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Abstract 

A facile sonochemical method has been developed to prepare very small zinc sulfide nanoparticles (ZnS 

NPs) of extremely small size about 1 nm in diameter using a set of ionic liquids based on the bis 

(trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The 

structural features and optical properties of the NPs were determined in depth with X-ray powder 

diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier 

transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) analysis, and UV-vis 

absorption spectroscopy. The energy band gap measurements of ZnS NPs were calculated by UV-vis 

absorption spectroscopy. One of the interesting features of the present work is that the wide band gap 

semiconductor ZnS nanocrystals were prepared which are used in the fabrication of photonic devices.  

 

 

Keywords: Zinc sulfide nanoparticles; ionic liquid; sonochemical method; optical properties; band 

gap 
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1. Introduction 

    Semiconductor nanomaterials exhibit unique size-dependent physical and chemical properties that 

differ from those of the bulk systems [1]. Among them, zinc sulfide, ZnS, has attracted much research 

interest because of its excellent properties and applications in laser devices [2], mesoscopic electronic 

and optical devices [3], light-emitting diode (LED), thin film solar cells,  IR windows [4], etc. Many methods 

have been developed for the preparation of ZnS NPs including solid-phase reactions [5], sol-gel process 

[6], solvothermal route [7,8], sonochemical  method [9,10], liquid-phase chemical precipitation [11], ion 

complex transformation method [12], and microwave irradiation [13].  

    Sonochemistry has been used successfully to prepare NPs because this method can produce particles 

with much smaller size and higher surface area than those reported by other methods [14]. The chemical 

effects of powerful ultrasound arise from acoustic cavitations which are the formation, growth, and 

implosive collapse of bubbles in a liquid [15]. 

    Room-temperature ionic liquids (ILs) are attractive environmentally benign solvents for organic 

chemical reactions, separations, and electrochemical applications [16]. Ionic liquids are favorable media 

for the electrostatic stabilization of preformed NPs at room temperature [17-19]. 

    In this work, we applied ultrasound irradiation in conjunction with the set of ionic liquids based on 

the  bis (trifluoromethylsulfonyl) imide  anion and different cations of 1-alkyl-3-methyl-imidazolium  to 

produce ZnS NPs of extremely small size about 1 nm in diameter without using surfactant.  

  The structural and optical properties of the NPs were determined with XRD, TEM, HRTEM, FTIR 

spectroscopy, DLS analysis, and UV-vis absorption spectroscopy. The energy band gap measurements 

of ZnS NPs were carried out by UV-visible absorption spectroscopy. To the best of our knowledge, for 

the first time, these ionic liquids are used for the synthesis of ZnS NPs. 
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2. Experimental 

2.1. Materials 

    All ILs, namely 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([C4mim][NTf2]), 

1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([C6mim][NTf2]), and 1-octyl-3-

methylimidazolium bis (trifluoromethylsulfonyl) imide ([C8mim][NTf2]) used in this work were 

synthesized according to the literature [20]. All ionic liquids were analyzed by NMR, Karl-Fischer 

titration for water content, and ion chromatography for chloride content. In all cases, the water mass 

fraction was found to be less than 0.001 and chloride mass fraction was less than 5 x 10-6. All other 

chemicals used were of analytical grade and used as received without further purification. 

2.2. Preparation  

    In a typical synthesis of ZnS NPs, 12 gram zinc acetate (Zn(CH3COO)2.2H2O) was dissolved in 100 

ml deionized water. To this soluition,  2 ml ionic liquid and 3.7 gram thioacetamide (CH3CSNH2) were 

added. The solution was kept in ambient environment with a stirring rate 500 rpm for 20 min. Then, the 

reaction ultrasonicated using Sonicator 4000 (20 kHz) for 1 h.   The temperature was maintained 15 oC  

by a water jacket. The total acoustic power injected into the sample solution was found to be 44 ± 0.5 W 

by calorimetry. When the reaction was finished, a white precipitate was obtained. The resulting 

precipitate was centrifuged (15000 rpm) and washed with ethanol and deionized water several times to 

remove excess ILs and any possible ionic remnants. At last, the products were dried in a vacuum oven at 

60 oC for 15 hours. A similar procedure was used for the fabrication of ZnS NPs in the absence of ILs.  

    To understand the role of ultrasound in the preparation, ZnS NPs were prepared using microwave 

(1000 W) method in the presence of [C4mim][NTF2]. For this purpose, all the reaction conditions were 

the same except microwave waves was vused instead of ultrasound waves. A working cycle of 10 s on 

and 5 s off (30% power) was used.  
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2.3. Characterization 

    The powder phases were determined by means of  a Bruker/ D8 Advanced diffractometer  in the 2θ 

range from 20o to 70o, by step of 0.04 degree, with graphite monochromatic Cu Kα radiation (λ= 1.541 

Å). The TEM images were taken by  LEO 912. The HRTEM images were taken by FEI Tecnai F20 

Field emission using an accelerating voltage of 200 kV. 

