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Abstract

We present data on emission of K-shell radiation from Ti foils irradiated with sub-picosecond

pulses of second harmonic radiation (527nm) from the TARANIS laser system at intensities of up

to 1018Wcm−2. The data is used to demonstrate that a resonance absorption type mechanism

is responsible for absorption of the laser light and to estimate fast electron temperatures of 30-

60keV that are in broad agreement with expectation from models of absorption for a steep density

gradient. Data taken with resin-backed targets are used to demonstrate clear evidence of electron

refluxing even at the modest fast electron temperatures inferred.
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I. INTRODUCTION

Over the years there have been several studies of K-α e.g. [1–8] and thermal X-ray line

e.g. [9, 10] emission from laser plasmas. Some of these studies were aimed at understanding

fast electron (alternatively called hot electron) propagation in solids under intense laser

irradiation [11], whilst others were aimed at developing sources of x-rays for other purposes,

such as absorption spectroscopy, radiography or X-ray scattering [12]. Previously published

data has covered both fundamental and second harmonic laser radiation for femto-second

laser systems [3]. For pulses of 60ps and longer, both first and second harmonic have been

studied [9, 10]. For nanosecond pulses yields of thermal X-rays for third harmonic have been

measured [13].

In this paper we address three points. Firstly, we present absolute measurements of Ti

K-α (2.75Å) photon yields, for source development purposes. The laser irradiation condi-

tions investigated occupy, from the point of view of K-α yield measurement, a relatively

unexplored combination of wavelength and pulse duration parameter space; that is at 0.8

ps duration with high contrast second harmonic (527nm) light. Secondly, we compare the

yield of K-α radiation with the yield of the He-α line (He-like 1s2− 1s2p1P and satellites at

2.61-2.75Å) for pulse durations intermediate between the fs [14] and sub-ns regimes [9, 15].

Finally, we investigate, experimentally, the role of refluxing of fast electrons in determining

the yield of K-α radiation. In the course of this investigation, we measure the temperature

of the fast electron population generated principally by a resonance absorption type mech-

anism and show that a simple model for K-α emission is consistent with the measurements

and the interpretation.

II. EXPERIMENT

The experiment was carried out with the second harmonic of the laser pulses delivered

by the high power laser system, TARANIS [16] situated at Queen’s University Belfast. This

Ti:Sapphire-Nd:Glass CPA laser can provide pulses of 800 fs duration and of up to 15 J

energy after the compressor at 1053nm wavelength. However, in this work the energy of the

laser was kept low in order to improve the focal spot quality. The intensity contrast of the

laser at 1-2 ns before the main pulse was measured by a fast photodiode (rise time 200ps)
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yielding contrast of about 107 for ASE. The pre-pulse activity consisted of a few, picosecond

duration, pre-pulses at up to ∼3ns ahead of the main pulse with energy contrast of 104 for

the 1053nm beam.

The pulses of the second harmonic at 527 nm wavelength were generated by a 2 mm thick

KDP (Type I) crystal. The unconverted infrared emission was rejected by two flat mirrors

and an off-axis parabola (OAP) with dielectric coatings of high reflectivity optimized for

the second harmonic. These mirrors delivered the second harmonic pulses to the target.

The p-polarized second harmonic emission was focused by the F/3.3 OAP to a focal spot

of 12µm full-width-at-half-maximum (FWHM) in diameter containing 50% of the energy.

The size of the focal spot was inferred from preliminary shots in which a 4.6m focal length

lens was used to focus the full beam down onto a CCD camera after reflection of three high

quality optical flats to reduce intensity to a level where appropriate filtering could be used

to make measurements. In figure 1 we can see a typical focal spot profile taken with the

long focal length lens. We note that there is a degree of astigmatism in the distribution

and we refer to this later in the interpretation of the data. In this experiment we used

second harmonic energies up to 2.5J with much of the data taken with ∼1J on target with

an intensity at 45◦ incidence of ∼ 4× 1017 Wcm−2, where the average irradiance is defined

taking the energy and dividing by the full-width-at-half-maximum (FWHM) duration and

by a focal spot area defined by the FWHM diameter of the spot. Variation of the focused

intensity down to about 3×1015 Wcm−2 was achieved by defocusing the beam on the target

by up to 1mm. The transmission of the beamline beyond the crystal, for the unconverted

fundamental was measured to be 7.8 × 10−3 %, resulting in an ASE pre-pulse intensity, at

1053 nm, on target of < 107 Wcm−2. For pre-pulses the focused energy was estimated to be

< 50nJ per pulse with focused intensity estimated at < 1010 Wcm−2 in a picosecond pulse.

