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Hypercyclic and mixing operator semigroups

Stanislav Shkarin

Abstract

We describe a class of topological vector spaces admitting a mixing uniformly continuous op-
erator group {Tt}t∈Cn with holomorphic dependence on the parameter t. This result covers those
existing in the literature. We also describe a class of topological vector spaces admitting no super-
cyclic strongly continuous operator semigroups {Tt}t>0.

MSC: 47A16, 37A25
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1 Introduction

Unless stated otherwise, all vector spaces in this article are over the field K, being either the field
C of complex numbers or the field R of real numbers and all topological spaces are assumed to be
Hausdorff. As usual, Z is the set of integers, Z+ is the set of non-negative integers, N is the set of
positive integers and R+ is the set of non-negative real numbers. Symbol L(X,Y ) stands for the space
of continuous linear operators from a topological vector space X to a topological vector space Y . We
write L(X) instead of L(X,X) and X ′ instead of L(X,K). X ′

σ is X ′ with the weak topology σ, being
the weakest topology on X ′ making the maps f 7→ f(x) from X ′ to K continuous for all x ∈ X. For
any T ∈ L(X), the dual operator T ′ : X ′ → X ′ is defined as usual: (T ′f)(x) = f(Tx) for f ∈ X ′ and
x ∈ X. Clearly T ′ ∈ L(X ′

σ). For a subset A of a vector space X, span (A) stands for the linear span
of A. For brevity, we say locally convex space for a locally convex topological vector space. A subset
B of a topological vector space X is called bounded if for any neighborhood U of zero in X, a scalar
multiple of U contains B. The topology τ of a topological vector space X is called weak if τ is exactly
the weakest topology making each f ∈ Y continuous for some linear space Y of linear functionals on
X separating points of X. An F-space is a complete metrizable topological vector space. A locally
convex F-space is called a Fréchet space. Symbol ω stands for the space of all sequences {xn}n∈Z+

in K with coordinatewise convergence topology. We denote the linear subspace of ω consisting of
sequences x with finite support {n ∈ Z+ : xn ̸= 0} by φ. If X is a topological vector space, then
A ⊂ X ′ is called equicontinuous if there is a neighborhood U of zero in X such that |f(x)| 6 1 for any
x ∈ U and f ∈ A.

Let X and Y be topological spaces and {Ta : a ∈ A} be a family of continuous maps from X to Y .
An element x ∈ X is called universal for this family if {Tax : a ∈ A} is dense in Y and {Ta : a ∈ A}
is said to be universal if it has a universal element. An operator semigroup on a topological vector
space X is a family {Tt}t∈A of operators from L(X) labeled by elements of an abelian monoid A and
satisfying T0 = I, Ts+t = TtTs for any t, s ∈ A. A norm on A is a function | · | : A → [0,∞) satisfying
|na| = n|a| and |a + b| 6 |a| + |b| for any n ∈ Z+ and a, b ∈ A. An abelian monoid equipped with
a norm is a normed semigroup. We are mainly concerned with the case when A is a closed additive
subsemigroup of Rk containing 0 with the norm |a| being the Euclidean distance from a to 0. In
the latter case A carries the topology inherited from Rk and an operator semigroup {Tt}t∈A is called
strongly continuous if the map t 7→ Ttx from A to X is continuous for any x ∈ X. We say that an
operator semigroup {Tt}t∈A is uniformly continuous if there is a neighborhood U of zero in X such
that for any sequence {tn}n∈Z+ in A converging to t ∈ A, Ttnx converges to Ttx uniformly on U .
Clearly, uniform continuity is strictly stronger than strong continuity. If A is a normed semigroup
and {Tt}t∈A is an operator semigroup on a topological vector space X, then we say that {Tt}t∈A is
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mixing if for any non-empty open subsets U, V of X, there is r > 0 such that Tt(U)∩ V ̸= ∅ provided
|t| > r. We say that {Tt}t∈A is hypercyclic (respectively, supercyclic) if the family {Tt : t ∈ A}
(respectively, {zTt : z ∈ K, t ∈ A}) is universal. {Tt}t∈A is said to be hereditarily hypercyclic if
for any sequence {tn}n∈Z+ in A satisfying |tn| → ∞, {Ttn : n ∈ Z+} is universal. T ∈ L(X) is
called hypercyclic, supercyclic, hereditarily hypercyclic or mixing if the semigroup {Tn}n∈Z+ has the
same property. Hypercyclic and supercyclic operators have been intensely studied during last few
decades, see [2] and references therein. Recall that a topological space X is called a Baire space if the
intersection of countably many dense open subsets of X is dense in X. By the classical Baire theorem,
complete metric spaces are Baire.

Proposition 1.1. Let X be a topological vector space and A be a normed semigroup. Then any
hereditarily hypercyclic operator semigroup {Ta}a∈A on X is mixing. If X is Baire separable and
metrizable, then the converse implication holds: any mixing operator semigroup {Ta}a∈A on X is
hereditarily hypercyclic.

The above proposition is a combination of well-known facts, appearing in the literature in various
modifications. In the next section we prove it for sake of completeness. It is worth noting that for any
subsemigroup A0 of A, not lying in the kernel of the norm, {Tt}t∈A0 is mixing if {Tt}t∈A is mixing. In
particular, if {Tt}t∈A is mixing, then Tt is mixing whenever |t| > 0.

The question of existence of supercyclic or hypercyclic operators or semigroups on various types
of topological vector spaces was intensely studied. The fact that there are no hypercyclic operators
on any finite dimensional topological vector space goes back to Rolewicz [22]. The last result in this
direction is due to Wengenroth [26], who proved that a hypercyclic operator on any topological vector
space (locally convex or not) has no closed invariant subspaces of positive finite codimension, while any
supercyclic operator has no closed invariant subspaces of finite R-codimension > 2. In particular, his
result implies the (already well known by then) fact that there are no supercyclic operators on a finite
dimensional topological vector space of R-dimension > 2. Herzog [14] proved that there is a supercyclic
operator on any separable infinite dimensional Banach space. Ansari [1] and Bernal-González [5],
answering a question raised by Herrero, showed independently that any separable infinite dimensional
Banach space supports a hypercyclic operator. Using the same idea as in [1], Bonet and Peris [9]
proved that there is a hypercyclic operator on any separable infinite dimensional Fréchet space and
demonstrated that there is a hypercyclic operator on the inductive limit X of a sequence {Xn}n∈Z+ of
separable Banach spaces provided X0 is dense in X. Grivaux [17] observed that hypercyclic operators
T in [1, 5, 9] are mixing and therefore hereditarily hypercyclic. They actually come from the same
source. Namely, according to Salas [23], an operator of the shape I + T , where T is a backward
weighted shift on ℓ1, is hypercyclic. Virtually the same proof demonstrates that these operators are
mixing. Moreover, all operators constructed in the above cited papers are hypercyclic or mixing
because of a quasisimilarity with an operator of the shape identity plus a backward weighted shift.
A similar idea was used by Bermúdez, Bonilla and Martinón [4] and Bernal-González and Grosse-
Erdmann [6], who proved that any separable infinite dimensional Banach space supports a hypercyclic
strongly continuous semigroup {Tt}t∈R+ . Bermúdez, Bonilla, Conejero and Peris [3] proved that on
any separable infinite dimensional complex Banach space X, there is a mixing strongly continuous
semigroup {Tt}t∈C such that the map t 7→ Tt is holomorphic. Finally, Conejero [11] proved that
any separable infinite dimensional complex Fréchet space X non-isomorphic to ω supports a mixing
operator semigroup {Tt}t∈R+ such that Ttnx uniformly converges to Ttx for x from any bounded subset
of X whenever tn → t.

Definition 1.2. We say that a topological vector space X belongs to the class M0 if there is a dense
subspace Y of X admitting a topology τ stronger than the one inherited from X and such that (Y, τ)
is a separable F-space. We say that X belongs to M1 if there is a linearly independent equicontinuous
sequence {fn}n∈Z+ in X ′. Finally, M = M0 ∩M1.

Remark 1.3. Obviously, X ∈ M1 if and only if there exists a continuous seminorm p on X such that
ker p = p−1(0) has infinite codimension in X. In particular, a locally convex space X belongs to M1

if and only if its topology is not weak.

2



1.1 Results

The following theorem extracts the maximum of the method both in terms of the class of spaces and
semigroups. Although the general idea remains the same, the proof requires dealing with a number of
technical details of various nature.

Theorem 1.4. Let X ∈ M. Then for any k ∈ N, there exists a uniformly continuous hereditarily
hypercyclic (and therefore mixing) operator group {Tt}t∈Kk on X such that the map z 7→ f(Tzx) from
Kk to K is analytic for each x ∈ X and f ∈ X ′.

