

Mitochondrial DNA haplotype analysis of liver fluke in bison from Bialowieza Primaeval Forest indicates domestic cattle as the likely source of infection

Walker, S. M., Prodöhl, P. A., Brennan, G., Fairweather, I., Hoey, E. M., Trudgett, A., ... Teofanova, D. (2013). Mitochondrial DNA haplotype analysis of liver fluke in bison from Bialowieza Primaeval Forest indicates domestic cattle as the likely source of infection. Veterinary Parasitology, 191(1-2), 161–164. DOI: 10.1016/j.vetpar.2012.08.002

Published in:

Veterinary Parasitology

Document Version:

Peer reviewed version

Queen's University Belfast - Research Portal:

Link to publication record in Queen's University Belfast Research Portal

Publisher rights

This is the author's version of a work that was accepted for publication in Veterinary Parasitology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Veterinary Parasitology, VOL 191, ISSUE 1-2, 16/01/2013

General rights

Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Accepted Manuscript

Title: Mitochondrial DNA haplotype analysis of liver fluke in bison from Bialowieza Primeval Forest indicates domestic cattle as the likely source of infection

Authors: Stephen M. Walker, Aleksander W. Demiaszkiewicz, Monika Kozak, Halina Wedrychowicz, Denitsa Teofanova, Paulo Prodohl, Gerry Brennan, Ian Fairweather, Elizabeth M. Hoey, Alan Trudgett

PII: DOI: Reference:	S0304-4017(12)00415-3 doi:10.1016/j.vetpar.2012.08.002 VETPAR 6473
To appear in:	Veterinary Parasitology
Received date:	11-1-2012
Revised date:	12-6-2012
Accepted date:	2-8-2012

Please cite this article as: Walker, S.M., Demiaszkiewicz, A.W., Kozak, M., Wedrychowicz, H., Teofanova, D., Prodohl, P., Brennan, G., Fairweather, I., Hoey, E.M., Trudgett, A., Mitochondrial DNA haplotype analysis of liver fluke in bison from Bialowieza Primeval Forest indicates domestic cattle as the likely source of infection, *Veterinary Parasitology* (2010), doi:10.1016/j.vetpar.2012.08.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Mitochondrial DNA haplotype analysis of liver fluke in bison from Bialowieza
2	Primeval Forest indicates domestic cattle as the likely source of infection.
3	
4	Stephen M. Walker ¹ , Aleksander W. Demiaszkiewicz ² , Monika Kozak ² , Halina
5	Wedrychowicz ² , Denitsa Teofanova ³ , Paulo Prodohl ¹ , Gerry Brennan ¹ , Ian
6	Fairweather ¹ , Elizabeth M. Hoey ¹ , and Alan Trudgett ¹ *.
7	
8	
9	¹ School of Biological Sciences, The Queen's University of Belfast, 97 Lisburn road,
10	Belfast, N. Ireland.
11	² Polish Academy of Science, Molecular Parasitology Laboratory, W Stefanski Institute
12	of Parasitology, PL-00818 Warsaw, Poland
13	³ Institute of Experimental Pathology and Parasitology-BAS, 25 "Akad. Georgi
14	Bonchev", 1113 Sofia, Bulgaria.
15	
16	* corresponding author
17	
18	Abstract
19	We have determined the mitochondrial genotype of liver fluke present in Bison (Bison
20	bonasus) from the herd maintained in the Bialowieza National Park in order to
21	determine the origin of the infection. Our results demonstrated that the infrapopulations
22	present in the bison were genetically diverse and were likely to have been derived from
23	the population present in local cattle. From a consideration of the genetic structure of
24	the liver fluke infrapopulations we conclude that the provision of hay at feeding stations

- 25 may be implicated in the transmission of this parasite to the bison. This information
- 26 may be of relevance to the successful management of the herd.
- 27 Key words: Bison; Fasciola hepatica; genetic diversity; Bialowieza.
- 28

