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Abstract 

Using a primer to a conserved nucleotide sequence of previously-cloned skin peptides of 

Phyllomedusa species, two distinct cDNAs were “shotgun” cloned from a skin secretion-

derived cDNA library of the frog, Phyllomedusa burmeisteri. The two ORFs separately 

encode chains A and B of an analog of the previously-reported heterodimeric peptide, 

distinctin. LC-MS/MS analysis of native versus dithiotreitol reduced crude venom, confirmed 

the predicted primary sequences as well as the cystine link between the two monomers. 

Distinctin predominantly exists in the venom as a heterodimer (A-B), neither of the 

constituent peptides were detected as monomer, whereas of the two possible homodimers (A-

A or B-B), only B-B was detected in comparatively low quantity. In vitro dimerization of 

synthetic replicates of the monomers demonstrated that besides heterodimer, both 

homodimers are also formed in considerable amounts. Distinctin is the first example of an 

amphibian skin dimeric peptide that is formed by covalent linkage of two chains that are the 

products of different mRNAs. How this phenomenon occurs in vivo, to exclude significant 

homodimer formation, is unclear at present but a “favored steric state” type of interaction 

between chains is most likely. 

 

Keywords: Amphibian skin peptides; cDNA cloning; distinctin; intramolecular disulfide 

bonds; peptidomics. 

 

1. Introduction 

 

Amphibians are known to release bioactive compounds from their skin granular glands that 

include alkaloids, steroids, biogenic amines, proteins and peptides [1, 2]. Many hundreds of 

different peptides, differing in size, charge, hydrophobicity, conformation, primary structure, 

as well as in post-translational modifications, have been demonstrated in frog defensive skin 

secretions. 

As already reported by Vittorio Erspamer, one of the original frog skin peptide researchers, 

frogs from the genus Phyllomedusa have skins that are “a treasure trove of biologically-active 

peptides” [3], due to the large quantities and structural diversity of the peptides that he found 
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in members of this taxon. Several Phyllomedusa skin peptides bear striking identities to 

mammalian (neuro)peptides [3, 4], and exhibit bioactivities in mammalian systems that are 

consistent with interaction with and activation of endogenous receptors. Other peptide classes 

include highly-potent antivirals and antimicrobials that are effective against bacteria as well 

as protozoa (recently reviewed [5, 6]). These rich sources of bioactive peptides are of 

particular interest to pharmacologists who are continuously searching for potential novel drug 

leads from unusual sources. Peptides thus far isolated from phyllomedusine skin, belong to 

diverse families, among which the dermaseptins and phylloseptins represent the largest both 

in terms of the numbers of peptide sequences identified and in the numbers of species in 

which they have been found [6]. The emergence of high throughput techniques such as 

tandem mass spectrometry based “peptidomics” and cDNA cloning have substantially 

assisted in enlarging the collection of sequences of bioactive (frog skin) peptides. 

Performance of high resolution mass spectrometry linked to efficient and robust (nano)HPLC 

or UPLC, is a very powerful combination strategy to collect (partial) amino acid sequence 

information straight from complex peptide mixtures. The data thus generated can then be 

validated and/or completed as soon as the nucleic acid sequences of the corresponding 

mRNAs become available. The latter has been facilitated by use of an efficient molecular 

cloning approach, developed by Chen and coworkers [7], based on the use of magnetic 

oligo(dT) beads to extract polyadenylated mRNA sequences directly from only a few 

milligrams of the actual frog skin secretion. This technique does not require dissected 

tissue(s) for mRNA extraction, and hence does not necessitate sacrificing secreting donor 

specimens. Indeed, harmless ‘gland milking’ appears sufficient to collect frog skin secretions 

rich in both peptides and (their) corresponding messenger RNAs. 

One successful strategy to “shotgun” clone novel skin peptide precursor-encoding cDNAs 

from frog skin cDNA libraries, has proven to be possible by the design of primers from 

highly-conserved nucleic acid sequences derived from skin peptide precursor-encoding 

cDNAs from related frog species [8, 9]. 