The resulting fluence of < 0.05Jcm−2 would then be below the ablation threshold.

The K-shell emission from laser-heated thin foils of Ti was monitored with two spec-

trometers, each consisting of a Bragg crystal coupled to a CCD detector. These were fitted

with cylindrically curved (R=50mm) highly oriented pyrolytic graphite (HOPG) crystals

(2d=6.708Å) operating in the von-Hamos configuration. One of these detectors was placed

to view the laser irradiated (front) side of the foil approximately along the normal to the

foil surface, when the laser was incident at 45◦ on the target. For the same target position,

the second spectrometer was placed to view the un-irradiated (rear) side of the target at
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FIG. 1: (Color online) (a) Schematic of the experimental layout. Angles shown for the diagnostics

are relative to the laser axis and are fixed. (b) A typical focal spot measured at full energy in

second harmonic with a 4.6 m lens after picking of a small fraction of the beam energy with flat

plates. For the OAP the scaled FWHM containing 50% of the energy was 12 µm. The scale in the

image is the same as in the line-outs.

at 35◦ from the normal. We can see the layout schematically in figure 1. The integrated

reflectivity of the HOPG crystals was determined to ±15% in a separate experiment by

comparison of spectra with a single hit CCD detection system using low energy shots. This

calibration work will be described in a separate paper.

In order to get an estimate of the fast electron temperature, we also fielded a simple

instrument consisting of an array of five filters (with thicknesses ranging from 50-400 µm of

Pb) with an image plate as the detector. The principle of the instrument is that we assume

the bremsstrahlung emission generated from fast electrons has a spectral shape given by

I(E, Th) ∼ exp(−E/kTh) where Th is the fast electron temperature, k is the Boltzmann

constant and E is the photon energy. By accounting for the response of the image plate

(Fuji MS type) to hard X-rays [17] and the filter transmission [18], we can find a value for

fast electron temperature by comparing the ratio of signal levels in the different spectral

channels. The filter array and IP sat outside the chamber and a 300 µm plastic window

allowed X-rays to pass. A collimating tube covered in lead (thickness 1mm) and with a slot

at the front ensured that the instrument viewed only X-rays from the region of the target

and helped to reduce the plasma striking the window and causing fluorescence. The window

also prevented fast electrons from reaching the Pb filters. The background that did appear
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on the image plate was smooth and quite uniform. It showed a clear and reproducible fall

with distance as we moved the image plate back from the filters by up to 16cm and was

relatively simple to remove in analysis. For the range of temperatures we observe below, the

data is reliable for 3-4 filters, the thickest showing little signal. Sensitivity analysis carried

out by varying the background subtraction allowed error bars to be determined.

In the next section, we present the data relevant to the first two points we address -i.e.

fractional yields of K-α/He-α radiation and the fast electron temperature. In the following

section we present modelling in conjunction with data relevant to the issues of fast electron

reflux.

III. EXPERIMENTAL RESULTS

In figure 2 we show a typical spectrum from the front HOPG spectrometer. We can see

the K-α and K-β lines. We also see H-like and He-like Ti emission lines and evidence of

inner shell emission from a series of ionisation stages. The ratio of the He-α and Lyman-α

lines indicates Te >2keV for the ”thermal” background temperature [19]. This should be a

lower limit since, even if we assume heat flows from critical density up to Ne ∼ 1023 cm−3,

we would expect the timescale for ionisation from He-like to H-like ground states to be of

order 10 ps for Te=2 keV. A fast electron population at 30 keV would have an ionisation rate

more than 20 times faster but the effect of this would depend on the fast electron density

as a fraction of the total and we do not have a good estimate of this.

In figure 3, for 45◦ incidence and p-polarisation, we see the absolute fractional yields

of K-α photons as a function of defocus distance for three thicknesses of Ti foils, for both

the front and rear spectrometers. Each point is an average of several shots and the error

bars are standard deviations from the mean. The fractional yield is defined as the energy

emitted in K-α photons into 4π sr divided by the incident laser energy. For our purposes,

the calculations take the spectrometer measurements and extrapolate assuming isotropic

emission. Naturally, in reality, emission in some directions will be re-absorbed more than

others and this is reflected in the lower yields seen for the rear spectrometer with thick

foils. The effect of re-absorption is taken into account in our simulations when we make

comparisons to data below. Notice that the ratio of approximately 1:1 for front and rear

emission in the tight focus case for 10 µm foils is as expected, due to the approximately 20
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FIG. 2: (Color online)Typical spectrum at tight focus, showing the K-α and K-β lines as well as

thermal emission from H-like and He-like ions. The ratio of He-α to Lyman-α is used to infer an

electron temperature of Te >2keV (see text)

µm absorption length of K-α photons combined with penetration of electrons into the foil.

