only the woman's hair, brain, teeth, nails, and parts of her skin were 149 preserved, but no bones at all (Thomsen 1929, Alexandersen et al., 1981, Aner and 150 Kersten, 1990, No.4357A). In contrast, the cremated bones found at the young 151 woman's head and left leg appeared well preserved (Figure 1, Thomsen, 1929,

152 Alexandersen et al., 1983, Hvass, 2000). The cremated bones are most likely from the

same individual, as fragments from the two sets of bones proved to fit precisely and

154 represent a 5-6 year old child. (Alexandersen et al., 1983).

155 Because of the age difference between the two individuals which excludes a 156 mother-child relationship, it has without any evidence been suggested that the child 157 was a sacrifice (Thomsen 1929, Alexandersen et al. 1983, Jensen 2002). It appears that 158 the cremated bones correspond to regular cremated bone samples, i.e. colour, structure, fragmentation and form (Alexandersen et al., 1983, Olsen et al. 2008). One 159 160 could imagine, in case of ritual deposition of the cremated bones (e.g. ancestral bones) 161 that a number of years elapsed from cremation to deposition in the coffin. There are, 162 however, remains of the funeral pyre among the cremated bones, i.e. bone dust, 163 charcoal, sand, and ashes (Alexandersen et al., 1983). According to McKinley (2006), 164 cremated bones may be curated and transported, but it is unlikely that pyre debris 165 would that too. Following this argument, the presence of pyre debris suggests that the 166 bones were deposited in the coffin shortly after the cremation. 167 A fragment of the cremated jaw was radiocarbon dated and published by Olsen et al. (2008) yielding an age of 3128 \pm 28 ¹⁴C yrs BP. This result was compared with the 168 dendrochronological age 1370 BC by converting the calendar age into a ¹⁴C age by 169 170 applying the radiocarbon calibration curve (IntCal04, Reimer, et al., 2004). The resulting age difference was calculated to 74 ± 32^{14} C yr (see Olsen, et al., 2008), the 171 bone being the older of the two. Hence the two samples almost agree within 2σ 172 173 (standard deviations). In order to test this age discrepancy another fragment of the jaw was radiocarbon dated resulting in an age of 3126 ±29 ¹⁴C yrs BP. Combining this new 174 date with the previous date yields a combined 14 C date of 3127 ±20 14 C yrs BP (Table 175 1). The dendrochronological date 1370 BC is converted into a 14 C age of 3054 ±16 14 C 176 177 yrs BP via the radiocarbon calibration curve (IntCal09, Reimer, et al., 2009). Testing the 178 converted dendrochronological date against the combined cremated bone ¹⁴C date results in an age difference of 73 \pm 26 ¹⁴C yr (Figure 2). This result deviate more than 179 180 2.8σ from the expected 0 year difference or in other words there is only a 0.7% chance 181 that the results represent the same age. Hence, beyond doubt the two samples are 182 incompatible. How can this significant age difference be explained? 183 First of all, to ensure that the age deviation is not due to a low burning temperature 184 and thus possible diagenetic alterations it is necessary to evaluate the quality of the 185 cremated bone sample. The previous published CI of AAR-8789 indicated the 186 possibility of low temperature burning (CI=2.9) whereas all other parameters such as

6 of 13

 δ^{13} C, C/P and C wt% suggested high temperature burning and re-crystallization of the 187 188 bone matrix (Table 1, Olsen et al., 2008). However, a re-evaluation of the IR spectra of 189 AAR-8789 yields a CI of 5.3 (Figure 3). Thus the age discrepancy is not likely to be due 190 to diagenetic effects, i.e. all parameters points towards high temperature burning. 191 One crucial difference between the controlled laboratory experiments conducted 192 by Hüls et al. (2010) and van Strydonck et al. (2010) is that the laboratory combustions 193 occurred in closed furnaces which likely resulted in larger CO_2 concentration than may 194 be expected for cremation in open fires as carried out by prehistoric people. It 195 therefore remains an open question whether their results can be directly transferred 196 to prehistoric cremated bones. As argued by Zazzo et al. (2009) three potential carbon 197 sources are available for exchange reactions with bio-apatite bone structure during 198 cremation 1) carbon from bone organic matter (collagen), 2) atmospheric CO_2 and 3) 199 CO_2 evolving during combustion (flesh, bone and wood).