Since for any hereditarily hypercyclic semigroup {Tt}t∈Kk and any non-zero t ∈ Kk, Tt is hereditarily
hypercyclic, Theorem 1.4 provides a hereditarily hypercyclic operator on each X ∈ M. Obviously,
any separable F-space belongs to M0. It is well-known [24] that the topology on a Fréchet space X
differs from the weak topology if and only if X is infinite dimensional and it is non-isomorphic to
ω. Thus any separable infinite dimensional Fréchet space non-isomorphic to ω belongs to M. The
latter fact is also implicitly contained in [9]. Similarly, an infinite dimensional inductive limit X of a
sequence {Xn}n∈Z+ of separable Banach spaces belongs to M provided X0 is dense in X. Thus all the
above mentioned existence theorems are particular cases of Theorem 1.4. The following proposition
characterizes F-spaces in the class M.

Proposition 1.5. Let X be an F-space. Then X belongs to M if and only if X is separable and the
algebraic dimension of X ′ is uncountable.

Proposition 1.5 ensures that Theorem 1.4 can be applied to a variety of not locally convex F-spaces
including ℓp with 0 < p < 1. We briefly outline the main idea of the proof of Theorem 1.4 because it
is barely recognizable in the main text, where the intermediate results are presented in much greater
generality than strictly necessary. Consider the completion of the kth projective tensor power of ℓ1:
X = ℓ1⊗̂. . .⊗̂ℓ1 and T1, . . . , Tk ∈ L(X) of the shape Tj = I ⊗ . . . ⊗ I ⊗ Sj ⊗ I ⊗ . . . ⊗ I, where
Sj ∈ L(ℓ1) is a backward weighted shift sitting in jth place. Since Tj are pairwise commuting, we have
got a uniformly continuous operator group {e⟨z,T ⟩}z∈Kk on X, where ⟨z, T ⟩ = z1T1 + . . . + zkTk. We
show that {e⟨z,T ⟩}z∈Kk is hereditarily hypercyclic. The class M turns out to be exactly the class of
topological vector spaces to which such a group can be transferred by means of quasisimilarity.

The following theorem is kind of an opposite of Theorem 1.4.

Theorem 1.6. There are no supercyclic strongly continuous operator semigroups {Tt}t∈R+ on a topo-
logical vector space X if either 2 < dim RX < 2ℵ0 or 2 < dim RX

′ < 2ℵ0.

Since dimω′ = ℵ0, Theorem 1.6 implies that there are no supercyclic strongly continuous operator
semigroups {Tt}t∈R+ on ω, which is a stronger version of a result in [11]. This observation together
with Theorem 1.4 imply the following curious result.

Corollary 1.7. For a separable infinite dimensional Fréchet space X, the following are equivalent:

(1.7.1) for each k ∈ N, there is a mixing uniformly continuous operator group {Tt}t∈Rk on X;

(1.7.3) there is a supercyclic strongly continuous operator semigroup {Tt}t∈R+ on X;

(1.7.4) X is non-isomorphic to ω.

2 Extended backward shifts

Godefroy and Shapiro [16] introduced the notion of a generalized backward shift. Namely, a continuous
linear operator T on a topological vector space X is called a generalized backward shift if the union of
kerTn for n ∈ N is dense in X and kerT is one-dimensional. We say that T is an extended backward
shift if the linear span of the union of Tn(kerT 2n) is dense in X. Using an easy dimension argument
[16] one can show that any generalized backward shift is an extended backward shift. It is worth noting
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[2, Theorem 2.2] that for any extended backward shift T , I + T is mixing. We need a multi-operator
analog of this concept.

Let X be a topological vector space. We say that T = (T1, . . . , Tk) ∈ L(X)k is a EBSk-tuple if
TmTj = TjTm for 1 6 j,m 6 k and ker† (T ) is dense in X, where

ker† (T ) = span
∪

n∈Nk

κ(n, T ) and κ(n, T ) = Tn1
1 . . . Tnk

k

( k∩
j=1

kerT
2nj

j

)
. (2.1)

2.1 Shifts on finite dimensional spaces

The following two lemmas are implicitly contained in the proof of Theorem 5.2 in [13]. For sake of
convenience, we provide their proofs.

Lemma 2.1. For each n ∈ N and z ∈ C \ {0}, the matrix An,z =
{

zj+k−1

(j+k−1)!

}n

j,k=1
is invertible.

Proof. Invertibility of An,1 is proved in [2, Lemma 2.7]. For z ∈ C, consider the diagonal n×n matrix
Dn,z with the entries (1, z, . . . , zn−1) on the main diagonal. Clearly

An,z = zDn,zAn,1Dn,z for any z ∈ C. (2.2)

Since An,1 and Dn,z for z ̸= 0 are invertible, An,z is invertible for any n ∈ N and z ∈ C \ {0}.

Lemma 2.2. Let n ∈ N, e1, . . . , e2n be the canonical basis of K2n, S ∈ L(K2n) be defined by Se1 = 0
and Sek = ek−1 for 2 6 k 6 2n and P be the linear projection on K2n onto E = span {e1, . . . , en}
along F = span {en+1, . . . , e2n}. Then for any z ∈ K \ {0} and u, v ∈ E, there exists a unique
xz = xz(u, v) ∈ K2n such that

Pxz = u and PezSxz = v. (2.3)

Moreover, for any bounded subset B of E and any ε > 0, there is c = c(ε,B) > 0 such that

sup
u,v∈B

|(xz(u, v))n+j | 6 c|z|−j for 1 6 j 6 n and |z| > ε; (2.4)

sup
u,v∈B

|(ezSxz(u, v))n+j | 6 c|z|−j for 1 6 j 6 n and |z| > ε. (2.5)

In particular, xz(u, v) → u and ezSxz(u, v) → v as |z| → ∞ uniformly for u and v from any bounded
subset of E.

Proof. Let u, v ∈ E and z ∈ K \ {0}. For y ∈ K2n we denote y = (yn+1, . . . , y2n) ∈ Kn. One easily
sees that (2.3) is equivalent to the vector equation

An,zx
z = wz, (2.6)

where An,z is the matrix from Lemma 2.1 and wz = wz(u, v) ∈ Kn is defined as

wz
j = vn−j+1 −

n∑
k=n−j+1

zk+j−n−1uk
(k + j − n− 1)!

for 1 6 j 6 n, (2.7)

provided we set xj = uj for 1 6 j 6 n. By Lemma 2.1, An,z is invertible for any z ̸= 0 and therefore
(2.6) is uniquely solvable. Thus there exists a unique xz = xz(u, v) ∈ K2n satisfying (2.3). It remains to
verify (2.4) and (2.5). By (2.7), for any bounded subset B of E and any ε > 0, there is a = a(ε,B) > 0
such that

|(wz(u, v))j | 6 a|z|j−1 if u, v ∈ B, |z| > ε and 1 6 j 6 n. (2.8)

By (2.8), {D−1
n,zw

z(u, v) : |z| > ε, u, v ∈ B} and therefore Q = {A−1
n,1D

−1
n,zw

z(u, v) : |z| > ε, u, v ∈ B}
are bounded in Kn. Since by (2.6) and (2.2), xz = A−1

n,zw
z = z−1D−1

n,zA
−1
n,1D

−1
n,zw

z, we have

(xz(u, v))n+j = xzj ⊆ {z−1(D−1
n,zy)j : y ∈ Q} if |z| > ε, and u, v ∈ B.
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Boundedness of Q implies that (2.4) is satisfied with some c = c1(ε,B). Finally, since for 1 6 j 6 n,

we have (ezSxz)n+j =
2n∑

l=n+j

zl−n−jxz
l

(l−n−j)! , there is c = c2(ε,B) for which (2.5) is satisfied. Hence (2.5) and

(2.4) hold with c = max{c1, c2}.

Corollary 2.3. Let n ∈ N, E ⊆ K2n and S ∈ L(K2n) be as in Lemma 2.2. Then for any u, v ∈ E
and any sequence {zj}j∈Z+ in K satisfying |zj | → ∞, there exists a sequence {xj}j∈Z+ in K2n such
that xj → u and ezjSxj → v.

We need the following multi-operator version of Corollary 2.3.

Lemma 2.4. Let k ∈ N, n1, . . . , nk ∈ N, for each j ∈ {1, . . . , k} let ej1, . . . , e
j
2nj

be the canonical basis

in K2nj , Ej = span {ej1, . . . , e
j
nj} and Sj ∈ L(K2nj ) be the backward shift: Sje

j
1 = 0 and Sje

j
l = ejl−1

for 2 6 l 6 2nj. Let also X = K2n1 ⊗ . . .⊗K2nk , E = E1 ⊗ . . .⊗ Ek and

Tj ∈ L(X), Tj = I ⊗ . . .I ⊗ Sj ⊗ I ⊗ . . .⊗ I for 1 6 j 6 k,

where Sj sits in the jth place. Finally, let {zm}m∈Z+ be a sequence in Kk satisfying |zm| → ∞. Then

for any u, v ∈ E, there exists a sequence {xm}m∈Z+ in X such that xm → u and e⟨zm,T ⟩xm → v, where
⟨s, T ⟩ = s1T1 + . . .+ skTk.