This also gives confidence in the relative calibration of the crystals. In the 25 and 50 µm

foil cases, the effect of increased electron penetration in increasing the signal from the foil

rear, at tight focus, is clear. An important feature is that, in all three cases, there seems

to be a minimum at 50 µm away from where we determined best focus to be. The depth

of this dip increases only slightly for thicker targets, suggesting that this is not, in fact, a

result of the deep penetration of electrons into the foils but may be linked to a change in the

efficiency of converting laser energy to fast electron energy, close to best focus. This may

be a result of the astigmatic focal spot, where, as seen above, a low intensity halo contains

half the energy at tight focus. It is also possible that at the lower intensity away from best

focus, the density scale-length is slightly more optimised for absorption at 45◦ than for the

tight focus case. The scale-length and absorption mechanism are discussed below.

In figure 4, we can see the normalised yield of K-α photons as a function of angle at

tight focus for 50 µm foils. Again, the data is averaged over 4-5 shots and the error bars

represent standard deviations of the yield. By assuming that the yield is proportional to the

absorption, we have estimated the plasma density scale-length of the plasma by fitting the

data to a simple resonance absorption model [20]. A least squares best fit gives a scale-length

of L=0.18 ± 0.02µm. This means that L/λ ≈ 0.34 and since vosc/ω0 ≈ 0.024µm < L, then

we expect to be in the resonance absorption regime rather than the vacuum heating [21, 22]
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FIG. 3: (Color online) K-α fractional yields for front (solid disks) and rear (open circles) spec-

trometers as a function of defocus for a) 10 µm, b) 25µm and c) 50µm Ti foils. Positive defocus

means the focus is in front of the target. Error bars are standard deviations. Note the different

spatial scale for the 10µm case.

regime which would apply at shorter scale-length. For the intensities used, ponderomotive

steepening may be important in setting the scale-length. We expect the pressure associated

with the laser to be ≈35 Mbar, equivalent to a thermal temperature of over 5 keV at critical

density. We make a more sophisticated estimate of scale-length in the modelling section

below after describing our K-α generation model and the measurement of fast electron

temperature, but the result is as for the simple fitting in figure 4.

In figure 5 we can see the fast electron temperature results from the filter array system.

At tight focus, the occasional shot can go to nearly 50 keV but quite consistently the

temperature is ∼30 ± 5 keV. Defocusing to about 200 µm (and thus increasing focal spot
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FIG. 4: (Color online) Comparison of K-α yield with normalised absorption for resonance absorp-

tion. Using a normalised plot we can estimate the scale-length independently of absorbed laser

energy.

FIG. 5: (Color online) Fast electron temperature as determined by the filter array system.

size by ∼5) dropped the estimated fast electron temperature by about a factor of 3, which

agrees quite well with a scaling of temperature with I1/3 [28,29].

For the He-α line, we expect the emission to depend on the temperature of the ”thermal”

plasma created around the critical density. In figure 6, we can see the yield as a function

of defocus for the case of 50 µm foils. In fact the results are similar for all thicknesses of

foil. As we can see from figure 6, the He-like emission generally drops off with defocus

more rapidly than the K-α radiation and the maximum yield is comparable to K-α, as for

the case of shorter pulses [14] and in contrast to the long pulse case where thermal emission

is often at least an order of magnitude more efficient [9]. The large variation in error bars

(which are standard deviations as for the K-α case) across the data is a result of statistical

variation in yield from shot to shot.
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FIG. 6: (Color online) He-α yield as a function of defocus for a 50 µm foil. The overall yield is

comparable to the K-α.

IV. MODELLING AND ANALYSIS

Modelling of the complete experiment is in principle complex. A hydro-dynamic code

can model the laser plasma interaction including resonance absorption. However, usually

non-local heat flow and fast electron transport are not included. For a particle in cell (PIC)

simulation, we can model fast electron generation but we must generally start from a plasma

that already has a bulk electron temperature of ∼ 1 keV in order to resolve the Debye length.

Resistivity of the target is also generally not included. In this experimentally based paper

we simply seek to broadly understand the level of K-α generation and the behaviour with

target thickness, angle of incidence and whether we view from the front or rear of the foil.