We here report the cloning and full structural characterization, directly from lyophilized P. 

burmeisteri skin secretion, of two peptide precursor-encoding cDNAs and their encoded 

peptides which are homologous to chains A and B from the heterodimeric peptide, distinctin, 

originally isolated from the skin of the related specie, P. distincta [10]. Differential analysis 

of native and reductively-alkylated P. burmeisteri distictin demonstrated that the 

intermolecular disulfide bridge between both chains is an endogenous and specific post-

translational modification (PTM). 
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Among the PTMs that are characteristic for amphibian skin peptides, disulfide bonds are not 

uncommon features. However, most of the cystines in frog peptides are intramolecular. The 

so-called Rana box, for example, is a conservative C-terminal motif of 5-8 residues between a 

cystine [11]. This is typical for certain classes of antimicrobial peptides that are active against 

Gram-positive/-negative bacteria and the yeast, Candida albicans, and is found in peptide 

groups including the brevinins, gaegurins, nigrocins, odoranains, esculentins, ranalexins, 

dybowskins, japonicins, palustrins and ranatuerins [12-16]. Other conserved internal 

disulfide-bridged domains in frog skin peptides are known, such as in the skin calcitonin-gene 

related peptide and the Kazal protease inhibitor peptides, found in P. bicolor and P. sauvagei, 

respectively [17, 18]. 

Intermolecular disulfide bonds, however, are quite rare in amphibian skin peptides. The only 

example so far is distinctin, a 5.4 kDa heterodimer composed of two different peptide chains 

containing 22 and 25 residues, respectively, that was originally identified in the skin secretion 

of the phyllomedusine frog, P. distincta. It has antimicrobial activity against Gram-negative 

and Gram-positive bacteria [10, 19, 20], and the dimerization was found to enhance the 

peptides’ bioactivity with respect to that of each monomer. In this context, heterodimeric 

peptides may represent a new class of amphibian skin peptide with potent 

biological/pharmacological activity that relies upon the formation of intermolecular 

complexes. This has inspired other researchers to actually engineer disulfide bridges into 

natural monomeric and linear amphibian skin peptides to form such complexes. Bioassays 

indeed subsequently confirmed that synthetic heterodimers, such as between magainin 2 and 

PGLa, and between magainin and its analogue pexiganan (i.e., MSI-78), showed a greatly 

enhanced antimicrobial activity when compared to the original native (monomeric) peptides 

[21]. 

 

2. Materials and Methods 

 

2.1.  Skin secretion collection 

About 10 specimens of Phyllomedusa burmeisteri, one of the Brazilian walking leaf frogs, 

were captured during expeditions (January 2009) in the Pacotuba Forest (Cachoeiro de 

Itapemirim City), and at a local farm (Brunoro’s, at Venda Nova do Imigrante City), both in 

the State of Espírito Santo (Brazil). Skin secretion samples were collected in the field by 

gentle transdermal electrical stimulation, essentially as described by Tyler and coworkers 
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[22]. The secretions were jet-washed from the sampled frog with deionized water, after which 

the donors were immediately released back into their natural environment. Skin secretions 

from several individuals (males and females) were filtered over cellulose acetate (0.2 µm pore 

size), pooled, frozen, lyophilized, and stored at -20 C prior to analysis. 

The required permit to access the genetic heritage information was obtained from the 

Brazilian Institute of Environment and Renewable Natural Resources (IBAMA license 

number 010453/2010-5). 