 The DLS experiments of the particles were measured by the Zetasizer (Nano-ZS) from Malvern 

Instrument. 

    The FTIR spectra of the ZnS NPs were recorded at room temperature with a KBr pellet on a 

Shimadzu 4300 Spectrometer ranging from 400 to 4000 cm-1. The UV-vis absorbance spectra were 

obtained for the samples using an Agilent photodiode-array Model 8453 equipped with quartz cell of 1 

cm path length. The spectra were recorded at room temperature in air within the range 200-550 nm.  

3. Results and discussion 

3.1. Structure and morphology  

    Fig. 1 shows the XRD patterns of the ZnS NPs. All the diffraction peaks were labeled and indexed as 

the cubic phase. The strong and sharp diffraction peaks indicate the good crystallinity of the samples.  

No additional peaks in the XRD were observed, revealing the high purity of the prepared ZnS NPs. 

    The average crystallite size of ZnS NPs, Dhkl, can be calculated using the Scherrer’s equation: 

(1)
coshkl

hkl hkl

kD λ
β θ

×=
×

 

where Dhkl is the particle size perpendicular to the normal line of (hkl) plane, k is a constant (0.9), βhkl is 

the full width at half maximum of the (hkl) diffraction peak, θhkl is the Bragg angle of (hkl) peak, and λ 

is the wavelength of X-ray. The peak position and the FWHM were obtained by fitting the measured 

peaks with two Gaussian curves in order to find the true peak position and width corresponding to 
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monochromatic Cu Kα radiation. The characteristics of the ZnS NPs from the XRD patterns were 

summarized in Table 1. The lattice constants of  ZnS nanosamples  derived from the XRD data  exhibit 

a lattice contraction with respect to the value reported for bulk cubic ZnS (a = 5.41 A° [21]). Reduction 

of the lattice parameters in magnitude is called the lattice contraction that has important influences on 

physical and chemical properties of a material. With shrinking the solid size of a material to nanoscale, 

the strain will be spontaneous taken place due to high ratio of surface atoms with respect to the bulk 

atoms and hence the lattice contraction occurs. 

   The average crystallite size of ZnS NPs does not change when ILs were used. However, ILs prevent 

the further growth of ZnS NPs.  In our previous work, cerium oxide NPs were prepared by microwave 

in the presence of these ionic liquids [22]. The crystallite size of cerium oxide NPs changed when ILs 

was used. Hence, it is plausible to say that the effect of sonication is much greater than that of ILs. In 

fact, the ultrasonic waves cause the breakup of the agglomerates. The deagglomeration by 

ultrasonication is a result of ultrasonic cavitation. Ultrasonic cavitation in liquids causes high-speed 

liquid jets of up to 1000 km/hr. Such jets press liquid at high pressure between the particles and separate 

them from each other.  

    The TEM images of samples 1, 3, and 4 were shown in Fig. 2. All the samples display uniform cubic 

morphology with the average particle size below 1 nm which are in agreement with the XRD results.  

The histogram of particle size distribution (PSD) for sample 1 was measured and shown in Fig. 2. 

Recently, Fang et al. [23 ] provided a comprehensive review of the state-of-the-art research activities 

related to ZnS nanostructures, including their synthesis, novel properties studies, and potential 

applications. He reviewed the various facile techniques applied for synthesis of ZnS NPs. None of the 

methods could prepare ZnS NPs with the average particle size less than 2 nm prepared in this work. 

    Fig. 2 (d) also shows the TEM image of ZnS NPs prepared by microwave method in the presence of 

[C4mim][NTF2]. All the particles display uniform cubic morphology with average size of about 6.0 nm 
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which is more than that of  sample 2 which was prepared by utrasound method. As the HRTEM image 

of sample 1 (Fig. 3) shows the ZnS NPs are very fine. 

Figure 4 shows the FTIR spectra of the samples. The doublet around 694 cm-1 assigned to the Zn-S 

stretching band confirms the formation of ZnS [24]. The peak at ca. 3400 cm-1 corresponds to the 

physically adsorbed water on the NPs.     

     The size distribution of the samples 1 and 4 was examined by a DLS analyzer (Fig. 5). The DLS data 

suggest that the samples 1 and 4 mainly consist of particles of about 11.5 nm and 18 nm, respectively. 