200 The age discrepancy lead Olsen et al. (2008) to speculate if possible marine or freshwater diets might influence the ¹⁴C age of cremated bones as is commonly known 201 202 from radiocarbon dating on the collagen fraction of human bones (e.g. Arneborg, et 203 al., 1999, Cook, et al., 2001, DeNiro and Epstein, 1978, Fischer, et al., 2007, Olsen, et 204 al., 2010, Richards and Hedges, 1999). Using a marine reservoir age of 400 years the 205 age deviation amounts to a 18% marine diet. This is from a prehistoric diet perspective 206 not unreasonable. This may indicate that the CO₂ originating from the burning of flesh 207 and bone collagen may exchange with structural bone carbonate during the 208 combustion. However, unless kinetic fractionation effects significantly alter the stable 209 carbon isotope signature of the bio-apatite the uniform δ^{13} C values of cremated bones speaks against this possibility. Most prehistoric cremated bones show- remarkable 210 211 uniform δ^{13} C values, e.g. as the -24 ± 3‰ (n=39) reported by Lanting et al. (2001) and 212 -23 ± 2‰ (n=33) (Olsen, et al., 2008, Olsen, et al., 2011). The laboratory results by Hüls 213 et al. (2010) show that kinetic fractionation only partly account for observed changes in 14 C content and δ^{13} C values. Hence believing kinetic fractionation to play an 214 215 insignificant role and assuming that the carbon exchange between flesh and structural 216 carbonate is the major carbon source in the cremated bio-apatite, then the age 217 discrepancy reported here may derive from a predominantly terrestrial diet (c. -21‰) 218 combined with a minor fraction of freshwater derived food (typically around c. -21‰

or lower). However, again the uniformity of the δ^{13} C values of prehistoric cremated 219 bones speaks against this possibility because numerous tests on paired samples of 220 cremated bones and associated context materials has resulted in insignificant ¹⁴C age 221 differences, all with δ^{13} C values similar to the Egtved sample (Lanting, et al., 2001, 222 223 Olsen, et al., 2008, van Strydonck, et al., 2005). Exchange with flesh carbon (c. 5‰ 224 lower than collagen) during cremation is therefore not a likely dominant carbon source 225 for prehistoric structural carbonate in cremated bones. With prehistoric carbon dioxide δ^{13} C values around -6.4‰ (Elsig et al., 2009) also exchange with atmospheric 226 CO₂ seems unlikely (unless kinetic fractionation processes dominate). 227 228 The laboratory experiments clearly demonstrate that exchange of carbon between 229 bone apatite carbonate and CO₂ in the combustion gases depend on both temperature 230 and CO₂ concentrations. Hence CO₂ derived from woods from the cremation fires is 231 likely substituted into the bone bio-apatite fraction explaining the remarkable similarity of δ^{13} C values of cremated bones (Lanting, et al., 2001, Olsen, et al., 2008, 232 233 Olsen, et al., 2011). The old wood effect therefore provides a more likely explanation 234 for the age discrepancy between the cremated bone sample (AAR-8789, -13967, Table 235 1) and the associated dendrochronologically dated oak coffin. However, it should be pointed out that in the case of a normal ritual cremation, the difference in ¹⁴C content 236 237 of the cremated body and the fuel will in most cases be minimal. Hence a possible 238 carbon exchange is probably difficult to recognize as demonstrated by the numerous 239 tests on paired samples of cremated bones and associated context materials (Lanting, 240 et al., 2001, Olsen, et al., 2008, van Strydonck, et al., 2005).