With that in mind, we model the K-α generation using a simple one dimensional model

presented in a previous paper [23] and based on a model from other authors [2]. In our

simple model we assume that conductivity of the metallic target is such that electric field

inhibition is not a factor. We have assigned 112 energy groups to the electron population

with numbers in each group according to a single temperature in a 1-dimensional Maxwellian

distribution as in [2]. The foil is divided into 100 cells and each group is transported through

them losing energy according to a stopping power equation and generating K-shell vacancies

according to a cross-section from the literature [24]. The K-α yield is calculated accounting

for the fluorescence yield and the angle dependent absorption on the way out of the target.
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FIG. 7: (Color online) Comparison of K-α fractional yield versus angle for experiment with pre-

diction based on simple modelling as described in text, assuming 23% peak absorption into Th=30

keV electrons with a scale-length of 0.18 µm.

The most important variable inputs to the code include the fast electron temperature and

the fractional absorption into fast electrons.
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FIG. 8: (Color online) K-alpha signal as a function of incident second harmonic laser energy for

resin-backed (blue circles) and bare (red squares) foils of 10 µm thickness.

In figure 4, we assumed absorption was proportional to K-α yield in order to fit a scale-

length. With the simple K-α model we can account for variation in yield with temperature

and use comparison of absolute and predicted yields for 50 µm foils to fit to both scale-

length and peak absorption. In order to account for variation in intensity as angle changes,

we assume the experimentally determined value of fast electron temperature at 45◦ (30

keV) and assume that Th varies as I1/3. Our results are presented in figure 7, where we

found that the best fit is for an overall peak absorption of 23±1% of laser energy into fast

10



electrons with a scale-length of 0.18 ± 0.02µm in agreement with the simpler derivation of

figure 4. In this simulation, we assume that electrons reaching the rear of the foil can

reflux back into the target to further contribute to the yield. This issue is discussed and the

assumption justified below. In fact varying the expected Th from 20-60 keV varies the best

fit to absorption by only a small amount (23-26%). The absorption fraction calculated here

accounts for the whole laser energy. If we assume the low intensity ”halo” contributes little

to the K-α generation, we would then predict 45-50% absorption in the central hot spot,

which is within reasonable bounds for the resonance absorption mechanism. An important

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

!" (!" $!" )!" %!" *!" &!"

+
,
-
.
"/
.
,
01
2
34
,
51
"

6.78"097:;<1==">?7:5.<=@"

ABC157?1<0"

*!";1D"

&!";1D"

E!";1D"

FIG. 9: (Color online) Comparison of experimental K-α yield ratios for coated and bare foils

compared to simulation for a range of fast electron temperatures.

issue we also investigated is the role of refluxing in generating K-α yield. We expect this

to be dependent primarily on the fast electron temperature. In order to experimentally

investigate this, we have carried out further experiments using foils that have been backed

by an ≈1mm thick layer of resin (A/epichlorohydrin, C21H25ClO5). The principle is that

electrons escaping the rear of the Ti will penetrate the resin and be lost rather than be

reflected back into the Ti foil to enhance K-α production. This is similar in design to

experiments carried out at the fundamental wavelength by Neumayer et al [25]. We coated

all three thicknesses of foil with the resin. In order to ensure consistent laser parameters we

mounted both coated and uncoated targets on the target drive and alternated shots. The

results for the 10 µm foil case can be seen in figure 8 where we have scanned energy on
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FIG. 10: (Color online) Ratio of K-α emission for the front and rear spectrometers. The solid lines

represent simulations and show a best fit of Th ∼40 keV.

target at tight focus. Beyond a certain threshold, we see an almost linear rise with energy

for the front spectrometer in both coated and uncoated cases. However, the coated case rises

with a different slope and we can see there is clearly a significant contribution from refluxing

that increases with energy on target to effectively double the yield. We also see that, at low

energy, the slopes seem to converge; evidently, as fast electron temperature drops, refluxing

is, as expected, less important. In figure 9 we can see averaged values at peak energy (∼1J

in this run) for all three thicknesses. What we show in the figure is the ratio of the front

surface yields for coated to uncoated targets. Evidently, thickness is important, as might be

expected, with only a 20% difference for 50 µm foils compared to a factor of ≈2 for 10 µm

foils. What is clear from figure 9, is that refluxing is still an important process even for our

relatively modest fast electron temperatures. In figure 9, we compare experimental data

to our simple K-α model prediction for the effect of refluxing switched on and off. Using a

least squares fit to the data, the best agreement is for temperature of 60 ± 10keV, higher

than the filter pack estimate.