 

2.2.   Peptide separation and mass spectrometry 

One mg of lyophilized crude skin secretion was diluted in 25 mM NH4HCO3. This sample 

was divided in two. One part was reduced (2 mM dithiothreitol (DTT)) and alkylated (4 mM 

iodoacetamide (IAM)). Equivalents of 200 micrograms of both samples – native and reduced 

– were separately analyzed by HPLC (Waters 2695 Alliance, Manchester, UK), on a C4 

column (Reprosil C4, 5 μm particles, 2 mm x 150 mm, Dr. Maish, Germany) coupled on-line 

to a tandem mass spectrometer. The column was eluted (solvent A, 0.05% TFA, 0.1 M HAc; 

and B, 0.05% TFA, 0.1 M HAc in acetonitrile) by a linear gradient from 0 to 60% B at 0.75 % 

min
-1

, and the eluate was directly nanosprayed into a Q-TOF (QTof Premier, Waters, 

Manchester, UK). Of the crude secretion, 0.1 µg was also analyzed by nanoLC using a C8 

capillary column (Reprosil-Pur 120 C8, 5 μm particles, 150 mm, Dr. Maish, Germany) 

coupled to a linear trap-Orbitrap (Orbitrap Velos, ThermoFisher Scientific, Bremen, 

Germany).  

To facilitate the location of peptides containing cystine, PTM-driven differential peptide 

displays were generated by MSight (SIB, Geneva, Switzerland) as described earlier [23]. This 

proved an elegant way to assess the presence of the various distinctin dimers and monomers 

in both untreated and reduced secretions. 

For extensive targeted collision-induced fragmentation analysis of all distinctin ions, the 

respective peaks were manually selected at their retention times in a separate replicate LC 

MS/MS run. 

 

2.3.   Molecular cloning of distinctin peptides chains A and B 

Five mg of lyophilized skin secretion were dissolved in 1 ml of cell lysis/mRNA stabilization 

solution (Dynal, UK). Polyadenylated mRNA was isolated using magnetic oligo-dT beads as 
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described by the manufacturer (Dynal Biotech, UK). The isolated mRNA was subjected to 5’ 

and 3’- RACE procedures to obtain full-length peptide precursor nucleic acid sequence data 

using a SMART-RACE kit (Clontech UK). Briefly, the 3’-RACE reactions employed a nested 

universal primer (NUP - supplied with the kit) and a degenerate sense primer (N2-S1; 5’- 

ACTTTCYGAWTTRYAAGMCCAAABATG-3’), that was complementary to a conserved 

sequence 5’ to the putative signal peptide (including the startcodon ATG). This primer had 

been successfully used to clone different skin secretion peptides from other Phyllomedusa 

species [8, 9]. 3’-RACE reaction products were gel-purified, cloned using a pGEM-T vector 

system (Promega Corporation) and sequenced using an automated DNA sequencer (ABI 

3100). 

 

2.4.  Peptide synthesis and oxidation reactions 

A and B chains were synthesized by standard solid-phase Fmoc chemistry on an automated 

peptide synthesizer (Protein Technologies PS3, Tucson, AZ, USA).  

Molar equivalents of synthetic chains A and B were ‘incubated’ (one week at RT) with 

themselves or in combination in two different conditions: i) in H2O and ii) in 50 mM 

NH4HCO3 pH 8.0, containing 5% DMSO. In the H2O condition the synthetic chains were 

merely diluted in water individually and A plus B mixed, and analyzed by LC MS/MS. In the 

other condition the three possible combinations of chains (only A, only B and A plus B) were 

induced to oxidize in bicarbonate buffer in 5% DMSO pH 8.0, and measured by MS. 

 

3. Results 

 

3.1.  “Shotgun” cloning of distinctin chain precursor-encoding cDNAs 

To amplify the distinctin precursor-encoding mRNA sequences present in a cDNA library 

constructed from lyophilized P. burmeisteri skin secretion, a degenerate primer pool designed 

to a conserved nucleotide sequence upstream of the putative signal sequence of previously 

cloned Phyllomedusa skin peptides, was employed for its interrogation [8, 9]. Two full size 

preprodistinctin cDNAs were thus “shotgun” cloned yielding two different open reading 

frames (ORFs) with separate start and stop codons. 