241

242 Conclusion

The bones of a cremated 5 – 6 year old child found in an oak coffin have been 243 radiocarbon dated to 3127 ± 20^{14} C yrs BP. The oak coffin is dendrochronologically 244 dated to 1370 BC. From the dendrochronlogical date converted into a ¹⁴C age using the 245 246 radiocarbon calibration curve (IntCal09, Reimer, et al., 2009) the age difference between the two samples is calculated to 73 ± 26^{14} C yr. The cremated bone is thus 247 significantly older than the coffin. Recently laboratory experiments revealed that the 248 249 exchange processes between the CO_2 produced during combustion and the bio-apatite 250 control the stable carbon isotope (δ^{13} C) signature and radiocarbon age of cremated

251 bones (Hüls, et al., 2010, van Strydonck, et al., 2010). However, one crucial difference 252 between the controlled laboratory experiments is that the laboratory combustions 253 occurred in closed furnaces which likely resulted in larger CO₂ concentration than may 254 be expected for cremation in open fires as carried out by prehistoric people. In the 255 case of the cremated bones sample presented here we find that the age discrepancy is 256 best described by the 'old wood' effect. Hence radiocarbon dating of cremated bones 257 may potentially result in too high radiocarbon ages, similar to the effects seen when dating charcoal. Nevertheless, the difference between the ¹⁴C content of the cremated 258 259 bone and the wooden fuel is probably minimal in most cases. The possible effect of 260 using old wood in the cremation fires is probably limited and not easily recognized as 261 also demonstrated by the numerous tests on paired samples of cremated bones and 262 associated context materials (Lanting, et al., 2001, Olsen, et al., 2008, van Strydonck, et 263 al., 2005).

264

265 Acknowledgement

266 The Danish Research Council for the Humanities is thanked for their financial support

267 for radiocarbon dating to Karen Margrethe Hornstrup and the Danish Natural Science

268 Research Council is thanked for their financial support to the AMS ¹⁴C Dating Centre,

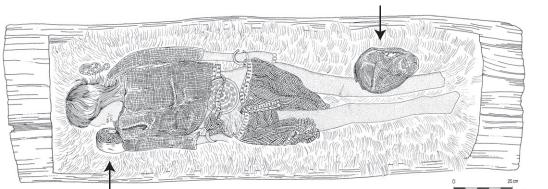
269 Aarhus University, Denmark. JO wishes to thank the Carlsberg Foundation for their

support 2006 – 2009. The three anonymous reviewers are thanked for critical remarks

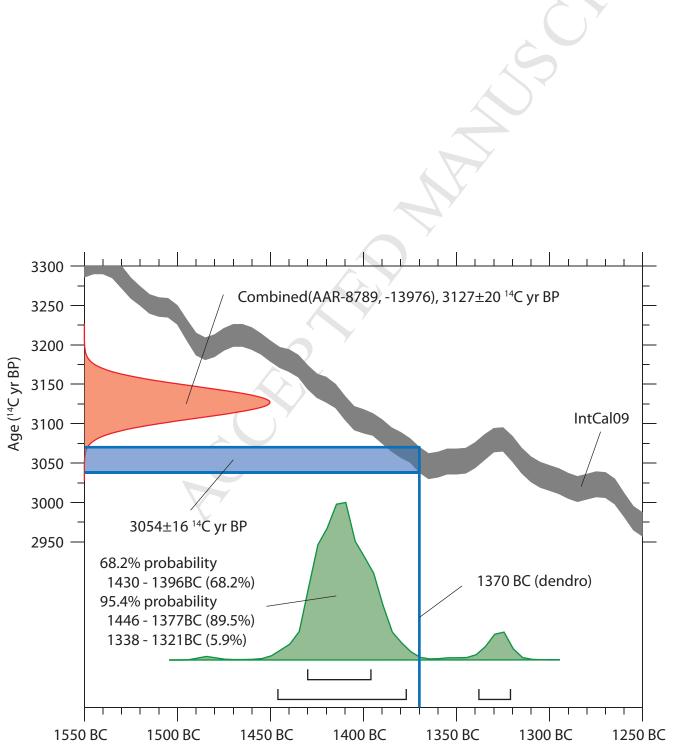
and suggestions which all helped improving the manuscript.

