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• Radiocarbon dating of a cremated human bone is compared with the precise 

dendrochronological age of an associated oak coffin. 

• The cremated bone shows an age discrepancy of 73 ± 26 
14

C years older than the 

dendrochronological age. 

• The age discrepancy is best accounted for by the so called ‘old wood’ effect from the wood 

used in the cremation pyre. 
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 12 

Abstract 13 

Numerous reports of successful radiocarbon dating of cremated bones have emerged 14 

during the last decade. The success of radiocarbon dating cremated bones depends on 15 

the temperature during burning and the degree of recrystallisation of the inorganic 16 

bone matrix. During cremation bones undergo major morphological and mineralogical 17 

changes which have raised some interesting questions and discussion on the origin of 18 

the carbon source in archaeologically cremated bones. Recent laboratory experiments 19 

reveal that the properties of the combustion atmosphere play a significant role 20 

regarding the source carbon in cremated bones. Thus radiocarbon dating cremated 21 

bones is potentially dating the wood used for the cremation fire. Here we compare a 22 

high precision radiocarbon dated human bone with an associated dendrochronological 23 

age from an oak coffin. We find that the age discrepancy between the 24 

dendrochronological age and the cremated bone of 73 ± 26 14C yr is best accounted for 25 

by the so called ‘old wood’ effect. 26 
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Introduction 27 
Radiocarbon dating of collagen in well-preserved human bone has routinely been 28 

carried out for decades, but cremated bone samples were always excluded because 29 

cremation destroys the bone collagen. However, within the last decade successful 14C 30 

dating of cremated bones has frequently been reported (e.g. De Mulder, et al., 2009, 31 

De Mulder, et al., 2007, Lanting, et al., 2001, Olsen, et al., 2011). Furthermore, uniform 32 

results of radiocarbon dating of cremated bones have been proven in laboratory 33 

intercomparison tests (Naysmith, et al., 2007). The intercomparison test was designed 34 

to test the dating protocol, i.e. using the same method laboratories get similar ages on 35 

the same material within measurement error. Hence problems related to whether or 36 

not 14C dating cremated bone yields an estimate of the true calendar age were not 37 

tested. Here we present new information on a previously published cremated bone 38 

sample found in an oak coffin which has been dated by dendrochronology (Olsen et al., 39 

2008). Our updated results will be discussed in light of new laboratory studies 40 

suggesting that 14C dating of cremated bones reflects the burning atmosphere of the 41 

cremation fire (e.g. Hüls et al., 2010, Van Strydonck et al., 2010). We believe that our 42 

case study may represent an archaeological example supporting the recent laboratory 43 

conclusions. 44 

Radiocarbon dating of bio-apatite is possible because of incorporation of carbonate 45 

ions into the inorganic bone matrix in living organisms. The carbonate ions originate 46 

from the energy production in cells and are substituted with phosphate ions in the 47 

bone matrix into the bio-apatite mineral-like bone structure (Krueger, 1991, Lee-Thorp 48 

and van der Merwe, 1991, Munro, et al., 2007, Newesely, 1988, Pate and Hutton, 49 

1988, Posner, 1969, Saliège, et al., 1995, Sandford, 1993, Wright and Schwarcz, 1996).  50 

Radiocarbon dating of the bio-apatite fraction has in general been abandoned 51 

decades ago due to incorrect 14C results caused by contamination effects (Berger, et 52 

al., 1964, Hassan, et al., 1977, Stafford, et al., 1987). In fossil bones, exchange 53 

reactions with the bicarbonate ions dissolved in soil waters lead to 14C contamination 54 

(Hassan, et al., 1977, Hedges and Millard, 1995, Surovell, 2000, Tamers and Pearson, 55 

1965). Apparently, the exchange reaction with the dissolved bicarbonate ions does not 56 

occur for cremated bones and hence the bio-apatite fraction of cremated bone yields 57 

reliable 14C results (Lanting, et al., 2001, Olsen, et al., 2008). This is because heating of 58 
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bones results in numerous microscopic and macroscopic changes which altogether 59 

yield a more robust and inert bio-apatite structure as a consequence, i.e. heating 60 

results in re-crystallization of the bio-apatite bone matrix into a more robust structure 61 

(Newesely, 1988, Stiner, et al., 1995, van Strydonck, et al., 2005). Crucial to 62 

radiocarbon dating of calcined or burned bones is assurance about the degree of bio-63 

apatite re-crystallisation. As shown characterisation and subsequent careful selection 64 

of well cremated bones is essential for reliable 14C age results (Olsen, et al., 2008, Van 65 