29 1. Introduction

30

31 The Bialowieza Primeval Forest (52°45'53"N, 23°51'39"E) covers an area of approximately 1500 km² and straddles the border between Poland and Belarus. It is 32 33 characterised by stands of trees that are considered to be representative of those once 34 present over much of prehistoric northern Europe (Falinski, 2003) and supports a wide 35 variety of native European fauna, although management as a game reserve in previous 36 centuries has led to the extinction of some predators (such as the bear) and the 37 introduction of some non-native species (Sidorovich et al., 1996). Its most famous 38 "charismatic megafauna" is the European Bison, Bison bonasus and this species plays a 39 significant role in maintaining the ecology of the forest (Jaroszewicz et al. 2009). There 40 are two populations of bison, one in the Belarus part of the forest and the other in the Bialowieza National Park (BNP), a 100 km² area of commercially unexploited forest on 41 42 the Polish side of the border. The bison in the BNP are separated from farmland and 43 domestic animals and their numbers are controlled to some extent by provision of 44 winter fodder and culling. The native bison herd was exterminated in 1918 and re-45 established using twelve animals (some of which were descendants of the Bialowieza 46 bison) from zoological gardens in the 1950s. As a result of this process, the herd has 47 very limited genetic diversity, with mitochondrial DNA studies indicating only three 48 haplotypes (Wójcik et al., 2009) in 195 individuals. The herd's nuclear genome is

similarly restricted, with only four alleles being found at the Major Histocompatibility
Complex (MHC) DRB3 locus in contrast to that in the American bison, *Bison bison*,
which, although also having suffered population bottle-necks, has 15 alleles (Radwan et
al., 2007; Traul et al., 2005). The four alleles present in the Bialowieza herd, however,
are highly divergent. The potential effects of loss of genetic variability and in particular
restricted MHC variability on the survival of species have been recently reviewed
(Radwan et al., 2010a).

56 Since the early 1980s, male bison in the Bialowieza herd have been suffering 57 from balanoposthitis, a chronic disease of the external genital organs associated with 58 infection with Arcanobacterium spp. (Lehnen et al., 2006) and it has been postulated 59 that this infection, which may endanger the herd, is a consequence of the lack of MHC 60 diversity (Udina and Shaikhaev, 1998). The Bialowieza herd is also susceptible to 61 infection by helminth parasites, with up to 44% of animals culled in 2001 carrying the 62 liver fluke, Fasciola hepatica (Kizeiwicz, 2008). In recent years, this incidence has 63 risen to 100% of adults, some of which show very heavy infections (> 600 flukes) 64 (Demiaszkiewicz et al., 2008). Infection with this parasite has been shown to modulate 65 the host's immune system towards a T helper 2 cytokine profile (Brady et al., 1999). It 66 has recently been proposed that this immunomodulatory effect may be due to secreted 67 helminth molecules that mimic the action of mammalian cathelicidins and may act to 68 reduce the inflammatory component of the immune response to bacterial infections 69 (Robinson et al. 2011). This raises the possibility that the balanoposthitis infection in 70 the Bialowieza herd may become a chronic infection due to the presence of a 71 concomitant liver fluke infection. In these circumstances, it is desirable to investigate 72 the origin of the liver flukes present in these animals in order to devise strategies which