The prepropeptide sequences can be predicted on the basis of putative prepropeptide 

convertase motifs and comparisons with similar peptides reported in the literature [7]. The 

open-reading frame (ORF) of the cDNA encoding the precursor of chain A, contains 69 
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amino acid residues, the first 22 of which, comprise a putative signal peptide, followed by a 

25-residue acidic ‘spacer’ peptide and finally the 22-residue mature distinctin A chain 

peptide. The ORF of the cDNA encoding the precursor of chain B contains 67 residues, that 

includes a 20-residue putative signal peptide, a 22- residue acidic spacer and a 25-residue 

mature distinctin B chain peptide (Fig. 1). 

The mature distinctin A- and B-chain peptide sequences are structurally very similar to those 

described for the original P. distincta peptide [10]. A significant difference in the primary 

structure is at residue 7 of the A-chain, which is an alanine (A) in the P. burmeisteri peptide, 

whereas the P. distincta homolog has a proline (P) in this position. 

 

3.2. Identification of homo- and heterodimers by MS 

MS analysis of crude P. burmeisteri skin secretion confirmed the existence of distinctin 

predominantly as a heterodimer (Fig. 2). The amino acid sequences of the chains were 

determined by collision-induced dissociation (CID) of both monomers that had been 

generated by reduction and alkylation of the venom components. MS/MS analysis was carried 

out using Q-TOF MS as well as by linear ion trap-Orbitrap tandem mass spectrometry. De 

novo sequencing of both chains, fully confirmed the sequences predicted from the “shotgun” 

cloned precursor cDNAs: a 22-residue mature A-chain: ENREVPAGFTALIKTLRKCKII, 

and a 25-residue mature B-chain, NLVSGLIEARKYLEQLHRKLKNCKV. In the DTT-

treated skin secretion, as expected, no dimers remained (neither homo- nor heterodimers), 

which can easily be seen in the PTM-driven differential peptide display of reduced versus 

untreated (native) sample (Fig. 3). 

The distinctin heterodimer, (A-B, m/z 779.45 (7+ charge state)), in the zoomed-in area of Fig. 

3) was present exclusively in the native sample (complete absence in the DTT-treated 

venom). On the other hand, the monomeric A-chain (m/z 625.96) and B-chain (m/z 738.92, 

four times charged), were entirely absent from crude native skin secretion indicating that in 

this, they are cross-linked (by cystine bonds) and that the native heterodimer was efficiently 

reduced by the DTT treatment. 

Likewise, targeted analysis identified the homodimer B-B in the native skin secretion (high 

resolution FTMS analyses; Fig. 2A). The ion intensity of the heterodimer is clearly higher 

than homodimer B-B, suggesting heterodimeric distinctin is present in a higher concentration 

than the homodimer B-B. No monomeric chain A or B, or any of the homodimer A-A, were 

detected in native skin secretion.  
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The heterodimer was observed at m/z 909.19 [M + 6H]
6+

, or parent mass 5,449.12 Da. This 

exactly equals the sum of the masses of chains A and B, minus the mass of 2 protons 

(disulfide formation from two cysteines). CID of this heterodimer ion precursor indeed 

yielded both b- and y-ions (as well as immonium ions) representing the N-terminal sequences 

of chains A and B (peaks highlighted in Fig. 2B). Sequence ions representing residues close 

to the cystine connection could not be identified, due to the covalent bond between the chains. 

Similarly the homodimer B-B, with an observed molecular mass of 5,901.34 Da was selected 

and CID fragmented, showing only chain B amino terminal sequence ions. The precursor 

mass as well as the occurrence of charge states higher than 8 (protonatable residues (R, K, H, 

and the amino terminus)) proved that it is indeed the covalent dimer. 