Proof. Let K = K ∪ {∞} be the one-point compactification of K. Clearly it is enough to show that
any sequence {wm} in Kk satisfying |wm| → ∞ has a subsequence {zm} for which the statement of

the lemma is true. Since Kk
is compact and metrizable, we can, without loss of generality, assume

that {zm} converges to w ∈ Kk
. Since |zm| → ∞, the set C = {j : wj = ∞} is non-empty. Without

loss of generality, we may also assume that C = {1, . . . , r} with 1 6 r 6 k.
Denote by Σ the set of (u, v) ∈ X2 for which there is a sequence {xm}m∈Z+ in X such that xm → u

and e⟨zm,T ⟩xm → v. In this notation, the statement of the lemma is equivalent to the inclusion
E ×E ⊆ Σ. Let uj ∈ Ej for 1 6 j 6 k and u = u1 ⊗ . . .⊗ uk. By Corollary 2.3, there exist sequences
{xj,m}m∈Z+ and {yj,m}m∈Z+ in K2nj such that

xj,m → 0, e(zm)jSjxj,m → uj , yj,m → uj and e(zm)jSjyj,m → 0 for 1 6 j 6 r.

We put xj,m = e−wjSjuj and yj,m = uj for r < j 6 k and m ∈ Z+. Consider the sequences {xm}m∈Z+

and {ym}m∈Z+ in X defined by xm = x1,m⊗ . . .⊗xk,m and ym = y1,m⊗ . . .⊗yk,m. By definition of xm
and ym and the above display, xm → 0 and ym → u. For instance, xm → 0 because {xj,m} are bounded
and x1,m → 0. Similarly, taking into account that (zm)j → wj for j > r, we see that e⟨zm,T ⟩xm → u
and e⟨zm,T ⟩ym → 0. Hence (u, 0) ∈ Σ and (0, u) ∈ Σ. Thus ({0} × E0) ∪ (E0 × {0}) ⊆ Σ, where
E0 = {u1⊗ . . .⊗uk : uj ∈ Ej , 1 6 j 6 k}. On the other hand, span ({0}×E0)∪ (E0×{0}) = E×E.
Since Σ is a linear space, E × E ⊆ Σ.

For applications it is more convenient to reformulate the above lemma in the coordinate form.

Corollary 2.5. Let k ∈ N, n1, . . . , nk ∈ N, Nj = {1, . . . , 2nj} and Qj = {1, . . . , nj} for 1 6 j 6 k.
Consider M = N1 × . . . × Nk and M0 = Q1 × . . . × Qk, let {em : m ∈ M} be the canonical basis of
X = KM and E = span {em : m ∈ M0}. For 1 6 j 6 k, let Tj ∈ L(X) be defined by Tjem = 0 if
mj = 1 and Tjem = em′ if mj > 1, where m′

l = ml if l ̸= j, m′
j = mj − 1. Then for any sequence

{zm}m∈Z+ in Kk satisfying |zm| → ∞ and any u, v ∈ E, there is a sequence {xm}m∈Z+ in X such that

xm → u and e⟨zm,T ⟩xm → v, where ⟨s, T ⟩ = s1T1 + . . .+ skTk.
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2.2 The key lemma

Lemma 2.6. Let X be a topological vector space, k ∈ N, n ∈ Nk and A ∈ L(X)k be such that
AjAl = AlAj for 1 6 l, j 6 k. Then for each x from κ(n,A) defined in (2.1), there is a common
finite dimensional invariant subspace Y for A1, . . . , Ak such that for any sequence {zm}m∈Z+ in Kk

satisfying |zm| → ∞, there exist sequences {xm}m∈Z+ and {ym}m∈Z+ in Y for which

xm → 0, eAzmxm → x, ym → x and eAzmym → 0, where As = (s1A1 + . . .+ skAk)
∣∣
Y
. (2.9)

Proof. Since x ∈ κ(n, T ), there is y ∈ X such that x = An1
1 . . . Ank

k y and A
2nj

j y = 0 for 1 6 j 6 k.
Let Nj = {1, . . . , 2nj} and Qj = {1, . . . , nj} for 1 6 j 6 k. Denote M = N1 × . . . × Nk and

M0 = Q1 × . . .×Qk. Let hl = A2n1−l1
1 . . . A2nk−lk

k y for l ∈ M and Y = span {hl : l ∈ M}. Clearly Y is
finite dimensional and Ajhl = 0 if lj = 1, Ajhl = hl′ if lj > 1, where l′r = lr for r ̸= j and l′j = lj − 1.

Hence Y is invariant for each Aj . Consider J ∈ L(KM , Y ) defined by Jel = hl for l ∈ M . Let also
E = span {el : l ∈ M0} and Tj ∈ L(KM ) be as in Corollary 2.5. Taking into account the definition of
Tj and the action of Aj on hl, we see that AjJ = JTj for 1 6 j 6 k. Clearly n ∈ M0 and therefore
en ∈ E. Since x = An1

1 . . . Ank
k y, we have x = hn. By Corollary 2.5, there exist sequences {um}m∈Z+

and {vm}m∈Z+ in KM such that um → en, e
⟨zm,T ⟩um → 0, vm → 0 and e⟨zm,T ⟩um → en. Now let

ym = Jum and xm = Jvm for m ∈ Z+. Then {xm} and {ym} are sequences in Y . From the relations
AjJ = JTj and the fact that KM and Y are finite dimensional, it follows that xm → 0, ym → Jen = x,
eAzmxm → Jen = x and eAzmym → 0. Thus (2.9) is satisfied.

From now on, if A = (A1, . . . , Ak) is a k-tuple of continuous linear operators on a topological vector
space X and z ∈ Kk, we write

⟨z,A⟩ = z1A1 + . . .+ zkAk.

We also use the following convention. Let X be a topological vector space and S ∈ L(X). By saying

that eS is well-defined, we mean that for each x ∈ X, the series
∞∑
n=0

1
n!S

nx converges in X and defines

a continuous linear operator denoted eS .

Corollary 2.7. Let X be a topological vector space, k ∈ N and A ∈ L(X)k be a k-tuple of pairwise
commuting operators such that for any z ∈ Kk, e⟨z,A⟩ is well-defined. Then for each x and y from
the space ker† (A) defined in (2.1) and any sequence {zm}m∈Z+ in Kk satisfying |zm| → ∞, there is a

sequence {um}m∈Z+ in X such that um → x and e⟨zm,A⟩um → y.

Proof. Fix a sequence {zm}m∈Z+ in Kk satisfying |zm| → ∞. Let Σ be the set of (x, y) ∈ X2 for

which there exists a sequence {um}n∈Z+ in X such that um → x and e⟨zm,A⟩um → y. By Lemma 2.6,
κ(n,A)× {0} ⊆ Σ and {0} × κ(n,A) ⊆ Σ for any n ∈ Nk, where κ(n,A) is defined in (2.1). On the
other hand, Σ is a linear subspace of X ×X. Thus

ker† (A)× ker† (A) = span
∪

n∈Nk

(
(κ(n,A)× {0}) ∪ ({0} × κ(n,A))

)
⊆ Σ.

2.3 Mixing semigroups and extended backward shifts

We start by proving Proposition 1.1. Proposition G is Proposition 1 in [18], while Theorem U can be
found in [18, pp. 348–349].

Proposition G. Let X be a topological space and F = {Tα : α ∈ A} be a family of continuous maps
from X to X such that TαTβ = TβTα and Tα(X) is dense in X for any α, β ∈ A. Then the set of
universal elements for F is either empty or dense in X.