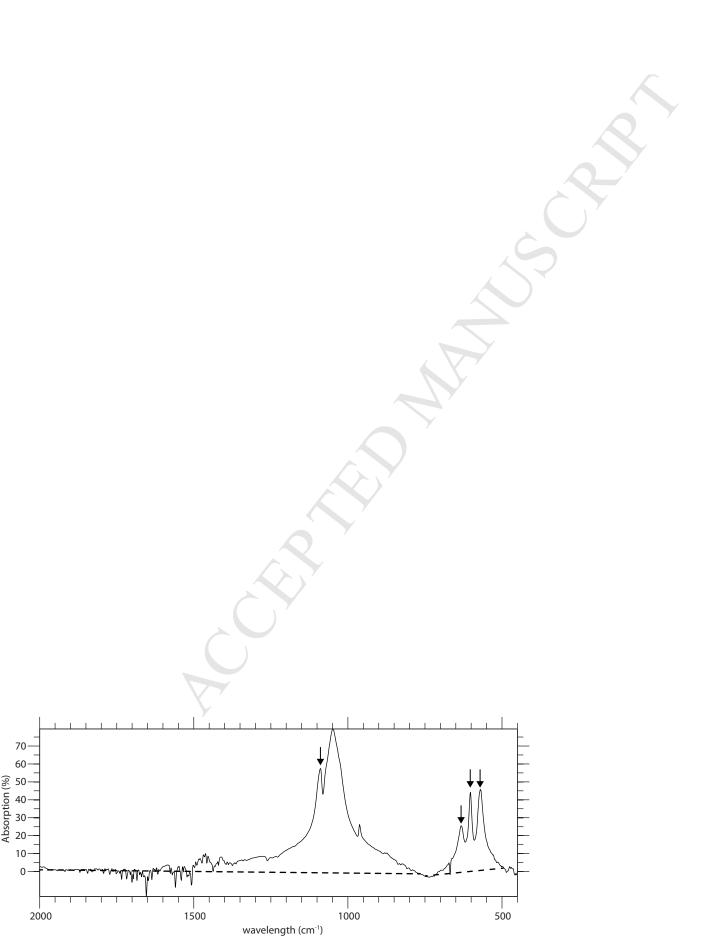
272 References

273	Alexandersen, V., Bennike, P., Hvass, L., and Nielsen, KH.S, 1983: Egtvedpigen – nye
274	undersøgelser. KUML 1981, 17-47.
275	Andersen, G.J., Heinemeier, J., Nielsen, H.L., Rud, N., Thomsen, M.S., Johnsen, S.,
276	Sveinbjörnsdóttir, A.E., Hjartarson, A., 1989. AMS C-14 Dating on the Fossvogur
277	Sediments, Iceland, Radiocarbon 31, 592-600.
278	Aner, E., Kersten, K., 1990. Die Funde der älteren Bronzezeit des nordischen Kreises
279	aus Dänemark, Schleswig-Holstein und Niedersachsen, København &
280	Neumünster.
281	Arneborg, J., Heinemeier, J., Lynnerup, N., Nielsen, H.L., Rud, N., Sveinbjörnsdóttir,
282	A.E., 1999. Change of Diet of the Greenland Vikings Determined from Stable
283	Carbon Isotope Analysis and ¹⁴ C Dating of their Bones, Radiocarbon 41, 157-168.
284	Berger, R., Horney, A.G., Libby, W.F., 1964. Radiocarbon Dating of Bone and Shell from
285	Their Organic Components, Science 144, 999-1001.
286	Christensen, K., 2006. Dendrochronological Dating of Oak Coffins from the Bronze Age
287	of Denmark and Schleswig, Acta Archaeol-den 77, 162-246.
288	Cook, G.T., Bonsall, C., Hedges, R.E.M., McSweeney, K., Boronean, V., Pettitt, P.B.,
289	2001. A freshwater diet-derived ¹⁴ C Reservoir effect at the stone age sites in the
290	Iron Gates Gorge, Radiocarbon 43, 453-460.
291	De Mulder, G., Van Strydonck, M., Boudin, M., 2009. The impact of cremated bone
292	dating on the archaeological chronology of the low contries, Radiocarbon 51,
293	579-600.
294	De Mulder, G., Van Strydonck, M., Boudin, M., Leclercq, W., Paridaens, N., Warmenbol,
295	E., 2007. Re-evaluation of the late bronze age and early iron age chronology of
296	the western Belgian urnfields based on C-14 dating of cremated bones,
297	Radiocarbon 49, 499-514.
298	DeNiro, M.J., Epstein, S., 1978. Influence of diet on the distribution of carbon isotopes
299	in animal diet, Geochim. Cosmochim. Acta 42, 495-506.
300	Elsig, J., Schmitt, J., Leuenberger, D., Schneider, R., Eyer, M., Leuenberger, M., Joos, F.,
301	Fischer, H., Stocker, T.F., 2009. Stable isotope constraints on Holocene carbon
302	cycle changes from an Antarctic ice core. Nature 461, 507-510.
303	Fischer, A., Olsen, J., Richards, M., Heinemeier, J., Sveinbjörnsdóttir, Á.E., Bennike, P.,
304	2007. Coast-inland mobility and diet in the Danish Mesolithic and Neolithic -
305	evidence from stable isotope values of humans and dogs, J. Archaeol. Sci. 34,
306	2125-2150.
307	Garvie-Lok, S.J., Varney, T.L., Katzenberg, M.A., 2004. Preparation of bone carbonate
308	for stable isotope analysis: the effects of treatment time and acid concentration,
309	J. Archaeol. Sci. 31, 763-776.
310	Hassan, A.A., Termine, J.D., Haynes, C., V, 1977. Mineralogical Studies on Bone Apatite
311	and their Implications for Radiocarbon Dating, Radiocarbon 19, 364-374.
312	Hedges, R.E.M., Millard, A.R., 1995. Bones and Groundwater: Towards the Modelling
313	of Diagenetic Processes, J. Archaeol. Sci. 22, 155-164.
314	Hüls, C.M., Nadeau, M.J., Grootes, P.M., Erlenkeuser, H., Andersen, N., 2010.
315	Experimental study on the origin of creamted bone apatite carbon, Radiocarbon
316	52, 587-599.
317	Hvass, L., 2000. Egtvedpigen, Sesam, København.
318	Jensen, J., 1997. Fra Bronze til Jernalder. En kronologisk undersøgelse, København.