 

3.3. In vitro oxidation of synthetic replicates of distinctin A- and B – chains 

In an attempt to answer the intriguing questions as to how/why two peptide chains originating 

from two different ORFs preferentially form heterodimers, synthetic replicates of the peptide 

monomers were made and their in vitro dimerizations were studied by high resolution nano 

LC MS/MS. 

Synthetic A- and B-chains were either left to react in H2O or in bicarbonate buffer containing 

5% DMSO. In H2O, no dimer was formed (Fig. 4A-C). However, air oxidation of the chains 

in bicarbonate buffer containing 5% DMSO, induced partial dimerization. Chain A appeared 

nearly 100 % oxidized when left to react with itself (Fig. 4D), whereas the oxidation to form 

homodimer B-B, was incomplete (Fig. 4E). The oxidation reaction containing both chains, 

resulted in the formation of all possible dimers: heterodimer A-B, homodimer B-B and a little 

homodimer A-A. Only traces of chain A and B monomer remained (Fig. 4F). These oxidation 

reactions showed no clear preferential dimer formation. They also demonstrated that, in the 

absence of the other chain, both homodimers can be formed. 

To reiterate, the native frog skin secretion contained significantly more heterodimer A-B than 

homodimer B-B, whereas homodimer A-A was not detected. 

 

4. Discussion 

 

Here, we report the molecular cloning of cDNAs encoding the precursor sequences of two 

chains, A and B, that constitute the heterodimeric peptide, distinctin, from the skin secretion 

of Phyllomedusa burmeisteri. The corresponding mature peptide gene products were detected 
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in chromatographic fractions of the skin secretion as a distinctin heterodimer using MS. The 

only heterodimeric peptide described to date in amphibian skin secretions is the peptide, 

distinctin, from Phyllomedusa distincta, with a fully-established primary structure and 

antimicrobial activity [10]. The homodimer B-B, was also identified in the skin secretion of 

P. burmeisteri, and this is the first report of a naturally-occurring distinctin homodimer (Fig. 

2A). These data indicate that in vivo, distinctin has a strong tendency to exist as a disulfide-

bridged dimer. Heterodimerization seems to be preferred, but the detection of the homodimer 

suggests that rather than to exist as a monomer, excess peptide chains will homodimerize. 

Interestingly, the cloning and sequencing data indicate that the chains which in vivo are 

detected as heterodimers, are encoded by two different mRNA-encoded precursors, each with 

their own start and stop codon, that probably represent two distinct gene products. 

Scrutinizing the protein sequence database (UniProt) found that P. burmeisteri chain B 

exhibits a 71% sequence homology with a distinctin-like peptide chain sequence previously 

cloned from Phyllomedusa azurea [24]. This sequence does not contain any cysteinyl residues 

and a chain A equivalent in this species was not reported. Thus, this species of 

phyllomedusine frog provides further, albeit indirect evidence, that chain B appears not to be 

encoded by the same ORF as chain A. 

The mechanism behind the specific dimerization of the two P. burmeisteri chains from a pool 

of peptides containing single free cysteine residues, remains intriguing. Other natural hetero- 

and/or homodimeric peptides from venoms have been cloned and their nucleic acid sequences 

reported. These include the paralytic heterodimer, pimplin, from the wasp, Pimpla 

hypochondriaca [25]; the histamine-releasing homodimer, pilosulin 5, from the ant, 

Myrmecia pilosula [26]; hetero- and homo-dimeric D-conotoxins (VxXXA, VxXXB and 

VxXXC) found in the venoms of several marine cone snails of the genus Conus [27]; 

salmorin, a thrombin-induced fibrinogen-clotting inhibitor from the snake, Agkistrodon halys 