Strydonck, et al., 2009). To this end the cremated bones of humans should be 66 

characterised by visual inspection, IR spectroscopy (crystallinity index (CI) and the 67 

carbonate to phosphate ratio (C/P)), δ13C of bio-apatite and the carbon weight 68 

percentage (Olsen, et al., 2008, Thompson, et al., 2009).  69 

For radiocarbon dating knowledge of the carbon origin is in general of utmost 70 

importance because the carbon source defines the event being dated. The loss of 71 

structural carbon, the major morphological and mineralogical changes occurring during 72 

the cremation process has raised some interesting questions and discussion regarding 73 

the origin of the carbon source in archaeologically cremated bones (e.g. Hüls, et al., 74 

2010, van Strydonck, et al., 2010, Zazzo, et al., 2009). Put simply, it all boils down to 75 

one plain question: What are you dating when radiocarbon dating cremated bones? It 76 

is remarkable that the δ13C of charred and unburned bone apatite change from c. 77 

-15‰ to δ13C values around -23‰ for cremated bones (Lanting, et al., 2001, Olsen, et 78 

al., 2008, van Strydonck, et al., 2005). This has lead to considerations about kinetic 79 

fractionation to explain the very depleted δ13C values of cremated bones as favoured 80 

by Zazzo et al. (2009). On the other hand, carbon exchange processes during the fire 81 

may potentially explain the remarkable carbon isotope signature of cremated bones. 82 

Carbon from atmospheric CO2, from bone organic matter (collagen) or from CO2 83 

evolving during combustion may all contribute even in tandem with kinetic isotope 84 

fractionation. Recent laboratory experiments by Hüls et al. (2010) and Van Strydonck 85 

et al. (2010) has demonstrated that the properties of the burning atmosphere plays a 86 

significant role as a carbon source in cremated bones. They found that the exchange 87 

processes between produced CO2 during combustion and bio-apatite control the 88 

stable carbon isotope (δ13C) signature and radiocarbon age of cremated bones. Hüls et 89 

al. (2010) further argue that kinetic isotope fractionation is needed to fully explain 90 
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their results, but this process is much less significant than exchange reactions with the 91 

burning atmosphere. Thus radiocarbon dating cremated bones is potentially 92 

equivalent to dating the wood used for the cremation fire. Despite similar 14C ages has 93 

been demonstrated of paired samples of associated context material (mostly pitch and 94 

charcoal) and cremated bone samples (Lanting, et al., 2001, Olsen, et al., 2008, van 95 

Strydonck, et al., 2005), this opens the possibility of the ‘old wood’ effect when 96 

radiocarbon dating cremated bones.  97 

 98 

Method 99 

Sample preparation follows procedures described in Olsen et al. 2008: Cremated bone 100 

samples (2 grams) are soaked in a 1.5% sodium hypochlorite solution to dissolve 101 

remaining organic material (48h, 20°C). The sample is then washed and submerged in 102 

1M acetic acid to remove post-depositional carbonates as well as less crystalline, 103 

soluble fractions of bio-apatite (24h, 20°C). Next the sample is washed and dried (12 h, 104 

80°C) with a bio-apatite yield of approximately 96%. The pre-treated sample is crushed 105 

and 1.5 g is treated with 100% de-hydrated phosphoric acid (8h, 25°C) to liberate CO2 106 

from which sulphur impurities are removed prior to conversion to graphite for AMS 107 

targets (Lanting, et al., 2001). Part of the resulting CO2 gas was used for δ13C analysis 108 

on a GV Instruments Isoprime stable isotope mass spectrometer to a precision of 109 

0.15‰, while the rest was converted to graphite for AMS 14C measurements via 110 

reduction with H2 using cobalt as a catalyst (Vogel, et al., 1984). The AMS 14C 111 

measurements were carried out using the EN tandem accelerator at Aarhus University 112 

(Denmark). The dating results are reported as conventional 14C dates in 14C yr BP based 113 

on the measured 14C/13C ratio corrected for the natural isotopic fractionation by 114 

normalising the result to the standard δ13C value of –25‰ PDB (Andersen, et al., 115 