319 320	Krueger, H.W., 1991. Exchange of Carbon with Biological Apatite, J. Archaeol. Sci. 18, 335-361.
321	Lanting, J.N., Aerts-Bijma, A., van der Plicht, H., 2001. Dating of Cremated Bones,
322	Radiocarbon 43, 249-254.
323	Lee-Thorp, J.A., van der Merwe, N.J., 1991. Aspects of the Chemistry of Modern and
324	Fossil Biological Apatites, J. Archaeol. Sci. 18, 343-354.
325	McKinley, J. I., 2006. Cremation the cheap option?, in: R. Gowland, and C. Knüsel,
326	eds., The Social Archaeology of Funerary Remains. Oxford, 81-88.
327	Munro, L.E., Longstaffe, F.J., White, C.D., 2007. Burning and boiling of modern deer
328	bone: Effects on crystallinity and oxygen isotope composition of bioapatite
329	phosphate, Palaeogeography Palaeoclimatology Palaeoecology 249, 90-102.
330	Naysmith, P., Scott, E.M., Cook, G.T., Heinemeier, J., van der Plicht, J., Van Strydonck,
331	M., Ramsey, C.B., Grootes, P.M., Freeman, S., 2007. A cremated bone
332	intercomparison study, Radiocarbon 49, 403-408.
333	Newesely, H., 1988. Fossil bone apatite, in: Schwarcz, H.P., Hedges, R.E.M., Ivanovich,
334	M. (Eds.), First International Workshop on Fossil Bone, Applied Geochemistry,
335	Oxford University, pp. 233-246.
336	Olsen, J., Heinemeier, J., Bennike, P., Krause, C., Hornstrup, K.M., Thrane, H., 2008.
337	Characterisation and Blind Testing of the Method for Radiocarbon Dating of
338	Cremated Bone, J. Archaeol. Sci. 35, 791-800.
339	Olsen, J., Heinemeier, J., Hornstrup, K.M., Bennike, P., Thrane, H., 2011. Chronology of
340	the Danish Bronze Age based on 14C dating of cremated bone remains,
341	Radiocarbon.
342	Olsen, J., Heinemeier, J., Lübcke, H., Lüth, F., Terberger, T., 2010. Dietary habits and
343	freshwater reservoir effects in bones from a Neolithic NE German cemetery,
344	Radiocarbon 52, 635-644.
345	Pate, F.D., Hutton, J.T., 1988. The use of soil chemistry data to address post-mortem
346	diagenesis in bone mineral, J. Archaeol. Sci. 15, 729-739.
347	Posner, A.S., 1969. Crystal Chemistry of Bone Mineral, Physological Reviews 49, 760-
348	792.
349	Ramsey, C.B., 2009. Bayesian analysis of radiocarbon dates, Radiocarbon 51, 337-360.
350	Randsborg, K., 2006. Chronology, Acta Archaeol-den 77, pp. 3-58.
351	Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell,
352	P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks,
353	R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B.,
354	McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon,
355	J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E.,
356	2004. IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP,
357	Radiocarbon 46, 1029-1058.
358	Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey,
359	C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M.,
360	Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F.,
361	Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A.,