Theorem U. Let X be a Baire topological space, Y be a second countable topological space and
{Ta : a ∈ A} be a family of continuous maps from X into Y . Then the set of universal elements for
{Ta : a ∈ A} is dense in X if and only if {(x, Tax) : x ∈ X, a ∈ A} is dense in X × Y .
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Proof of Proposition 1.1. Assume that {Tt}t∈A is hereditarily hypercyclic. That is, {Ttn : n ∈ Z+} is
universal for any sequence {tn}n∈Z+ in A satisfying |tn| → ∞. Applying this to tn = nt with t ∈ A,
|t| > 0, we see that Tt is hypercyclic. Since any hypercyclic operator has dense range [18], Tt(X) is
dense in X if |t| > 0. Assume that {Tt}t∈A is non-mixing. Then there are non-empty open subsets U
and V of X and a sequence {tn}n∈Z+ in A such that |tn| → ∞ and |tn| > 0, Ttn(U) ∩ V = ∅ for each
n ∈ Z+. Since Ttn have dense ranges and commute, Proposition G implies that the set W of universal
elements for {Ttn : n ∈ Z+} is dense in X. Hence we can pick x ∈ W ∩ U . Since x is universal for
{Ttn : n ∈ Z+}, there is n ∈ Z+ for which Ttnx ∈ V . Hence Ttnx ∈ Ttn(U)∩V = ∅. This contradiction
completes the proof of the first part of Proposition 1.1.

Next, assume that X is Baire separable and metrizable, {Tt}t∈A is mixing and {tn}n∈Z+ is a
sequence in A such that |tn| → ∞. By definition of mixing, for any non-empty open subsets U and V
of X, Ttn(U) ∩ V ̸= ∅ for all sufficiently large n ∈ Z+. Hence {(x, Ttnx) : x ∈ X, n ∈ Z+} is dense in
X ×X. By Theorem U, {Ttn : n ∈ Z+} is universal.

Proposition 2.8. Let X be a topological vector space and A = (A1, . . . , Ak) ∈ L(X)k be a EBSk-tuple
such that e⟨z,A⟩ is well-defined for z ∈ Kk and {e⟨z,A⟩}z∈Kk is an operator group. Then {e⟨z,A⟩}z∈Kk is
mixing.

Proof. Assume the contrary. Then we can find non-empty open subsets U and V of X and a sequence
{zm}m∈Z+ in Kk such that |zm| → ∞ and e⟨zm,A⟩(U) ∩ V = ∅ for each m ∈ Z+. Let Σ be the set of

(x, y) ∈ X2 for which there is a sequence {xm}m∈Z+ in X such that xm → x and e⟨zm,A⟩xm → y. By
Corollary 2.7, ker† (A)× ker† (A) ⊆ Σ. Since A is a EBSk-tuple, ker

† (A) is dense in X and therefore
Σ is dense in X ×X. In particular, Σ meets U × V , which is not possible since e⟨zm,A⟩(U) ∩ V = ∅
for any m ∈ Z+. This contradiction shows that {e⟨z,A⟩}z∈Kk is mixing.

Theorem 2.9. Let X be a separable Banach space and (A1, . . . , Ak) ∈ L(X)k be a EBSk-tuple. Then
{e⟨z,A⟩}z∈Kk is a hereditarily hypercyclic uniformly continuous operator group on X.

Proof. Since Aj are pairwise commuting and X is a Banach space, {e⟨z,A⟩}z∈Kk is a uniformly contin-
uous operator group. By Proposition 1.1, it suffices to verify that {e⟨z,A⟩}z∈Kk is mixing. It remains
to apply Proposition 2.8.

We will extend the above theorem to more general topological vector spaces. Recall that a subset
A of a vector space is called balanced if zx ∈ A whenever x ∈ A, z ∈ K and |z| 6 1. A subset D
of a topological vector space X is called a disk if D is convex, balanced and bounded. For a disk
D, the space XD = span (D) is endowed with the norm, being the Minkowskii functional [24] of D.
Boundedness of D implies that the norm topology of XD is stronger than the topology inherited from
X. D is called a Banach disk if the normed space XD is complete. It is well-known [8] that a compact
disk is a Banach disk.

Lemma 2.10. Let X be a topological vector space, p be a continuous seminorm on X, D ⊂ X be
a Banach disk, q be the norm of XD, k ∈ N and A ∈ L(X)k be a k-tuple of pairwise commuting
operators. Assume also that Aj(X) ⊆ XD for 1 6 j 6 k and there is a > 0 such that q(Ajx) 6 ap(x)
for any x ∈ X and 1 6 j 6 k. Then for each z ∈ Kk, e⟨z,A⟩ is well-defined. Moreover, {e⟨z,A⟩}z∈Kk is
a uniformly continuous operator group and the map z 7→ f(e⟨z,A⟩x) from Kk to K is analytic for any
x ∈ X and f ∈ X ′. Furthermore, if XD is separable and dense in X and B is an EBSk-tuple, then
{e⟨z,A⟩}z∈Kk is hereditarily hypercyclic, where Bj ∈ L(XD) are restrictions of Aj to XD.

Proof. Since D is bounded, there is c > 0 such that p(x) 6 cq(x) for each x ∈ XD. Since q(Ajx) 6
ap(x) for each x ∈ X, we have q(AjAlx) 6 ap(Alx) 6 caq(Alx) 6 ca2p(x). Iterating this argument,
we see that

q(An1
1 . . . Ank

k x) 6 c|n|−1a|n|p(x) for any x ∈ X and n ∈ Zk
+, |n| > 0, (2.10)

where |n| = n1 + . . .+ nk. By (2.10), for each x ∈ X and z ∈ Kk, the series∑
n∈Zk

+, |n|>0

zn1
1 . . . znk

k

n1! . . . nk!
An1

1 . . . Ank
k x (2.11)
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converges absolutely in the Banach space XD. Since the series
∞∑

m=1

1
m!⟨z,A⟩mx can be obtained from

(2.11) by an appropriate ’bracketing’, it is also absolutely convergent in XD. Hence the last series

converges in X and therefore the formula e⟨z,A⟩x =
∞∑

m=0

1
n!⟨z,A⟩mx defines a linear operator on X.

Next, representing e⟨z,A⟩x− x by the series (2.11) and using (2.10), we obtain

q(e⟨z,A⟩x− x) 6 p(x)

c

∑
n∈Zk

+, |n|>0

|z1|n1 . . . |zk|nk

n1! . . . nk!
(ac)|n| =

p(x)

c
(eac∥z∥ − 1),

where ∥z∥ = |z1| + . . . + |zk|. By the above display, each e⟨z,A⟩ is continuous and {e⟨z,A⟩}z∈Kk is
uniformly continuous. The semigroup property follows in a standard way from the fact that Aj are
pairwise commuting. Applying f ∈ X ′ to the series (2.11) and using (2.10), one immediately obtains
the power series expansion of the map z 7→ f(e⟨z,A⟩x). Hence each z 7→ f(e⟨z,A⟩x) is analytic.

Assume now that XD is separable and dense in X, Bj ∈ L(XD) are restrictions of Aj to XD and
B = (B1, . . . , Bk) is an EBSk-tuple. By Theorem 2.9, {e⟨z,B⟩}z∈Kk is hereditarily hypercyclic. Since
each e⟨z,B⟩ is the restriction of e⟨z,A⟩ to XD, XD is dense in X and carries a topology stronger than
the one inherited from X, {e⟨z,A⟩}z∈Kk is also hereditarily hypercyclic.

3 ℓ1-sequences, equicontinuous sets and the class M

Definition 3.1. We say that a sequence {xn}n∈Z+ in a topological vector space X is an ℓ1-sequence

if the series
∞∑
n=0

anxn converges in X for each a ∈ ℓ1 and for any neighborhood U of 0 in X, there is

n ∈ Z+ such that Dn ⊆ U , where Dn =
{ ∞∑
k=0

akxn+k : a ∈ ℓ1, ∥a∥ 6 1
}
.

If X is a locally convex space, the latter condition is satisfied if and only if xn → 0.

Lemma 3.2. Let {xn}n∈Z+ be an ℓ1-sequence in a topological vector space X. Then the closed balanced

convex hull D of {xn : n ∈ Z+} is compact and metrizable. Moreover, D = D′, where D′ =
{ ∞∑
n=0

anxn :

a ∈ ℓ1, ∥a∥1 6 1
}
, XD is separable and E = span {xn : n ∈ Z+} is dense in the Banach space XD.

Proof. Let Q = {a ∈ ℓ1 : ∥a∥1 6 1} be endowed with the coordinatewise convergence topology. Then
Q is a metrizable and compact as a closed subspace of DZ+ , where D = {z ∈ K : |z| 6 1}. Obviously,

the map Φ : Q → D′, Φ(a) =
∞∑
n=0

anxn is onto. Using the definition of an ℓ1-sequence, one can in a

routine way verify that Φ is continuous. Hence D′ is compact and metrizable as a continuous image of
a compact metrizable space. Thus D′, being also balanced and convex, is a Banach disk. Let u ∈ XD′

and a ∈ ℓ1 be such that u = Φ(a). One can easily see that p
D′ (un − u) → 0, where un =

n∑
k=0

akxk.

Hence un → u in X. Moreover, if u ∈ D′, then un are in the balanced convex hull of {xn}n∈Z+ . Thus
D is dense and closed in D′ and therefore D = D′. Hence p

D
(un − u) → 0 for each u ∈ XD. Since

un ∈ E, E is dense in XD and XD is separable.