1989). 116 

The samples have been visually inspected for surface and interior colour and burn 117 

cracks and IR-spectroscopy was performed on powdered pretreated sample material, 118 

i.e. bio-apatite. The sample material was mixed with KBr and hydraulically pressed into 119 

pellets prior to measurement of infrared spectra with a Perkin Elmer FTIR 120 

spectrometer (PARAGON 1000). The spectrum of KBr was automatically subtracted by 121 

an online computer. IR spectra on the bio-apatite bone fraction provide information on 122 
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the crystallinity index (CI) and carbon to phosphor ratio (C/P) (Garvie-Lok, et al., 2004, 123 

Olsen, et al., 2008). 124 

 125 

Results and discussion 126 

A well-preserved coffin from Egtved, Denmark, consisting of a hollowed-out oak trunk 127 

was excavated in 1921 by the Danish National Museum. It contained the famous 128 

Egtved girl, dressed in full costume covered with a woollen blanket and wrapped in a 129 

cow skin (Thomsen, 1929, Alexandersen et al., 1983, Aner and Kersten, 1990, 130 

No.4357A). The grave goods consisted of a belt-plate, a small bronze earring, two arm 131 

rings, an awl in a wooden handle, and a horn comb. The archaeological date is the 132 

Bronze Age, period II (1500 – 1300 BC, Randsborg, 2006). At her feet there was a 133 

bucket of bark, which contained residues from honey sweetened beer, and at her left 134 

leg a bundle of cloth with the cremated bones of a child. There was another bucket of 135 

bark at her head also with a few cremated bones, the mentioned awl and remains of a 136 

hair net (Figure 1). Consistent with the archaeological finds, the coffin has been dated 137 

to 1370 BC by dendrochronology  (Christensen, 2006). The investigation carried out by 138 

Kjeld Christensen showed that the lower part as well as the lid was well preserved. 110 139 

tree rings were preserved and 9 of these were sapwood rings. Moreover, the 140 

preserved bark ring consisted of early wood as well as a very narrow zone of latewood 141 

indicating that the tree presumably was felled in July or August prior to the end of the 142 

growth season (Christensen 2006).  All Danish dendrochronological dates of oak coffins 143 

resulted in a master curve comprising 419 years, and this curve was anchored to a 144 

German reference chronology (Christensen 2006).    145 

The human remains of the young (16-18 years old) woman in the coffin were rather 146 

poor due to the humid and acid peat bog environmental conditions from which she 147 

was retrieved. Only the woman's hair, brain, teeth, nails, and parts of her skin were 148 

preserved, but no bones at all (Thomsen 1929, Alexandersen et al., 1981, Aner and 149 

Kersten, 1990, No.4357A). In contrast, the cremated bones found at the young 150 

woman’s head and left leg appeared well preserved (Figure 1, Thomsen, 1929, 151 

Alexandersen et al., 1983, Hvass, 2000). The cremated bones are most likely from the 152 

same individual, as fragments from the two sets of bones proved to fit precisely and 153 

represent a 5-6 year old child. (Alexandersen et al., 1983).  154 
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Because of the age difference between the two individuals which excludes a 155 

mother-child relationship, it has without any evidence been suggested that the child 156 

was a sacrifice (Thomsen 1929, Alexandersen et al. 1983, Jensen 2002). It appears that 157 

the cremated bones correspond to regular cremated bone samples, i.e. colour, 158 

structure, fragmentation and form (Alexandersen et al.,1983, Olsen et al. 2008). One 159 

could imagine, in case of ritual deposition of the cremated bones (e.g. ancestral bones) 160 

that a number of years elapsed from cremation to deposition in the coffin. There are, 161 

however, remains of the funeral pyre among the cremated bones, i.e. bone dust, 162 

charcoal, sand, and ashes (Alexandersen et al., 1983). According to McKinley (2006), 163 

cremated bones may be curated and transported, but it is unlikely that pyre debris 164 

would that too. Following this argument, the presence of pyre debris suggests that the 165 

bones were deposited in the coffin shortly after the cremation. 166 

A fragment of the cremated jaw was radiocarbon dated and published by Olsen et 167 

al. (2008) yielding an age of 3128 ±28 14C yrs BP. This result was compared with the 168 

dendrochronological age 1370 BC by converting the calendar age into a 14C age by 169 

applying the radiocarbon calibration curve (IntCal04, Reimer, et al., 2004). The 170 

resulting age difference was calculated to 74 ±32 14C yr (see Olsen, et al., 2008), the 171 

bone being the older of the two. Hence the two samples almost agree within 2σ 172 