362	Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeye, C.E.,
363	2009. Intcal09 and Marine09 Radiocarbon Age Calibration Curves, 0-50,000 Years
364	Cal Bp, Radiocarbon 51, 1111-1150.

365	Richards, M.P., Hedges, R.E.M., 1999. Stable Isotope Evidence for Similarities in the
366	Types of Marine Foods Used by Late Mesolithic Humans at Sites Along the
367	Atlantic Coast of Europe, J. Archaeol. Sci. 26, 717-722.
368	Saliège, J.F., Person, A., Paris, F., 1995. Preservation of ¹³ C/ ¹² C Original Ratio and ¹⁴ C
369	Dating of the Mineral Fraction of Human Bones From Saharan Tombs, Niger, J.
370	Archaeol. Sci. 22, 301-312.
371	Sandford, M.K., 1993. Understanding the Biogenic-Diagenetic Continuum:
372	Interpretating Elemental Concentrations of Archaeological Bone, in: Sandford,
373	M.K. (Ed.), Investigations of Ancient Human Tissue, Gordon and Breach Science.
374	Stafford, T.W., Jull, A.J.T., Brendel, K., Duhamel, R.C., Donahue, D., 1987. Study of Bone
375	Radiocarbon Dating Accuracy at the University-of-Arizona Nsf Accelerator Facility
376	for Radioisotope Analysis, Radiocarbon 29, 24-44.
377	Stiner, M.C., Kuhn, S.T., Weiner, S., Bar-Yosef, O., 1995. Differential Burning,
378	Recrystallization, and Fragmentation of Arhaeolgical Bone, J. Archaeol. Sci. 22,
379	223-237.
380	Surovell, T.A., 2000. Radiocarbon Dating of Bone Apatite by Step Heating,
381	Geoarchaeology 15, 591-608.
382	Tamers, M.A., Pearson, F.J., 1965. Validity of radiocarbon dates on bone, Nature 208,
383	1053-1055.
384	Thompson, T.J.U., Gauthier, M., Islam, M., 2009. The application of a new method of
385	Fourier Transform Infrared Spectroscopy to the analysis of burned bone, J.
386	Archaeol. Sci. 36, 910-914.
387	Thomsen, T., 1929. Egekistefundet fra Egtved, fra den ældre Bronzealder, Nordiske
388	Fortidsminder II.
389	Van Strydonck, M., Boudin, M., De Mulder, G., 2009. ¹⁴ C dating of cremated bones: The
390	issue of sample contamination, Radiocarbon 51, 553-568.
391	Van Strydonck, M., Boudin, M., de Mulder, G., 2010. The carbon origin of structural
392	carbonate in bone apatite of cremated bones, Radiocarbon 52, 578-586.
393	Van Strydonck, M., Boudin, M., Hoefkens, M., de Mulder, G., 2005. ¹⁴ C-dating of
394	cremated bones, why does it work?, Lunula 13, 3-10.
395	Vogel, J.S., Southon, J.R., Nelson, D.E., Brown, T.A., 1984. Performance of catalytical
396	condensed carbon for use in accelerator mass spectrometry, Nuclear
397	Instruments & Methods in Physics Research Section B-Beam Interactions with
398	Materials and Atoms 5, 289-293.
399	Wright, L.E., Schwarcz, H.P., 1996. Infrared and Isotopic Evidence for Diagenesis of
400	Bone Apatite at Dos Pilas, Guatemala: Palaeodietary Implications, J. Archaeol.
401	Sci. 23, 933-944.
402	Zazzo, A., Saliege, J.F., Person, A., Boucher, H., 2009. Radiocarbon dating of calcined
403	bones: Where does the carbon come from?, Radiocarbon 51, 601-611.