Lemma 3.3. Let X be a topological vector space. Then the following are equivalent:

(3.3.1) X ∈ M0;

(3.3.2) there exists a Banach disk D in X with dense linear span such that XD is separable;

(3.3.3) there exists an ℓ1-sequence in X with dense linear span.

Proof. Obviously, (3.3.2) implies (3.3.1). Lemma 3.2 ensures that (3.3.3) implies (3.3.2). It remains
to verify that (3.3.1) implies (3.3.3). Assume that X ∈ M0. Then there is a dense linear subspace Y
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of X carrying its own topology τ stronger than the topology inherited from X such that Y = (Y τ)
is a separable F-space. Clearly any ℓ1-sequence in Y with dense linear span is also an ℓ1 sequence
in X with dense linear span. Thus it suffices to find an ℓ1-sequence with dense linear span in Y . To
this end, we pick a dense subset A = {yn : n ∈ Z+} of Y and a base {Un}n∈Z+ of neighborhoods of
0 in Y such that each Un is balanced and Un+1 + Un+1 ⊆ Un for n ∈ Z+. Pick a sequence {cn}n∈Z+

of positive numbers such that xn = cnyn ∈ Un for each n ∈ Z+. It is now easy to demonstrate that
{xn}n∈Z+ is an ℓ1-sequence in Y with dense span.

Lemma 3.4. Let X be a separable metrizable topological vector space and {fn}n∈Z+ be a linearly
independent sequence in X ′. Then there exist sequences {xn}n∈Z+ in X and {αk,j}k,j∈Z+, j<k in K
such that span {xk : k ∈ Z+} is dense in X, gn(xk) = 0 for n ̸= k and gn(xn) ̸= 0 for n ∈ Z+, where
gn = fn +

∑
j<n

αn,jfj.

Proof. Let {Un}n∈Z+ be a base of topology of X. We construct inductively sequences {αk,j}k,j∈Z+, j<k

in K and {yn}n∈Z+ in X such that for any k ∈ Z+,

yk ∈ Uk, gk(yk) ̸= 0 and gk(ym) = 0 if m < k, where gk = fk +
∑
j<k

αk,jfj . (3.1)

Let g0 = f0. Since f0 ̸= 0, there is y0 ∈ U0 such that f0(y0) = g0(y0) ̸= 0. This provides us with the
base of induction. Assume now that n ∈ N and yk, αk,j with j < k < n satisfying (3.1) are already
constructed. According to (3.1), we can find αn,0, . . . , αn,n−1 ∈ K such that gn(ym) = 0 for m < n,
where gn = fn +

∑
j<n

αn,jfj . Since fj are linearly independent, gn ̸= 0 and therefore there is yn ∈ Un

such that gn(yn) ̸= 0. This concludes the inductive procedure.
Using (3.1), one can choose a sequence {βk,j}k,j∈Z+, j<k in K such that gn(xn) ̸= 0 for n ∈ Z+ and

gn(xk) = 0 for k ̸= m, where xk = yk +
∑
j<k

βk,jyj . Since yn ∈ Un, {yn : n ∈ Z+} is dense in X. Hence

span {xn : n ∈ Z+} = span {yn : n ∈ Z+} is dense in X.

Lemma 3.5. Let X ∈ M1. Then there exists a linearly independent equicontinuous sequence {fn :
n ∈ Z+} in X ′ such that φ ⊆

{
{fn(x)}n∈Z+ : x ∈ X

}
.

Proof. Since X ∈ M1, there is a continuous seminorm p on X for which Xp = X/ker p with the
norm ∥x + ker p∥ = p(x) is an infinite dimensional normed space. Since every infinite dimensional
normed space admits a biorthogonal sequence, we can choose sequences {xn}n∈Z+ in X and {gn}n∈Z+

in X ′
p such that ∥gn∥ 6 1 for each n ∈ Z+ and gn(xk + ker p) = δn,k for n, k ∈ Z+, where δn,k is the

Kronecker delta. Now let fn : X → K, fn(x) = gn(x + ker p). The above properties of gn can be
rewritten in terms of fn in the following way: |fn(x)| 6 p(x) and fn(xk) = δn,k for any n, k ∈ Z+ and
x ∈ Y . Since fn(xk) = δn,k, we have φ ⊆

{
{fn(x)}n∈Z+ : x ∈ X

}
. By the inequality |fn(x)| 6 p(x),

{fn : n ∈ Z+} is equicontinuous.

Lemma 3.6. Let X ∈ M. Then there exist an ℓ1-sequence {xn}n∈Z+ in X with dense linear span
and an equicontinuous sequence {fk}k∈Z+ in X ′ such that fk(xn) = 0 if k ̸= n and fk(xk) ̸= 0 for
each k ∈ Z+.

Proof. According to Lemma 3.3, there is a Banach disk D in X such that XD is separable and dense
in X. By Lemma 3.5, there is a linearly independent equicontinuous sequence {gn}n∈N in X ′. Since
XD is dense in X, the functionals gn

∣∣
XD

on XD are linearly independent. Applying Lemma 3.4

to the sequence {gn
∣∣
XD

}, we find sequences {yn}n∈Z+ in XD and {αk,j}k,j∈Z+, j<k in K such that

E = span {yk : k ∈ Z+} is dense in XD, hn(yk) = 0 for n ̸= k and hn(yn) ̸= 0 for n ∈ Z+, where

hn = gn +
∑
j<n

αn,jgj . Consider fn = cnhn, where cn =
(
1 +

∑
j<n

|αn,j |
)−1

. Since {gn : n ∈ N} is

equicontinuous, {fn : n ∈ N} is also equicontinuous. Next, let xn = bnyn, where bn = 2−nq(xn)
−1 and

q is the norm of the Banach space XD. Since xn converges to 0 in XD, {xn}n∈N is an ℓ1-sequence
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in XD. Since XD is dense in X, span {xn : n ∈ Z+} = E is dense in XD, and the topology of XD

is stronger than the one inherited from X, {xn}n∈N is an ℓ1-sequence in X with dense linear span.
Finally since fn(xk) = cnbkhn(yk), we see that fn(xk) = 0 if n ̸= k and fn(xn) ̸= 0 for any n ∈ Z+.
Thus all required conditions are satisfied.

3.1 Proof of Proposition 1.5

Let X be a separable F-space. We have to show that X belongs to M if and only if dimX ′ > ℵ0.
First, assume that X ∈ M. Then there is a continuous seminorm p on X such that Xp = X/ker p

is infinite dimensional. We endow Xp with the norm ∥x+ ker p∥ = p(x). The dual X ′
p of the normed

space Xp is naturally contained in X ′. Since the algebraic dimension of the dual of any infinite
dimensional normed space is at least 2ℵ0 [8], we have dimX ′ > dimX ′

p > 2ℵ0 > ℵ0.
Assume now that dimX ′ > ℵ0 and let {Un}n∈Z+ be a base of neighborhoods of 0 in X. Then X ′ is

the union of subspaces Yn = {f ∈ X ′ : |f | is bounded on Un} for n ∈ Z+. Since dimX
′ > ℵ0, we can

pick n ∈ Z+ such that Yn is infinite dimensional. Now let p be the Minkowskii functional of Un. Then
the open unit ball of p is exactly the balanced convex hull W of Un. Since Un ⊆ W , p is a continuous
seminorm on X. Since each f ∈ Yn is bounded on W and Yn is infinite dimensional, X/ker p is also
infinite dimensional. Hence X ∈ M1. Since X, as a separable F-space, belongs to M0, we see that
X ∈ M. The proof is complete.

4 Proof of Theorem 1.4

Let X ∈ M. By Lemma 3.6, there exist an ℓ1-sequence {xn}n∈Z+ in X and an equicontinuous sequence
{fk}k∈Z+ in X ′ such that E = span {xn : n ∈ Z+} is dense in X, fk(xn) = 0 if k ̸= n and fk(xk) ̸= 0
for each k ∈ Z+. Since {fk} is equicontinuous, there is a continuous seminorm p on X such that each
|fk| is bounded by 1 on the unit ball of p. Since {xn} is an ℓ1-sequence in X, Lemma 3.2 implies that
the balanced convex closed hull D of {xn : n ∈ Z+} is a Banach disk in X. Let q be the norm of the
Banach space XD. Then q(xn) 6 1 for each n ∈ Z+.

Lemma 4.1. Let α, β : Z+ → Z+ be any maps and a = {an}n∈Z+ ∈ ℓ1. Then the formula

Tx =
∑
n∈Z+

anfα(n)(x)xβ(n) (4.1)

defines a continuous linear operator on X. Moreover, T (X) ⊆ XD and q(Tx) 6 ∥a∥p(x) for each
x ∈ X, where ∥a∥ is the ℓ1-norm of a.