A further quantity that is sensitive to the fast electron temperature is the ratio of front

to rear emission for uncoated foils. We can see in figure 10 a plot of the averaged ratio

at tight focus for all three foil thicknesses. We also see curves predicting the ratio for a

range of fast electron temperatures, where a temperature of 40 ± 5 keV seems to best fit

the data. We note that for the simulations in figures 9 and 10, we have assumed that

electrons reaching the rear of an uncoated foil can reflux back into the foil. This assumption
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compared to different assumptions about the level of electron refluxing. The red band shows the

limits of the error bars for the experimental ratio (3.8±0.4)

is certainly justified from the data in figure 9. However, we need to consider if the refluxing

is limited in some way, as this might affect the fast electron temperature that best fits the

experimental data. To test this idea, we have run further simulations, as displayed in figure

11. We can see that assuming electrons only bounce once, from the rear surface, makes little

difference to the ratio predicted for front to rear emission for the case of 50 µm foils.

There are several scaling laws for fast electron temperature in the literature e.g. [26–28].

As we have shown above, we expect that a resonance absorption type mechanism is domi-

nant. For this mechanism, Kruer and Wilks [27] quote a scaling law Th(keV)=10(TcI15λ
2)1/3

where Tc is the bulk temperature at critical density in keV, λ is the laser wavelength in mi-

crons and I15 is the laser intensity in units of 1015 Wcm−2. If we take a lower bound for Tc

as 2 keV based on the ratio of H-like to He-like emission in figure 2, we estimate Th= 60

keV. This seems to agree with the data from the refluxing experiment but is higher than

the filter pack measurements by about a factor of ≈ 2.

We can note that a different fast electron scaling for short scale-length plasmas Andreev

et al [28] has Th(keV) = 8(I16λ
2)1/3 keV and would predict Th=18 keV. Our experiment

suggests a broad 30-60keV range for Th. In figure 12, we show our three estimates compared

to scaling laws from Wilks and Kruer (WK), for Brunel absorption and for the scaling of

Andreev. For the WK scaling, we show more than one bulk temperature since our estimate
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from the He and H-like lines is only crude. The filter array data at two different focal

positions seems to support the scaling of Th ∝ I1/3.
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FIG. 12: (Color online) Comparison for the three methods for determining fast electron temper-

ature, at tight focus, with expected temperatures from Brunel [22], Andreev [28] and resonance

absorption (WK) [27] with two different estimates of cold plasma temperature spanning the esti-

mate from spectroscopic observation. Data from the hot electron temperature monitor is shown

for the focal positions of figure 5. For the experimental data, we have grouped shots and the error

bars represent variance of intensity and inferred temperature for both positions.

We can compare our fast electron temperatures to previous work in a similar regime. Yu et

al [29] used a similar laser system but with ∼0.4ps pulse duration. They also irradiated solids

at 45◦ with p-polarisation. They found a fast electron temperature of 23 keV for irradiances

similar to ours. This is a little lower than our temperatures but could be argued to be

broadly consistent and might be considered to indicate a similar absorption mechanism.

On the other hand, they seem to find laser energy absorption values nearly an order of

magnitude lower, for reasons that are at the moment unclear to us. On the other hand

Pisani et al [30] used 0.35ps frequency doubled pulses at 529nm, irradiating targets at near

normal incidence. They found a fast electron temperature of approximately 175 keV for

irradiance of 1-2×1018Wcm−2 which was noted to be in accord with the scaling law given by

Beg et al [31], whereas that scaling law would suggest a fast electron temperature of order

100 keV for our case; well above our findings. Since they were working at close to normal

incidence with a high contrast laser, it seems likely that an absorption mechanism different
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from ours was responsible for the fast electron population.

V. SUMMARY

We have presented data on K-α production that has been used to draw several conclu-

sions. Firstly, we presented data that shows high K-α yield (> 10−4) for a pulse wavelength-

duration regime that has not been as well explored from this point of view as others. Sec-

ondly, in contrast to work at longer pulse durations, we showed that, for this picosecond

pulse duration regime, the thermal emission of He-like line radiation is not more efficient

than K-α emission; in fact, it is about as efficient as the K-α emission, as was found to be

the case for much shorter pulses. Thirdly, we have experimentally demonstrated, unambigu-

ously, the role of electron refluxing even for fast electron temperatures well below 100 keV.

Three different assessments of the fast electron temperature were made, one of them direct

from hard x-ray measurements, the other two based on simple modelling of fast electron

transport and its consequence for K-α yields. These three estimates spanned 30-60 keV but

are in broad accord with appropriate scaling laws published in the literature [22, 26–28].

The modelling used for comparison with some of the data is simple but predicts yields in

broad agreement with experiment for reasonable estimates of absorption.
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