73 may reduce the frequency of infection. We have determined the mitochondrial 74 haplotypes of flukes from bison and cattle from the Bialowieza region and compared 75 these with those seen in flukes from the wider northern European cattle population. 76 77 2. Materials and Methods 78 79 Flukes were obtained from bison culled in 2007 (Demiaszkiewicz et al. 2008) and transported in absolute alcohol. Approximately 25mm³ of fluke tissue was placed 80 81 into 500µl of 10% w/v Chelex® (Fluka) solution incorporating 10µl proteinase K 82 (Sigma) at a concentration of 20mg/ml. This was heated at 55°C for one hour, followed 83 by gentle vortexing and a further incubation at 95°C for 30 minutes. The mixture was 84 gently vortexed and spun down at 10,000g for 10 seconds. The 250 μ l of supernatant 85 was taken, diluted 1:10 in deionised water and stored at -20°C. Details of the primers 86 and procedures used for mitochondrial DNA analysis, data assembly and analysis of 87 population structure have been given elsewhere (Walker et al. 2011a; Teofanova et al. 88 2011). The sequences of each unique haplotype from the Polish flukes samples were 89 submitted to GenBank and have been assigned Accession numbers HM 487168 to HM 90 487199. The Bison fluke dataset was supplemented in analysis by sequences from five 91 flukes from cattle from eastern Poland and 444 flukes from a Dutch fluke dataset. 92 Details of the origin of these flukes and their Accession numbers are given elsewhere 93 (Teofanova et al. 2011, Walker et al. 2011a). Median-Joining networks were calculated 94 using "Network 4.5" (Flexus Technology Ltd) software which incorporates the 95 algorithm developed Bandelt and colleagues (Bandelt et al., 1999). 96

97 **3. Results**

98

99	A total of twenty-six sequences suitable for analysis were obtained from samples
100	of the flukes present in the infrapopulations from six bison (number of flukes analysed
101	per infrapopulation, 4,4,4,4,5,5). Following alignment and analysis, it was shown that
102	the twenty-six flukes carried twelve distinct mitochondrial haplotypes. Within the
103	population, the haplotypes followed a leptokurtic distribution, with the most common
104	haplotype occurring eleven times, the two next most frequent five times and twice,
105	respectively, and the remaining haplotypes being present in single flukes. There were
106	twenty-nine polymorphic sites seen in the 1160 nucleotides present in the analysed
107	sequences and the average number of nucleotide differences between pairs of samples
108	(Pi) was 0.00605. All mitochondrial sequences were consistent with the flukes being F .
109	hepatica rather than F. gigantica or other fasciolids. Infrapopulations from individual
110	bison generally contained several (< 4) haplotypes.

111

In order to investigate the genetic relationship between the flukes present in the 112 113 bison and those present in local domestic cattle, the dataset was supplemented with 114 flukes from Polish cattle and a Median Joining Network plotted (Figure 1a). This 115 shows that the flukes from the bison were derived from two well-defined clades with 116 almost all of the individual flukes being associated with the taxa forming the nucleus of 117 the clade or separated from these taxa by only one or two nucleotide changes. The 118 flukes from the local cattle were associated with only with one of these clades. In view 119 of the possibility that the small number of Polish flukes from cattle present in the 120 dataset could be distorting the analysis, we repeated it with the incorporation of a larger

121	dataset (N=444) containing flukes from elsewhere in northern Europe. To simplify the
122	display, a "star contraction" of 3 was applied to the data before calculating the network:
123	this condenses minor nodes (differing by less than three nucleotide changes) within a
124	clade. Figure 1b shows that, under these conditions, the Polish flukes from both cattle
125	and bison are associated with the two major clades seen with flukes from northern
126	Europe.
127	
128	4. Discussion
129	
130	The high prevalence of liver fluke infection in the bison herd in BNP
131	(Demiaszkiewicz et al., 2008) is indicative of the general immunological "weakness" of
132	this population. The results presented in this study prove that the liver flukes are
133	Fasciola hepatica and that, although the establishment of the BNP has allowed the
134	preservation of many ancient flora and fauna, these parasites do not appear to be
135	distinctive and are drawn from the same population as that which is common in present-
136	day cattle and sheep in northern Europe (Walker et al. 2011a). The BNP is separated
137	from adjacent farmland by a fence which should have prevented the ingress of infected
138	cattle or sheep and the subsequent transmission of <i>F. hepatica</i> to local snail populations.
139	There are a number of possibilities with regard to the route by which the population of
140	F. hepatica described in this study may have become part of the Bialowieza forest eco-
141	system. Wild herbivorous animals may have acted as a vector; deer are plentiful in the
142	forest and have been reported to be infected with liver fluke in the past although a recent
143	study of forty-one deer found that only three showed evidence of fasciolosis
144	(Demiaszkiewicz, in preparation). Hares are known to act as vectors for liver fluke both