Proof. Since {fk} is equicontinuous, {fα(n)(x)}n∈Z+ is bounded for any x ∈ X. Since {xn} is an
ℓ1-sequence and a ∈ ℓ1, the series in (4.1) converges for any x ∈ X and therefore defines a linear
operator on X. Moreover, if p(x) 6 1, then |fk(x)| 6 1 for each k ∈ Z+. Since q(xm) 6 1 for m ∈ Z+,
(4.1) implies that q(Tx) 6 ∥a∥ if p(x) 6 1. Hence q(Tx) 6 ∥a∥p(x) for each x ∈ X. It follows that T
is continuous and takes values in XD.

Fix a bijection γ : Zk
+ → Z+. By ej we denote the element of Zk

+ defined by (ej)l = δj,l. For
n ∈ Zk

+, we write |n| = n1 + . . .+ nk. Let

εm = min
{∣∣fγ(n)(xγ(n))∣∣ : n ∈ Zk

+, |n| = m+ 1
}

for m ∈ Z+.

Since fj(xj) ̸= 0, εm > 0 for m ∈ Z+. Pick any sequence {αm}m∈Z+ of positive numbers satisfying

αm+1 > 2mαmε−1
m for any m ∈ Z+ (4.2)

and consider the operators Aj : X → X defined by the formula

Ajx =
∑
n∈Zk

+

α|n|fγ(n+ej)(x)

α|n|+1fγ(n+ej)(xγ(n+ej))
xγ(n) for 1 6 j 6 k.
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By (4.2), the series defining Aj can be written as

Ajx =
∑
n∈Zk

+

cj,nfγ(n+ej)(x)xγ(n) with 0 < |cj,n| < 2−|n| and therefore
∑
n∈Zk

+

|cj,n| 6 C =
∑
n∈Zk

+

2−|n|.

Then each Aj has shape (4.1) with ∥a∥ 6 C. By Lemma 4.1, Aj ∈ L(X), Aj(X) ⊆ XD and
q(Tx) 6 Cp(x) for any x ∈ X. Using the definition of Aj and the equalities fm(xj) = 0 for m ̸= j,
it is easy to verify that AjAlxn = AlAjxn for any 1 6 j < l 6 k and n ∈ Z+. Indeed, for any
n ∈ Z+, there is a unique m ∈ Zk

+ such that n = γ(m). If either mj = 0 or ml = 0, we have

AjAlxn = AlAjxn = 0. If mj > 1 and ml > 1, then AjAlxn = AlAjxn =
α|m|−2

α|m|
xγ(m−ej−el). Since E

is dense in X, A1, . . . , An are pairwise commuting. By Lemma 2.10, e⟨z,A⟩ are well-defined for z ∈ Kk,
{e⟨z,A⟩}z∈Kk is a uniformly continuous operator group and the map z 7→ f(e⟨z,A⟩x) from Kk to K is
analytic for any x ∈ X and f ∈ X ′. It remains to show that {e⟨z,A⟩}z∈Kk is hereditarily hypercyclic.
By Lemma 3.2, XD is separable. According to Lemma 2.10, it suffices to prove that B ∈ L(XD)

k is an
EBSk-tuple, where Bj are restrictions of Aj to XD. Clearly Bj commute as restrictions of commuting
operators. Using the relations fm(xj) = 0 for m ̸= j and fj(xj) ̸= 0, it is easy to see that the set
κ(m,B), defined in (2.1), contains Em = span {xγ(n) : n ∈ Zk

+, nj 6 mj − 1, 1 6 j 6 k} for each

m ∈ Nk. Hence ker†B, defined in (2.1), contains E, which is dense in XD by Lemma 3.2. Thus B is
an EBSk-tuple. The proof of Theorem 1.4 is complete.

5 Spaces without supercyclic semigroups {Tt}t∈R+

Lemma 5.1. Let X be a finite dimensional topological vector space of the R-dimension > 2. Then
there is no supercyclic strongly continuous operator semigroup {Tt}t∈R+ on X.

Proof. As well-known, any strongly continuous operator semigroup {Tt}t∈R+ onKn has shape {etA}t∈R+ ,
where A ∈ L(Kn). Assume the contrary. Then there exist n ∈ N and A ∈ L(Kn) such that {etA}t∈R+

is supercyclic and dim RK
n > 2. Since etA are invertible and commute with each other, Proposition G

implies that the set W of universal elements for {zetA : z ∈ K, t ∈ R+} is dense in Kn. On the
other hand, for each c > 0 and any x ∈ Kn, from the restriction on n it follows that the closed set
{zetAx : z ∈ K, 0 6 t 6 c} is nowhere dense in Kn (smoothness of the map (z, t) 7→ zetAx implies that
the topological dimension of {zetAx : z ∈ K, 0 6 t 6 c} is less than that of Kn). Hence, each x ∈ W
is universal for {zetA : z ∈ K, t > c} for any c > 0. Now if (a, b) is a subinterval of (0,∞), it is easy to
see that the family {zetkA : z ∈ K, a < t < b, k ∈ Z+} contains {zetA : z ∈ K, t > c} for a sufficiently
large c > 0. Hence for each x ∈ W , the set {zetkAx : z ∈ K, a < t < b, k ∈ Z+} is dense in Kn. Since
(a, b) is arbitrary and W is dense in Kn, {(t, x, zetkAx : t ∈ R+, z ∈ K, x ∈ Kn, k ∈ Z+} is dense in
R+ × Kn × Kn. By Theorem U, the family {Fz,k : z ∈ K, k ∈ Z+} of maps Fz,k : R+ × Kn → Kn,
Fz,k(t, x) = zetkAx has dense set U0 ⊂ R+ ×Kn of universal elements. Hence the projection U of U0

onto Kn is dense in Kn. On the other hand, U is exactly the set of x ∈ Kn supercyclic for etA for some
t ∈ R+. In particular, there is t ∈ R+ such that etA is supercyclic. This contradicts the fact (see [26])
that there are no supercyclic operators on finite dimensional spaces of real dimension > 2.

Remark 5.2. In the proof of Lemma 5.1 we have shown that a strongly continuous supercyclic
operator semigroup on a finite dimensional space must contain supercyclic operators. It is worth
mentioning that Conejero, Müller and Peris [12] proved that every Tt with t > 0 is hypercyclic for
any hypercyclic strongly continuous operator semigroup {Tt}t∈R+ on an F-space. Bernal-González
and Grosse-Erdmann [6] gave an example of a supercyclic strongly continuous operator semigroup
{Tt}t∈R+ on a real Hilbert space such that Tt is not supercyclic for t from a dense subset of R+. It
seems to remain unknown whether Tt with t > 0 must all be supercyclic for every supercyclic strongly
continuous operator semigroup {Tt}t∈R+ on a complex F-space.

The following (trivial under the Continuum Hypothesis) result is Lemma 2 in [25].
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Lemma 5.3. Let (M,d) be a separable complete metric space, X be a topological vector space,
f : M → X be a continuous map and τ = dim span f(M). Then either τ 6 ℵ0 or τ = 2ℵ0.

Lemma 5.4. Let {Tt}t∈R+ be a strongly continuous operator semigroup on a topological vector space
X, x ∈ X and C(x) = span {Ttx : t ∈ R+}. Then either dimC(x) < ℵ0 or dimC(x) = 2ℵ0.

Proof. By Lemma 5.3, either dimC(x) 6 ℵ0 or dimC(x) = 2ℵ0 . It remains to rule out the case
dimC(x) = ℵ0. Assume that dimC(x) = ℵ0. Restricting the Tt to the invariant subspace C(x), we
can without loss of generality assume that C(x) = X. Thus dimX = ℵ0 and therefore X is the union
of an increasing sequence {Xn}n∈Z+ of finite dimensional subspaces. First, we shall show that for each
ε > 0, the space Xε = span {Ttx : t > ε} is finite dimensional.