404	Figure 1
405	To the Left a drawing of the Egtved coffin is shown (Aner & Kersten 1990, 40, Abb. 19).
406	The placements of cremated bones are marked by arrows. Shown to the right are the
407	Egtved cremated bone samples.
408	
409	Figure 2
410	IntCal09 radiocarbon calibration curve with $\pm 1\sigma$ uncertainty lines (Reimer, et al., 2009)
411	and the calibrated age probability density function of the combined ¹⁴ C date of AAR-
412	8789 and AAR-13976 determined by OxCal 4.10 (Ramsey, 2009). Using the radiocarbon
413	calibration curve the dendrochronological coffin date 1370 BC is converted to the
414	corresponding 14 C age of 3054 \pm 16 BP.
415	
416	Figure 3
417	IR absorption spectrum of AAR-8987. IR spectra of the bio-apatite bone fraction are
418	represented by vibration bands of mainly CO_3 and PO_4 giving absorption peaks at 710,
419	874 and 1415 cm- 1 and 565, 603 and 1035 cm $^{-1}$ of CO $_3$ and PO $_4$ respectively (Garvie-Lok
420	et al., 2004). The crystallinity is a function of the extent of splitting of the two


- 421 absorption bands at 603 and 565 cm⁻¹. Arrows shows the splitting in the IR spectrum
- 422 indicating high crystallinity.

R-8789 (Olsen et al. 2008) Bone 98.6% 0.09 0.09 5.3 -23.05 3128±28 Yellow White No R-13976 (this study) Bone 96.9% 0.12 n/a -23.69 3126±29 Yellow White No	.ab. No.	Material	Prep. Yield	C wt%	C/P	CI	δ ¹³ C ‰ VPDB	¹⁴ C age BP	lour	Visible burn cracks
R-13976 (this study) Bone 96.9% 0.12 n/a n/a -23.69 3126±29 Yellow White No nbined (AAR-8789,-13976) -23.37 3127±20.0.0<53.8	AR-8789 (Olsen et al. 2008)	Bone		0.09	0.09	5.3				
-23.37 3127200.053.8	AR-13976 (this study)									
Contraction of the second	Combined (AAR-8789, -13976)									
CHRISCER'S										
Contraction of the second										
Constitution with the constitution of the cons										
Chillip Marine										
Contraction with										
Contra Maria										
Chip the Mark										
CERTERNA										
CERTER										
CERTIN										
CERTIN										
Christian										
		~	Y							
	∇									