(standard deviations). In order to test this age discrepancy another fragment of the jaw 173 

was radiocarbon dated resulting in an age of 3126 ±29 14C yrs BP. Combining this new 174 

date with the previous date yields a combined 14C date of 3127 ±20 14C yrs BP (Table 175 

1). The dendrochronological date 1370 BC is converted into a 14C age of 3054 ±16 14C 176 

yrs BP via the radiocarbon calibration curve (IntCal09, Reimer, et al., 2009). Testing the 177 

converted dendrochronological date against the combined cremated bone 14C date 178 

results in an age difference of 73 ±26 14C yr (Figure 2). This result deviate more than 179 

2.8σ from the expected 0 year difference or in other words there is only a 0.7% chance 180 

that the results represent the same age. Hence, beyond doubt the two samples are 181 

incompatible. How can this significant age difference be explained? 182 

First of all, to ensure that the age deviation is not due to a low burning temperature 183 

and thus possible diagenetic alterations it is necessary to evaluate the quality of the 184 

cremated bone sample. The previous published CI of AAR-8789 indicated the 185 

possibility of low temperature burning (CI=2.9) whereas all other parameters such as 186 
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δ13C, C/P and C wt% suggested high temperature burning and re-crystallization of the 187 

bone matrix (Table 1, Olsen et al., 2008). However, a re-evaluation of the IR spectra of 188 

AAR-8789 yields a CI of 5.3 (Figure 3). Thus the age discrepancy is not likely to be due 189 

to diagenetic effects, i.e. all parameters points towards high temperature burning. 190 

One crucial difference between the controlled laboratory experiments conducted 191 

by Hüls et al. (2010) and van Strydonck et al.(2010) is that the laboratory combustions 192 

occurred in closed furnaces which likely resulted in larger CO2 concentration than may 193 

be expected for cremation in open fires as carried out by prehistoric people. It 194 

therefore remains an open question whether their results can be directly transferred 195 

to prehistoric cremated bones. As argued by Zazzo et al. (2009) three potential carbon 196 

sources are available for exchange reactions with bio-apatite bone structure during 197 

cremation 1) carbon from bone organic matter (collagen), 2) atmospheric CO2 and 3) 198 

CO2 evolving during combustion (flesh, bone and wood).  199 

The age discrepancy lead Olsen et al. (2008) to speculate if possible marine or 200 

freshwater diets might influence the 14C age of cremated bones as is commonly known 201 

from radiocarbon dating on the collagen fraction of human bones (e.g. Arneborg, et 202 

al., 1999, Cook, et al., 2001, DeNiro and Epstein, 1978, Fischer, et al., 2007, Olsen, et 203 

al., 2010, Richards and Hedges, 1999). Using a marine reservoir age of 400 years the 204 

age deviation amounts to a 18% marine diet. This is from a prehistoric diet perspective 205 

not unreasonable. This may indicate that the CO2 originating from the burning of flesh 206 

and bone collagen may exchange with structural bone carbonate during the 207 

combustion. However, unless kinetic fractionation effects significantly alter the stable 208 

carbon isotope signature of the bio-apatite the uniform δ13C values of cremated bones 209 

speaks against this possibility. Most prehistoric cremated bones show- remarkable 210 

uniform  δ13C values, e.g. as the -24 ± 3‰ (n=39) reported by Lanting et al. (2001) and 211 

-23 ± 2‰ (n=33) (Olsen, et al., 2008, Olsen, et al., 2011). The laboratory results by Hüls 212 

et al. (2010) show that kinetic fractionation only partly account for observed changes 213 

in 14C content and δ13C values. Hence believing kinetic fractionation to play an 214 

insignificant role and assuming that the carbon exchange between flesh and structural 215 

carbonate is the major carbon source in the cremated bio-apatite, then the age 216 

discrepancy reported here may derive from a predominantly terrestrial diet (c. -21‰) 217 

combined with a minor fraction of freshwater derived food (typically around c. -21‰ 218 
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or lower). However, again the uniformity of the δ13C values of prehistoric cremated 219 

bones speaks against this possibility because numerous tests on paired samples of 220 

cremated bones and associated context materials has resulted in insignificant 14C age 221 

differences, all with δ13C values similar to the Egtved sample (Lanting, et al., 2001, 222 