Let ε > 0 and 0 < α < ε. Then [α, ε] is the union of closed sets An = {t ∈ [α, ε] : Ttx ∈ Xn} for
n ∈ Z+. By the Baire category theorem, there is n ∈ Z+ such that An has non-empty interior in [α, ε].
Hence we can pick a, b ∈ R such that α 6 a < b 6 ε and Ttx ∈ Xn for any t ∈ [a, b]. We shall show
that Ttx ∈ Xn for t > a. Assume, it is not the case. Then the number c = inf{t ∈ [a,∞) : Ttx /∈ Xn}
belongs to [b,∞). Since {t ∈ R+ : Tt ∈ Xn} is closed, Tcx ∈ Xn. Since [a, b] is uncountable
and the span of {Tt : t ∈ [a, b]} is finite dimensional, we can pick a 6 t0 < t1 < . . . < tn 6 b and
c1, . . . , cn−1 ∈ K such that Ttnx = c1Tt1x+. . .+cn−1Ttn−1x. Since Tcx ∈ Xn, by definition of c, there is
t ∈ (c, c+tn−tn−1) such that Ttx /∈ Xn. Since t > c > tn, the equality Ttnx = c1Tt1x+. . .+cn−1Ttn−1x

implies that Ttx = Tt−tnTtnx = Tt−tn

n−1∑
j=1

cjTtjx =
n−1∑
j=1

cjTt−tn+tjx ∈ Xn because a 6 t− tn+ tj 6 c for

1 6 j 6 n− 1. This contradiction proves that Ttx ∈ Xn for each t > a. Hence Xε ⊆ Xn and therefore
Xε is finite dimensional for each ε > 0.

Since Tt(X) = Tt(C(x)) ⊆ Xt, Tt has finite rank for any t > 0. Let t > 0. Since Tt has finite
rank, Ft = kerTt is a closed subspace of X of finite codimension. Clearly Ft is Ts-invariant for each
s ∈ R+. Passing to quotient operators, Ss ∈ L(X/Ft), Ss(u + Ft) = Tsu + Ft, we get a strongly
continuous semigroup {Ss}s∈R+ on the finite dimensional space X/Ft. Hence there is A ∈ L(X/Ft)
such that Ss = esA for s ∈ R+. Thus each Ss is invertible and is a quotient of Ts, we obtain
rkTs > rkSs = dimX/Ft = rkTt for any t > 0 and s > 0. Thus Tt for t > 0 have the same rank
k ∈ N. Passing to the limit as t → 0, we see that the identity operator I = T0 is the strong operator
topology limit of a sequence of rank k operators. Hence rk I 6 k. That is, X is finite dimensional.
This contradiction completes the proof.

Lemma 5.5. Let X be a topological vector space in which the linear span of each metrizable compact
subset has dimension < 2ℵ0. Then for any strongly continuous operator semigroup {Tt}t∈R+ on X and
any x ∈ X, the space C(x) = span {Ttx : t ∈ R+} is finite dimensional.

Proof. Let {Tt}t∈R+ be a strongly continuous operator semigroup on X and x ∈ X. By strong
continuity, Kn = {Ttx : 0 6 t 6 n} is compact and metrizable for any n ∈ N. Hence dimEn < 2ℵ0 for
any n ∈ N, where En = span (Kn). Since the sum of countably many cardinals strictly less than 2ℵ0

is strictly less than 2ℵ0 , dimC(x) 6
∞∑
n=1

dimEn < 2ℵ0 . By Lemma 5.4, C(x) is finite dimensional.

Applying Lemma 5.1 if X is finite dimensional and Lemma 5.5 otherwise, we get the following
result.

Corollary 5.6. Let X be a topological vector space such that dim RX > 2 and the linear span of each

metrizable compact subset of X has dimension < 2ℵ0. Then there is no strongly continuous supercyclic
operator semigroup {Tt}t∈R+ on X.

Corollary 5.7. Let X be an infinite dimensional topological vector space such that dim RX
′ > 2 and

in X ′
σ the span of any compact metrizable subset has dimension < 2ℵ0. Then there is no strongly

continuous supercyclic operator semigroup {Tt}t∈R+ on X.
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Proof. Assume that there exists a supercyclic strongly continuous operator semigroup {Tt}t∈R+ on X.
It is straightforward to verify that {T ′

t}t∈R+ is a strongly continuous semigroup on X ′
σ. Pick any finite

dimensional subspace L of X ′ such that dim RL > 2. By Lemma 5.5, E = span {T ′
tf : t ∈ R+, f ∈ L}

is finite dimensional. Since L ⊆ E, dim RE > 2. Since E is T ′
t -invariant for any t ∈ R+, its annihilator

F = {x ∈ X : f(x) = 0 for any f ∈ E} is Tt-invariant for each t ∈ R+. Thus we can consider the
quotient operators St ∈ L(X/F ), St(x+F ) = Ttx+F . Then {St}t∈R+ is a strongly continuous operator
semigroup on X/F . Moreover, {St}t∈R+ is supercyclic since {Tt}t∈R+ is. Now since dimE = dimX/F ,
2 < dim RX/F < ℵ0. By Lemma 5.1, there are no strongly continuous supercyclic operator semigroups
on X/F . This contradiction completes the proof.

Proof of Theorem 1.6. Theorem 1.6 immediately follows from Corollaries 5.6 and 5.7.

6 Examples, remarks and questions

Note that if (X, τ) ∈ M is locally convex, then (X, θ) ∈ M for any locally convex topology θ on X
such that θ ̸= σ(X,X ′) and (X, θ) has the same dual X ′ as (X, τ). This is an easy application of the
Mackey–Arens theorem [24]. Moreover, if (X, τ) ∈ M is locally convex, the hereditarily hypercyclic
uniformly continuous group from Theorem 1.4 is strongly continuous and hereditarily hypercyclic on
X equipped with the weak topology. Unfortunately, the nature of the weak topology does not allow
to make such a semigroup uniformly continuous.

Assume now that X is an infinite dimensional separable F-space. If dimX ′ > ℵ0, Proposition 1.5
and Theorem 1.4 provide uniformly continuous hereditarily hypercyclic operator groups {Tt}t∈Kk on
X. If 2 < dim RX

′ 6 ℵ0, Theorem 1.6 does not allow a supercyclic strongly continuous operator
semigroup {Tt}t∈R+ on X. Similarly, if 1 6 dimX ′ 6 ℵ0, there are no hypercyclic strongly continuous
operator semigroups {Tt}t∈R+ on X. It leaves unexplored the case X ′ = {0}.

Question 6.1. Characterize infinite dimensional separable F-spaces X such that X ′ = {0} and X
admits a hypercyclic strongly continuous operator semigroup {Tt}t∈R+. In particular, is it true that
an F-space X with X ′ = {0} supporting a hypercyclic operator, supports also a hypercyclic strongly
continuous operator semigroup {Tt}t∈R+?

Recall that an infinite dimensional topological vector space X is called rigid if L(X) consists only
of the operators of the form λI for λ ∈ K. Since there exist rigid separable F-spaces [19], there
are separable infinite dimensional F-spaces on which support no cyclic operators or cyclic strongly
continuous operator semigroups {Tt}t∈R+ . Of course, X ′ = {0} ifX is rigid. We show that the equality
X ′ = {0} for an F-space is not an obstacle for having uniformly continuous hereditarily hypercyclic
operator groups. The spaces we consider are Lp[0, 1] for 0 6 p < 1.

Let (Ω,A, µ) be a measure space with µ being σ-finite. Recall that if 0 < p < 1, then Lp(Ω, µ)
consists of (classes of equivalence up to being equal almost everywhere with respect to µ of) measurable
functions f : Ω → K satisfying qp(f) =

∫
Ω |f(x)|p λ(dx) < ∞ with the topology defined by the

metric dp(f, g) = qp(f − g). The space L0(Ω, µ) consists of (equivalence classes of) all measurable
functions f : Ω → K with the topology defined by the metric d0(f, g) = q0(f − g), where q0(h) =
∞∑
n=0

2−n

µ(Ωn)

∫
Ωn

|f(x)|
1+|f(x)| µ(dx) and {Ωn}n∈Z+ is a sequence of measurable subsets of Ω such that µ(Ωn) <

∞ for each n ∈ Z+ and Ω is the union of Ωn. Although d0 depends on the choice of {Ωn}, the topology
defined by this metric does not depend on this choice. If Ω = [0, 1]k or Ω = Rk and µ is the Lebesgue
measure, we omit the notation for the underlying measure and σ-algebra and simply write Lp([0, 1]

k)
or Lp(Rk). We also replace Lp([0, 1]) by Lp[0, 1]. Note [19] that X = Lp[0, 1] for 0 6 p < 1 is a
separable infinite dimensional F-space satisfying X ′ = {0}. Moreover, for any p ∈ [0, 1) and k ∈ N,
Lp([0, 1]

k) is isomorphic to Lp[0, 1] and Lp(Rk) is isomorphic to Lp[0, 1].

Example 6.2. Let 0 < p < 1, X = Lp([0, 1]
k) and Tj ∈ L(X) be defined by the formula

Tjf(x1, . . . xj−1, xj , xj+1 . . . , xn) = f(x1, . . . xj−1, xj/2, xj+1 . . . , xn), 1 6 j 6 k.
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Then {e⟨t,T ⟩}t∈Kk is a uniformly continuous and hereditarily hypercyclic operator group.