145 in the Bialowieza region and elsewhere (Shimalov, 2001; Rondelaud et al., 2001). 146 However, infra-populations (the number of parasites in a single host) are typically small 147 in hares and rarely exceed three or four flukes (Shimalov, 2001; Walker et al. 2011b). 148 The diversity of haplotypes seen in the bison population is such that it would have 149 required multiple introductions by infected hares. This same argument would also be 150 valid with regard to the possibility that there had been an introduction of a population of 151 infected lymnaeid snail intermediate hosts. Although Polish lymnaeid snail populations 152 may have a high prevalence of infection (Kozak and Wedrychowicz, 2010) individual 153 snails are rarely infected by more than one or two miracidia (Kaplan et al., 1997) and 154 the asexual reproduction occurring at this stage of the life cycle acts to reduce genetic 155 diversity. The similarity of the mitochondrial haplotypes found in liver flukes from the 156 bison herd and those from cattle implicate cattle - directly or indirectly - in the 157 introduction of F. hepatica into the bison herd. Up to approximately fifty years ago 158 domestic cattle were grazed in the clearings of the Bialowieza National Park, however 159 heavy infection with liver fluke has only become evident in the last decade (Kizeiwicz, 160 2008), posing the question as to what was acting as the definitive mammalian host for 161 the parasite during the intervening years. Recruitment to the bison herd has been shown 162 to be related to climatic conditions, with the abundance of oak seeds (masting) in the 163 preceding year and the depth of snow in winter being major factors (Mysterud et al., 164 2007). To ameliorate the effects of snowy weather, hay is provided at a number of 165 feeding sites, which leads to the bulk of the herd gathering at these sites during the 166 winter months. It is possible that the fluke may have been inadvertently introduced into 167 the forest as metacercariae on contaminated hay. Liver fluke metacercariae are known 168 to be able to remain infective on foliage for up to eight months at above -10° C (Boray

169	and Enigk, 1964). Hay sourced from local farms (Kowalczyk et al. 2011) would, if
170	contaminated with F. hepatica metacercariae, transmit a population of flukes derived
171	from the local cattle population; this would explain why the distribution of haplotypes
172	and diversity seen in the bison flukes resembles that of the cattle flukes.
173	
174	Although the high prevalence of the fasciolosis in the bison herd means that the
175	infection is probably self-maintaining, the likely origin of the flukes in local farm stock
176	means that they will be amenable to anthelmintic drugs should it become necessary to
177	treat individual bison. The long-term benefits of providing winter feeding have been
178	questioned (Wolk and Krasińska, 2004, Kowalczyka et al., 2011), as the congregation
179	of animals round the feeding stations may be conducive to the spread of infectious and
180	parasitic diseases (Radwan et al., 2010b). The findings in this study and that of others
181	(Jaroszewicz et al., 2009) indicate that further consideration should be given to the
182	question of supplementary winter feeding and the source of such feed should be
183	controlled, not only with regard to seeds from non-native species (as it is at present) but
184	also for possible contamination with parasite propagules.
185	
186	Acknowledgements
187	
188	This study was supported financially by the DeLiver consortium of the European Union
189	VII Framework Programme (FOOD-CT-200X-023025).