Clearly, the particle size measured by DLS analysis is larger than that of the TEM analysis since the 

hydrodynamic radius is probed with DLS. 

The optical responses of the ZnS NPs were investigated via UV-vis absorption spectroscopy and the 

results were presented in Fig. 6 for sample 1 and Table 2.  As Table 2 shows a blue shift occurs 

compared with the maximum absorption peak of bulk ZnS (345 nm). The shift of the absorption edges 

to shorter wavelengths is due to the quantum confinement of ZnS NPs. 

The optical energy band gap, Eg was been calculated from the UV-vis spectrum using the Tauc 

relation [25]: 

(αhυ)n = B(hυ − Eg)                                                             (2) 

where hυ is the photon energy, α is the absorption coefficient, B is a constant relative to the material, 

and n is either 2 for a direct transition or 1/2 for an indirect transition. Since zinc sulfide is a direct band 

gap semiconductor, the value of n is 2. The energy intercept of a plot of (αhυ)2 versus hυ yields Eg (see 

inset of Fig. 6). The values of direct band gap energy of the samples were summarized in Table 2.  As 

this table shows the values of band gap were  effectively tuned by the particle size or strain induced by 

solid size. 

    Since the size-related band gap shift of semiconductor nanocrystals can be quantified, it is possible to 

calculate an optical particle size with the band gap shift measured from absorption spectra [26]. The 

relation between the particle size and effective band gap of a nanomaterial can be given by the effective 

mass approximation model of Brus [27]: 
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where Eg,b is the bulk band gap (3.54 eV), R is the particle radius, *
em and *

hm   are the effective masses 

of  the electron and hole, respectively where *
em = 0.42 mo, 

*
hm = 0.61 mo. mo is the mass of a free 

electron, and ε is the bulk optical dielectric constant which is 8.76.  

    

4. Conclusions 

    A novel method for preparation of very small ZnS NPs using ultrasonic waves in the presence of ILs 

was described. Our method combines the advantages of using ultrasonic and ILs. It could be a general 

approach for synthesizing the ZnO NPs with high yields. The optical band gap energy of ZnS NPs was 

calculated using UV-vis spectroscopy. The band gap of ZnS NPs estimated from the absorption peaks is 

much larger than that of bulk ZnS due to the quantum confinement effect. One of the interesting features 

of the present work is that the wide band gap semiconductor ZnS nanocrystals were prepared which are 

used in the fabrication of photonic devices such as blue lasers and blue ultraviolet photodetectors, etc. 

The other important feature is that ZnS NPs was prepared without using surfactant. 
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TABLES 

 

 

 

Table 1 

The characteristics of the ZnS NPs from  XRD patterns. 

             Sample             ILs                D111(nm)            2θ              Lattice parameter (Ao)    Cell volume (Ao3)

1              Without ILs             2.03            29.40                    5.25                       144.70 

    2           [C4mim][NTF2]          2.13            29.06                    5.30                       148.87 

    3           [C6mim][NTF2]          2.05            29.12                    5. 29                      148.87 

    4            [C8mim][NTF2]         2.07            29.05                    5.31                       149.72              
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Table 2 

The optical properties of ZnS NPs.  

Sample            λmax ,UV (nm)           Eg,UV (eV)a           dUV (nm) b    

    1                         202                      5.77                3.31 

    2                         200                      5.49                4.77  

    3                         208                      4.86                5.37 

    4                         202                      5.58               3.63 

a Calculated from UV-Vis spectra. 
b  Calculated using Eq. 3. 
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Figure Captions 

Fig. 1. The XRD pattern of  ZnS NPs for: (a) sample 1 , (b)  sample 2,  (c) sample 3, (d) sample 4. 

Fig. 2. The TEM images of ZnS NPs for: (a) sample 1 along with the historam of PSD measured from 

the image, (b)  sample 3,  (c) sample 4 (d). ZnS NPs prepared by microwave method in the presence of 

[C4mim][NTF2]. 

Fig. 3. The  HRTEM image of sample 1. 

Fig. 4. The FT-IR spectra of  ZnS NPs for: (a) sample 1 , (b)  sample 2,  (c) sample 3, (d) sample 4. 

Fig. 5.  The DLS data of size distribution of (a) sample (1) and (b) sample 4. 

Fig. 6. The UV-vis spectrum of sample 1 dispersed in ethanol. Plot of  (αhυ)2   vs. photon energy (inset). 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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 Wide band gap  ZnS NPs were prepared which can be used in the photonic devices. 

  Ionic liquids based on the imidazolium cation were used for the synthesis of ZnS NPs. 

 The method is found to be convenient and environmentally friendly.  

 No surfactant was used in the synthesis of ZnS NPs. 

 

 

 