Proof. The facts that Tj are pairwise commuting, e⟨t,T ⟩ is well-defined for each t ∈ Kk and {e⟨t,T ⟩}t∈Kk

is a uniformly continuous operator group are easily verified. Moreover, T is an EBSk-tuple. Namely,
ker† T consists of all f ∈ X vanishing in a neighborhood of (0, . . . , 0) and therefore is dense. By
Corollary 2.8, {e⟨t,T ⟩}t∈Kk is mixing. By Proposition 1.1, {e⟨t,T ⟩}t∈Kk is hereditarily hypercyclic.

It is worth noting that the above example does not work for X = L0([0, 1]
k): e⟨t,T ⟩ is not well-

defined for each non-zero t ∈ Kk. Nevertheless, we can produce a strongly continuous hereditarily
hypercyclic operator group {Tt}t∈Rk on L0(Rk).

Example 6.3. Let k ∈ N, X = L0(Rk) and for each t ∈ Rk, Tt ∈ L(X) be defined by the formula
Ttf(x) = f(x− t). Then {Tt}t∈Rk is a strongly continuous hereditarily hypercyclic operator group.

Proof. The fact that {Tt}t∈Rk is a strongly continuous operator group is obvious. Pick a sequence
{tn}n∈Z+ of vectors in Rk such that |tn| → ∞ as n → ∞. Clearly the space E of functions from X
with bounded support is dense in X. It is easy to see that Ttnf → 0 and T−1

tn f = T−tnf → 0 for each
f ∈ E. Hence {Ttn : n ∈ Z+} satisfies the universality criterion from [7]. Thus {Ttn : n ∈ Z+} is
universal and therefore {Tt}t∈Rk is hereditarily hypercyclic.

Since Lp([0, 1]
k) and Lp(Rk) are isomorphic to Lp[0, 1], we obtain the following corollary.

Corollary 6.4. Let k ∈ N and 0 6 p < 1. Then there exists a hereditarily hypercyclic strongly
continuous operator group {Tt}t∈Rk on Lp[0, 1].

Ansari [1] asked whether Lp[0, 1] for 0 6 p < 1 support hypercyclic operators. This question was
answered affirmatively by Grosse–Erdmann [18, Remark 4b]. Corollary 6.4 provides a ’very strong’
affirmative answer to the same question. Finally, we would like to mention a class of topological
vector spaces very different from the spaces in M in terms of operator semigroups. Recall that
operator semigroups from Theorem 1.4 on spaces X ∈ M depend analytically on the parameter: the
map t 7→ f(Ttx) from Kk to K is analytic for any x ∈ X and f ∈ X ′.

Proposition 6.5. Let a locally convex space X be the union of a sequence of its closed linear subspaces
{Xn}n∈Z+ such that Xn ̸= X for each n ∈ Z+. Assume also that {Tt}t∈R+ is a strongly continuous
operator semigroup such that the function t 7→ f(Ttx) from R+ to K is real-analytic for any x ∈ X
and f ∈ X ′. Then {Tt}t∈R+ is non-cyclic.

Proof. Let x ∈ X. Clearly R+ is the union of closed sets An = {t ∈ R+ : Ttx ∈ Xn} for n ∈ Z+. By
the Baire theorem, there is n ∈ Z+ such that An contains an interval (a, b). Now let f ∈ X ′ be such
that Xn ⊆ ker f . Then the function t 7→ f(Ttx) vanishes on (a, b). Since this function is analytic,
it is identically 0. That is, f(Ttx) = 0 for any t ∈ R+ and any f ∈ X ′ vanishing on Xn. By the
Hahn–Banach theorem, Ttx ∈ Xn for each t ∈ R+. Hence x is not cyclic for {Tt}t∈R+ . Since x is
arbitrary, {Tt}t∈R+ is non-cyclic.

Note that a countable locally convex direct sum of infinite dimensional Banach spaces may admit
a hypercyclic operator [10]. This observation together with the above proposition make the following
question more intriguing.

Question 6.6. Let X be the locally convex direct sum of a sequence of separable infinite dimensional
Banach spaces. Does X admit a hypercyclic strongly continuous semigroup {Tt}t∈R+?

6.1 A question by Bermúdez, Bonilla, Conejero and Peris

Using [2, Theorem 2.2] and Theorem 2.9, one can easily see that if T is an extended backward
shift on a separable infinite dimensional Banach space X, then both I + T and eT are hereditarily
hypercyclic. Clearly, an extended backward shift T has dense range and dense generalized kernel

ker⋆ T =
∞∪
n=1

kerTn. The converse is not true in general. This leads to the following question.
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Question 6.7. Let T be a continuous linear operator on a separable Banach space, which has dense
range and dense generalized kernel. Is it true that I +T and/or eT are mixing or at least hypercyclic?

This reminds of the following question [3] by Bermúdez, Bonilla, Conejero and Peris.

Question B2CP. Let X be a complex Banach space and T ∈ L(X) be such that its spectrum σ(T ) is
connected and contains 0. Does hypercyclicity of I+T imply hypercyclicity of eT ? Does hypercyclicity
of eT imply hypercyclicity of I + T?

We shall show that the answer to both parts of the above question is negative. Before doing this,
we would like to raise a similar question, which remains open.

Question 6.8. Let X be a Banach space and T ∈ L(X) be quasinilpotent. Is hypercyclicity of I + T
equivalent to hypercyclicity of eT?

If the answer is affirmative, then the following interesting question naturally arises.

Question 6.9. Let T be a quasinilpotent bounded linear operator on a complex Banach space X and
f be an entire function on one variable such that f(0) = f ′(0) = 1. Is it true that hypercyclicity of
f(T ) is equivalent to hypercyclicity of I + T?

We introduce some notation. Let T = {z ∈ C : |z| = 1}, D = {z ∈ C : |z| < 1}, H2(D) be the
Hardy Hilbert space on the unit disk and H∞(D) be the space of bounded holomorphic functions
f : D → C. It is well-known that for α ∈ H∞(D), the multiplication operator Mαf(z) = α(z)f(z) is a
bounded linear operator on H2(D). It is also clear that σ(Mα) = α(D).

Godefroy and Shapiro [16, Theorem 4.9] proved that if α ∈ H∞(D) is not a constant function,
then the Hilbert space adjoint M⋆

α is hypercyclic if and only if α(D) ∩ T ̸= ∅. Moreover, they proved
hypercyclicity by means of applying the Kitai Criterion [20, 15], which automatically [17] provides
hereditary hypercyclicity. Thus their result can be stated in the following form.

Proposition 6.10. Let α ∈ H∞(D) be non-constant. Then M⋆
α is hereditarily hypercyclic if

α(D) ∩ T ̸= ∅ and M⋆
α is non-hypercyclic if α(D) ∩ T = ∅.

We show that the answer to both parts of Question B2CP is negative. Consider U ⊂ C, being the
interior of the triangle with vertices −1, i and −i. That is, U = {a + bi : a, b ∈ R, a < 0, b − a <
1, b + a > −1}. Next, let V = {a + bi : a, b ∈ R, 0 < b < 1, |a| < 1 −

√
1− b2}. The boundary

of V consists of the interval [−1 + i, 1 + i] and two circle arcs. Clearly, U and V are bounded, open,
connected and simply connected. Moreover, (1 + U) ∩ T ̸= ∅, where 1 + U = {1 + z : z ∈ U} and
eU = {ez : z ∈ U} ⊆ D. Similarly, (1 + V ) ∩ D = ∅ and eV ∩ T ̸= ∅. By the Riemann Theorem
[21], there exist holomorphic homeomorphisms α : D → U and β : D → V . Obviously α, β ∈ H∞(D)
and are non-constant. Since I + M⋆

α = M⋆
1+α, eM

⋆
β = M⋆

eβ
and both (1 + α)(D) = 1 + U and

eβ(D) = eV intersect T, Proposition 6.10 implies that I + M⋆
α and eM

⋆
β are hereditarily hypercyclic.

Since I +M⋆
β = M⋆

1+β, e
M⋆

α = M⋆
eα , e

α(D) = eU is contained in D and (1 + β)(D) = 1 + V does not

meet D, Proposition 6.10 implies that eM
⋆
α and I +M⋆

β are non-hypercyclic. Finally, σ(M⋆
α) = U and

σ(M⋆
β) = −V . Hence the spectra of M⋆

α and M⋆
β are connected and contain 0. Thus we have arrived

to the following result, which answers negatively the Question B2CP.

Proposition 6.11. There exist bounded linear operators A and B on a separable infinite dimensional
complex Hilbert space such that σ(A) and σ(B) are connected and contain 0, I + A and eB are
hereditarily hypercyclic, while eA and I +B are non-hypercyclic.
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