Olsen, et al., 2008, van Strydonck, et al., 2005). Exchange with flesh carbon (c. 5‰ 223 

lower than collagen) during cremation is therefore not a likely dominant carbon source 224 

for prehistoric structural carbonate in cremated bones. With prehistoric carbon 225 

dioxide δ13C values around -6.4‰ (Elsig et al., 2009) also exchange with atmospheric 226 

CO2 seems unlikely (unless kinetic fractionation processes dominate). 227 

The laboratory experiments clearly demonstrate that exchange of carbon between 228 

bone apatite carbonate and CO2 in the combustion gases depend on both temperature 229 

and CO2 concentrations. Hence CO2 derived from woods from the cremation fires is 230 

likely substituted into the bone bio-apatite fraction explaining the remarkable 231 

similarity of δ13C values of cremated bones (Lanting, et al., 2001, Olsen, et al., 2008, 232 

Olsen, et al.,2011). The old wood effect therefore provides a more likely explanation 233 

for the age discrepancy between the cremated bone sample (AAR-8789, -13967, Table 234 

1) and the associated dendrochronologically dated oak coffin. However, it should be 235 

pointed out that in the case of a normal ritual cremation, the difference in 14C content 236 

of the cremated body and the fuel will in most cases be minimal. Hence a possible 237 

carbon exchange is probably difficult to recognize as demonstrated by the numerous 238 

tests on paired samples of cremated bones and associated context materials (Lanting, 239 

et al., 2001, Olsen, et al., 2008, van Strydonck, et al., 2005). 240 

 241 

Conclusion 242 

The bones of a cremated 5 – 6 year old child found in an oak coffin have been 243 

radiocarbon dated to 3127 ± 20 14C yrs BP. The oak coffin is dendrochronologically 244 

dated to 1370 BC. From the dendrochronlogical date converted into a 14C age using the 245 

radiocarbon calibration curve (IntCal09, Reimer, et al., 2009) the age difference 246 

between the two samples is calculated to 73 ± 26 14C yr. The cremated bone is thus 247 

significantly older than the coffin. Recently laboratory experiments revealed that the 248 

exchange processes between the CO2 produced during combustion and the bio-apatite 249 

control the stable carbon isotope (δ13C) signature and radiocarbon age of cremated 250 
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bones (Hüls, et al., 2010, van Strydonck, et al., 2010). However, one crucial difference 251 

between the controlled laboratory experiments is that the laboratory combustions 252 

occurred in closed furnaces which likely resulted in larger CO2 concentration than may 253 

be expected for cremation in open fires as carried out by prehistoric people. In the 254 

case of the cremated bones sample presented here we find that the age discrepancy is 255 

best described by the ‘old wood’ effect. Hence radiocarbon dating of cremated bones 256 

may potentially result in too high radiocarbon ages, similar to the effects seen when 257 

dating charcoal. Nevertheless, the difference between the 14C content of the cremated 258 

bone and the wooden fuel is probably minimal in most cases. The possible effect of 259 

using old wood in the cremation fires is probably limited and not easily recognized as 260 

also demonstrated by the numerous tests on paired samples of cremated bones and 261 

associated context materials (Lanting, et al., 2001, Olsen, et al., 2008, van Strydonck, et 262 

al., 2005). 263 

 264 

Acknowledgement 265 

The Danish Research Council for the Humanities is thanked for their financial support 266 

for radiocarbon dating to Karen Margrethe Hornstrup and the Danish Natural Science 267 

Research Council is thanked for their financial support to the AMS 14C Dating Centre, 268 

Aarhus University, Denmark. JO wishes to thank the Carlsberg Foundation for their 269 

support 2006 – 2009. The three anonymous reviewers are thanked for critical remarks 270 

and suggestions which all helped improving the manuscript.  271 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 of 13 

References 272 

Alexandersen, V., Bennike, P., Hvass, L., and Nielsen, K.-H.S, 1983: Egtvedpigen – nye 273 
undersøgelser. KUML 1981, 17-47.  274 

Andersen, G.J., Heinemeier, J., Nielsen, H.L., Rud, N., Thomsen, M.S., Johnsen, S., 275 
Sveinbjörnsdóttir, A.E., Hjartarson, A., 1989. AMS C-14 Dating on the Fossvogur 276 
Sediments, Iceland, Radiocarbon 31, 592-600. 277 