190

191 **References**

192

193	Bandelt, H.J., Forster, P., Röhl, A., 1999. Median-joining networks for inferring
194	intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48.
195	Boray J.C., Enigk K., 1964. Laboratory studies on the survival and infectivity of
196	Fasciola hepatica and Fasciola gigantica metacercariae. Z. Tropenmed.
197	Parasitol. 15, 326-331.
198	Brady, M.T., O'Neill, S.M., Dalton, J.P., Mills K.H.G., 1999. Fasciola hepatica
199	suppresses a protective Th1 response against Bordetella pertussis. Infect.
200	Immun. 67, 5372–5378.
201	Demiaszkiewicz, A.W., Pyziel A.M., Lachowicz J., 2008. Helminthological status of
202	European Bison in the Bialowieza Forest in the winter 2007/2008. European
203	Bison Conservation Newsletter. 1, 42-52.
204	Falinski, J.B., 2003. Bialowieza forest, a relict ecosystem in Poland and Belarus.
205	Biodiversity (Ottawa). 4, 18-27.
206	Jaroszewicz, B.; Pirozikow, E.; Sagehorn, R., 2009. Endozoochory by European bison
207	(Bison bonasus) in Bialowieza Primeval Forest across a management gradient.
208	Forest Ecol. Manag. 258, 11-17.
209	Kaplan R.M., Dame J.B., Reddy G.R., Courtney C.H., 1997. The prevalence of
210	Fasciola hepatica in its snail intermediate host determined by DNA probe assay.
211	Int. J. Parasitol. 27, 1585-1593.
212	Kiziewicz, B., 2008. Prevalence of Natural Infection with Liver Fluke Fasciola
213	hepatica (Linnaeus, 1758) in European Bison Bison bonasus in Bialowieza

- 214 Primeval Forest of Poland. X European Multicolloquium of Parasitology –
- EMOP 10 Paris, France. Abstract 136.

216 Kowalczyka, R., Taberlet, P., Coissac, E., Valentini, A., Miquel, C., Kaminskia, T.,

217	Wójcika, J.M. 2011. Influence of management practices on large herbivore
218	diet-Case of European bison in Białowieza Primeval Forest (Poland). Forest
219	Ecology and Management 261, 821–828.
220	Kozak, M., Wędrychowicz, H., 2010. The performance of a PCR assay for field studies
221	on the prevalence of Fasciola hepatica infection in Galba truncatula
222	intermediate host snails. Vet. Parasitol. 168, 25-30.
223	Lehnen, A., Busse, H-J., Frölich, K., Krasinska, M., Kämpfer P., Speck, S., 2006.
224	Arcanobacterium bialowiezense sp. nov. and Arcanobacterium bonasi sp. nov.,
225	isolated from the prepuce of European bison bulls (Bison bonasus) suffering
226	from balanoposthitis, and emended description of the genus Arcanobacterium
227	Collins et al. 1983. Int. J. Sys. Evol Micr. 56, 861-866.
228	Mysterud, A., Barton, K.A., Jedrzejewska, B., Krasinski, Z.A., Niedzialkowska, M.,
229	Kamler, J.F., Yoccoz, N.G., Stenseth, N.C., 2007. Population ecology and
230	conservation of endangered megafauna: the case of European bison in
231	Bialowieza Primeval Forest, Poland. Anim. Conserv. 10, 77-87.
232	Radwan, J., Kawalko, A., Wójcik, J.M., Babik, W., 2007. MHC-DRB3 variation in a
233	free-living population of the European bison, Bison bonasus. Mol. Ecol.16, 531-
234	540.