Aner, E., Kersten, K., 1990. Die Funde der älteren Bronzezeit des nordischen Kreises 278 
aus Dänemark, Schleswig-Holstein und Niedersachsen, København & 279 
Neumünster. 280 

Arneborg, J., Heinemeier, J., Lynnerup, N., Nielsen, H.L., Rud, N., Sveinbjörnsdóttir, 281 
A.E., 1999. Change of Diet of the Greenland Vikings Determined from Stable 282 
Carbon Isotope Analysis and 14C Dating of their Bones, Radiocarbon 41, 157-168. 283 

Berger, R., Horney, A.G., Libby, W.F., 1964. Radiocarbon Dating of Bone and Shell from 284 
Their Organic Components, Science 144, 999-1001. 285 

Christensen, K., 2006. Dendrochronological Dating of Oak Coffins from the Bronze Age 286 
of Denmark and Schleswig, Acta Archaeol-den 77, 162-246. 287 

Cook, G.T., Bonsall, C., Hedges, R.E.M., McSweeney, K., Boronean, V., Pettitt, P.B., 288 
2001. A freshwater diet-derived 14C Reservoir effect at the stone age sites in the 289 
Iron Gates Gorge, Radiocarbon 43, 453-460. 290 

De Mulder, G., Van Strydonck, M., Boudin, M., 2009. The impact of cremated bone 291 
dating on the archaeological chronology of the low contries, Radiocarbon 51, 292 
579-600. 293 

De Mulder, G., Van Strydonck, M., Boudin, M., Leclercq, W., Paridaens, N., Warmenbol, 294 
E., 2007. Re-evaluation of the late bronze age and early iron age chronology of 295 
the western Belgian urnfields based on C-14 dating of cremated bones, 296 
Radiocarbon 49, 499-514. 297 

DeNiro, M.J., Epstein, S., 1978. Influence of diet on the distribution of carbon isotopes 298 
in animal diet, Geochim. Cosmochim. Acta 42, 495-506. 299 

Elsig, J., Schmitt, J., Leuenberger, D., Schneider, R., Eyer, M., Leuenberger, M., Joos, F., 300 
Fischer, H., Stocker, T.F., 2009. Stable isotope constraints on Holocene carbon 301 
cycle changes from an Antarctic ice core. Nature 461, 507-510. 302 

Fischer, A., Olsen, J., Richards, M., Heinemeier, J., Sveinbjörnsdóttir, Á.E., Bennike, P., 303 
2007. Coast-inland mobility and diet in the Danish Mesolithic and Neolithic - 304 
evidence from stable isotope values of humans and dogs, J. Archaeol. Sci. 34, 305 
2125-2150. 306 

Garvie-Lok, S.J., Varney, T.L., Katzenberg, M.A., 2004. Preparation of bone carbonate 307 
for stable isotope analysis: the effects of treatment time and acid concentration, 308 
J. Archaeol. Sci. 31, 763-776. 309 

Hassan, A.A., Termine, J.D., Haynes, C., V, 1977. Mineralogical Studies on Bone Apatite 310 
and their Implications for Radiocarbon Dating, Radiocarbon 19, 364-374. 311 

Hedges, R.E.M., Millard, A.R., 1995. Bones and Groundwater: Towards the Modelling 312 
of Diagenetic Processes, J. Archaeol. Sci. 22, 155-164. 313 

Hüls, C.M., Nadeau, M.J., Grootes, P.M., Erlenkeuser, H., Andersen, N., 2010. 314 
Experimental study on the origin of creamted bone apatite carbon, Radiocarbon 315 
52, 587-599. 316 

Hvass, L., 2000. Egtvedpigen, Sesam, København. 317 
Jensen, J., 1997. Fra Bronze til Jernalder. En kronologisk undersøgelse, København.    318 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 of 13 

Krueger, H.W., 1991. Exchange of Carbon with Biological Apatite, J. Archaeol. Sci. 18, 319 
335-361. 320 

Lanting, J.N., Aerts-Bijma, A., van der Plicht, H., 2001. Dating of Cremated Bones, 321 
Radiocarbon 43, 249-254. 322 

Lee-Thorp, J.A., van der Merwe, N.J., 1991. Aspects of the Chemistry of Modern and 323 
Fossil Biological Apatites, J. Archaeol. Sci. 18, 343-354. 324 

McKinley, J. I., 2006. Cremation ... the cheap option?, in: R. Gowland, and C. Knüsel, 325 
eds., The Social Archaeology of Funerary Remains. Oxford, 81-88. 326 

Munro, L.E., Longstaffe, F.J., White, C.D., 2007. Burning and boiling of modern deer 327 
bone: Effects on crystallinity and oxygen isotope composition of bioapatite 328 
phosphate, Palaeogeography Palaeoclimatology Palaeoecology 249, 90-102. 329 

Naysmith, P., Scott, E.M., Cook, G.T., Heinemeier, J., van der Plicht, J., Van Strydonck, 330 
M., Ramsey, C.B., Grootes, P.M., Freeman, S., 2007. A cremated bone 331 
intercomparison study, Radiocarbon 49, 403-408. 332 

Newesely, H., 1988. Fossil bone apatite, in: Schwarcz, H.P., Hedges, R.E.M., Ivanovich, 333 
M. (Eds.), First International Workshop on Fossil Bone, Applied Geochemistry, 334 
Oxford University, pp. 233-246. 335 

Olsen, J., Heinemeier, J., Bennike, P., Krause, C., Hornstrup, K.M., Thrane, H., 2008. 336 
Characterisation and Blind Testing of the Method for Radiocarbon Dating of 337 
Cremated Bone, J. Archaeol. Sci. 35, 791-800. 338 

Olsen, J., Heinemeier, J., Hornstrup, K.M., Bennike, P., Thrane, H., 2011. Chronology of 339 
the Danish Bronze Age based on 14C dating of cremated bone remains, 340 
Radiocarbon. 341 

Olsen, J., Heinemeier, J., Lübcke, H., Lüth, F., Terberger, T., 2010. Dietary habits and 342 
freshwater reservoir effects in bones from a Neolithic NE German cemetery, 343 
Radiocarbon 52, 635-644. 344 

Pate, F.D., Hutton, J.T., 1988. The use of soil chemistry data to address post-mortem 345 
diagenesis in bone mineral, J. Archaeol. Sci. 15, 729-739. 346 

Posner, A.S., 1969. Crystal Chemistry of Bone Mineral, Physological Reviews 49, 760-347 
792. 348 

Ramsey, C.B., 2009. Bayesian analysis of radiocarbon dates, Radiocarbon 51, 337-360. 349 
Randsborg, K., 2006. Chronology, Acta Archaeol-den 77, pp. 3-58. 350 
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, 351 

P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, 352 
R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., 353 
McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, 354 
J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., 355 
2004. IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP, 356 
Radiocarbon 46, 1029-1058. 357 

Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, 358 
C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., 359 
Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., 360 
Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., 361 
Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeye, C.E., 362 
2009. Intcal09 and Marine09 Radiocarbon Age Calibration Curves, 0-50,000 Years 363 
Cal Bp, Radiocarbon 51, 1111-1150. 364 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 of 13 

Richards, M.P., Hedges, R.E.M., 1999. Stable Isotope Evidence for Similarities in the 365 
Types of Marine Foods Used by Late Mesolithic Humans at Sites Along the 366 
Atlantic Coast of Europe, J. Archaeol. Sci. 26, 717-722. 367 

Saliège, J.F., Person, A., Paris, F., 1995. Preservation of 13C/12C Original Ratio and 14C 368 
Dating of the Mineral Fraction of Human Bones From Saharan Tombs, Niger, J. 369 
Archaeol. Sci. 22, 301-312. 370 

Sandford, M.K., 1993. Understanding the Biogenic-Diagenetic Continuum: 371 
Interpretating Elemental Concentrations of Archaeological Bone, in: Sandford, 372 
M.K. (Ed.), Investigations of Ancient Human Tissue, Gordon and Breach Science. 373 

Stafford, T.W., Jull, A.J.T., Brendel, K., Duhamel, R.C., Donahue, D., 1987. Study of Bone 374 
Radiocarbon Dating Accuracy at the University-of-Arizona Nsf Accelerator Facility 375 
for Radioisotope Analysis, Radiocarbon 29, 24-44. 376 

Stiner, M.C., Kuhn, S.T., Weiner, S., Bar-Yosef, O., 1995. Differential Burning, 377 
Recrystallization, and Fragmentation of Arhaeolgical Bone, J. Archaeol. Sci. 22, 378 
223-237. 379 

Surovell, T.A., 2000. Radiocarbon Dating of Bone Apatite by Step Heating, 380 
Geoarchaeology 15, 591-608. 381 