235	Radwan, J., Biedrzycka, A., Babik, W., 2010a. Does reduced MHC diversity decrease
236	viability of vertebrate populations? Biol. Conserv. 143, 537-544
237	Radwan, J., Demiaszkiewicz, A.W., Kowalczyk, R., Lachowicz, J., Kawałko A.,
238	Wójcik, J.M., Pyziel, A.M., Babik, W. 2010b. An evaluation of two potential
239	risk factors, MHC diversity and host density, for infection by an invasive
240	nematode Ashworthius sidemi in endangered European bison (Bison bonasus).
241	Biol. Conserv. 143, 2049-2053.
242	Robinson, M.W., Donnelly, S., Hutchinson, A.T., To, J., Taylor, N.L., Norton, R.S.,
243	Perugini, M.A., Dalton, J.P. 2011. A family of helminth molecules that modulate
244	innate cell responses via molecular mimicry of host antimicrobial peptides.
245	PLoS Pathog 7(5): e1002042. doi:10.1371/journal.ppat.1002042.
246	Rondelaud, D., Vignoles, P., Abrous, M., Dreyfuss, G., 2001. The definitive and
247	intermediate hosts of Fasciola hepatica in the natural watercress beds in central
248	France. Parasitol. Res. 87, 475-478.
249	Shimalov, V.V., 2001. Helminth fauna of the hare (Lepus europaeus Pallas, 1778) in the
250	southern part of Belarus. Parasit. Res. 87, 85.
251	Sidorovich, V.E.; Jedrzejewska, B.; Jedrzejewski, W., 1996. Winter distribution and
252	abundance of mustelids and beavers in the river valleys of Bialowieza Primeval
253	Forest. Acta Theriol. 41, 155-170.
254	Teofanova, D., Kantzoura, V., Walker, S., Radoslavov, G., Hristov, P.,
255	Theodoropoulos, G., I. Bankov, I., Trudgett, A. 2010. Genetic diversity of liver
256	flukes (Fasciola hepatica) from Eastern Europe. Infect. Genet. Evol. 11, 109-
257	115.

258	Traul, D.L., Bhushan, B., Eldridge, J.A., Crawford, T.B., Li, H., Davies, C.J., 2005.
259	Characterization of Bison bison major histocompatibility complex class IIa
260	haplotypes. Immunogenetics. 57, 845-854.
261	Udina, I.G., Shaikhaev, G.O., 1998. Restriction fragment length polymorphism (RFLP)
262	of exon 2 of the MhcBibo-DRB3 gene in European bison Bison bonasus. Acta
263	Theriol. S5: 75-82.
264	Walker, S.M,, Johnston' C., Hoey E.M., Fairweather' I., Borgsteede, F., Gaasenbeek, C.,
265	Prodöhl' P.A., A. Trudgett' A. 2011a. Population dynamics of the liver fluke,
266	Fasciola hepatica: the effect of time and spatial separation on the genetic
267	diversity of fluke populations in the Netherlands. Parasitol. 138, 215-223.
268	Walker, S.M., Johnston C, Hoey EM, Fairweather I, Borgsteede FH, Gaasenbeek CP,
269	Prodohl PA, Trudgett A. 2011b. Potential role of hares in the spread of liver
270	fluke in the Netherlands. Vet Parasitol. 177, 179-181.
271	Wójcik, J.M., Kawałko, A., Tokarska, M., Jaarola, M., Vallenback, P., Pertoldi, C.,
272	2009. Post-bottleneck mtDNA diversity in a free-living population of European
273	bison: implications for conservation. J. Zool. 277, 81-87.
274	Wolk, E., Krasiñska, M., 2004. Has the condition of European bison deteriorated over
275	last twenty years? Acta Theriol. 49, 405–418.
276	

276 Figure Legend

277

278	Figure 1a. Median Joining Network for Polish flukes. White nodes – flukes from
279	Bison; black nodes - flukes from local cattle; red median vector node - virtual
280	(hypothetical) node. The size of each node is proportional to the number of
281	individual flukes bearing that haplotype. The distances between nodes are
282	proportional to genetic distance, as indicated by the positions of nucleotide
283	changes, which are shown by red numerals.
284	

- Figure 1b. Median Joining Network for Polish and other northern European Flukes.
- 286 Nodes containing haplotypes found in the Polish flukes from bison and cattle are
- shown in grey, white nodes other northern European cattle flukes.

288

Figure Legend

Figure 1a. Median Joining Network for Polish flukes. White nodes – flukes from Bison; black nodes - flukes from local cattle; red median vector node – virtual (hypothetical) node. The size of each node is proportional to the number of individual flukes bearing that haplotype. The distances between nodes are proportional to genetic distance, as indicated by the positions of nucleotide changes, which are shown by red numerals.

Figure 1b. Median Joining Network for Polish and other northern European Flukes. Nodes containing haplotypes found in the Polish flukes from bison and cattle are shown in grey, white nodes – other northern European cattle flukes.