Tamers, M.A., Pearson, F.J., 1965. Validity of radiocarbon dates on bone, Nature 208, 382 
1053-1055. 383 

Thompson, T.J.U., Gauthier, M., Islam, M., 2009. The application of a new method of 384 
Fourier Transform Infrared Spectroscopy to the analysis of burned bone, J. 385 
Archaeol. Sci. 36, 910-914. 386 

Thomsen, T., 1929. Egekistefundet fra Egtved, fra den ældre Bronzealder, Nordiske 387 
Fortidsminder II. 388 

Van Strydonck, M., Boudin, M., De Mulder, G., 2009. 14C dating of cremated bones: The 389 
issue of sample contamination, Radiocarbon 51, 553-568. 390 

Van Strydonck, M., Boudin, M., de Mulder, G., 2010. The carbon origin of structural 391 
carbonate in bone apatite of cremated bones, Radiocarbon 52, 578-586. 392 

Van Strydonck, M., Boudin, M., Hoefkens, M., de Mulder, G., 2005. 14C-dating of 393 
cremated bones, why does it work?, Lunula 13, 3-10. 394 

Vogel, J.S., Southon, J.R., Nelson, D.E., Brown, T.A., 1984. Performance of catalytical 395 
condensed carbon for use in accelerator mass spectrometry, Nuclear 396 
Instruments & Methods in Physics Research Section B-Beam Interactions with 397 
Materials and Atoms 5, 289-293. 398 

Wright, L.E., Schwarcz, H.P., 1996. Infrared and Isotopic Evidence for Diagenesis of 399 
Bone Apatite at Dos Pilas, Guatemala: Palaeodietary Implications, J. Archaeol. 400 
Sci. 23, 933-944. 401 

Zazzo, A., Saliege, J.F., Person, A., Boucher, H., 2009. Radiocarbon dating of calcined 402 
bones: Where does the carbon come from?, Radiocarbon 51, 601-611. 403 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 of 13 

Figure 1 404 

To the Left a drawing of the Egtved coffin is shown (Aner & Kersten 1990, 40, Abb. 19). 405 

The placements of cremated bones are marked by arrows. Shown to the right are the 406 

Egtved cremated bone samples. 407 

 408 

Figure 2 409 

IntCal09 radiocarbon calibration curve with ±1σ uncertainty lines (Reimer, et al., 2009) 410 

and the calibrated age probability density function of the combined 14C date of AAR-411 

8789 and AAR-13976 determined by OxCal 4.10 (Ramsey, 2009). Using the radiocarbon 412 

calibration curve the dendrochronological coffin date 1370 BC is converted to the 413 

corresponding 14C age of 3054 ± 16 BP. 414 

 415 

Figure 3 416 

IR absorption spectrum of AAR-8987.  IR spectra of the bio-apatite bone fraction are 417 

represented by vibration bands of mainly CO3 and PO4 giving absorption peaks at 710, 418 

874 and 1415 cm-1 and 565, 603 and 1035 cm-1 of CO3 and PO4 respectively (Garvie-Lok 419 

et al., 2004). The crystallinity is a function of the extent of splitting of the two 420 

absorption bands at 603 and 565 cm-1. Arrows shows the splitting in the IR spectrum 421 

indicating high crystallinity. 422 
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Table 1: 
14

C dating of the Egtved cremated bones 

Colour 
Lab. No. Material 

Prep. 

Yield 
C wt% C/P CI 

δδδδ13
C ‰ 

VPDB 

14
C age BP 

surface interior 

Visible burn 

cracks 

AAR-8789 (Olsen et al. 2008) Bone 98.6% 0.09 0.09 5.3 -23.05 3128±28
 

Yellow White No 

AAR-13976 (this study) Bone 96.9% 0.12 n/a n/a -23.69 3126±29 Yellow White No 

Combined (AAR-8789, -13976)    -23.37 3127±20 0.0≤3.8   
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1550 BC 1500 BC 1450 BC 1400 BC 1350 BC 1300 BC 1250 BC

2950

3000

3050

3100

3150

3200

3250

3300

  68.2% probability

    1430 - 1396BC (68.2%)

  95.4% probability

    1446 - 1377BC (89.5%)

    1338 - 1321BC (5.9%)

A
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e
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1
4
C

 y
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B
P

)

Combined(AAR-8789, -13976), 3127±20 14C yr BP

1370 BC (dendro)

3054±16 14C yr BP

IntCal09
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