[28]; numerous dimeric disintegrins, cloned from Vipera and Echis snakes [29-31]; irditoxin, 

a neurotoxic dimer from the brown treesnake, Boiga irregularis [32]; and various secretory 

enzymes of the phospholipase A2 family, such as the heterodimers, imperatoxin I and 

phospholipidin from Pandinus imperator [33, 34] –, and HDP-1P and HDP-2P subunits of the 

neurotoxic and anti-coagulant heterodimer from Vipera nikolskii [35]. As in the case of the 

well-known example insulin [36], most of these heterodimers arise from a single mRNA 

precursor, which is translated in one continuous peptide sequence. This is thought to be a 

crucial step in the heterodimer formation, which occurs during or immediately after 

translation. A connecting peptide (of varying length in insulin and the various venom 
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heterodimers) between both mature chains is spliced out by specific endoproteases, and this 

occurs after the disulfide bridge(s) formation. 

The cDNAs of disintegrins, salmorin and irditoxin chains represent an exception to this rule, 

with both monomers encoded by different open reading frames. However, in all these cases, 

the pre-peptide sequences of A and B chains are very similar or almost identical (typically 

>70% sequence identity), which suggests that a gene duplication lies at the origin of both 

ORFs. In disintegrins, for example, it is suggested that the A chain precursor gene was 

derived from a B chain gene duplication. Subsequent deletion of a continuous and large base 

pair sequence of the ORF, encoding a C-terminal metalloprotease domain in the B chain pre-

peptide gene and of a N-terminal portion of the disintegrin domain, are thought to produce the 

final structure of the A chain [30]. Therefore, the disulfide connection between the subunits 

would proceed similarly as in homodimers (which are also detected in these venoms), where 

the dimerization takes place by virtue of the simultaneous presence of the chains in the 

endoplasmic reticulum (ER) during the translation process. 

The case of the heterodimeric P. burmeisteri distinctin is markedly different. The peptides 

representing the signal peptide, acidic spacer and mature peptide of each chain all exhibit 

different lengths as well as many sequence dissimilarities, yielding an overall sequence 

identity of only 47%. 

This suggests that a different mechanism may be behind the dimerization of these dissimilar 

subunit chains, perhaps comparable to what happens when antibody molecules 

(immunoglobulins) are maturing, with heavy and light chains translated from different 

chromosomes “finding” each other and oxidizing in the ER [37]. This is a hypothesis, and the 

actual mechanism of in vivo heterodimer formation is still unclear. 

In an attempt to obtain information on potential physicochemical constraints in the formation 

of the possible dimers from the two subunits identified, in vitro dimerization experiments 

were performed with synthetic replicates of the monomer peptides. However, this did not 

provide clues as to whether (sequence specific) physiochemical phenomena would preferably 

direct the formation of one dimer over the other. Our results indicate that both the heterodimer 

and the two homodimers can be formed in vitro. This is similar to what has been described for 

magainin and conotoxin synthetic dimers [38, 39]. It should be mentioned that during in-vitro 

oxidation experiments cystine formation could be induced by oxygen or trace amounts of 

metals. In addition, it is also very well possible that the synthetic peptides do not have the 

proper secondary/tertiary structure to promote chain specific dimerization and/or induce 

disulfide bond formation. 
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Although, in the native P. burmeisteri skin secretion the main compound detected was the 

heterodimer, followed by the homodimer B-B, no homodimer A-A, or A or B monomers, 

were detected. Why the heterodimer prevails in the P. burmeisteri skin secretion remains an 

unanswered question, and we can only speculate at this time. Structure modeling and NMR 

studies on the similar distinctin chains of P. distincta has indicated that matching hydrophobic 

areas on the outer surfaces of chain A and B and alpha-helices, may play a role in bringing 

both chains together [19, 40-42]. These studies, however, did not look at the structure of the 

homodimers. 

Comparative proteolytic degradation assays of distinctin and synthetic peptide analogues 

reported that distinctin is more resistant to serine protease breakdown as a heterodimer than as 

monomers or homodimers [19, 20]. The situation in the P. burmeisteri skin secretion, with 

most of the distinctin occurring as a heterodimer, may reflect a similar situation. 

Previous investigations have assessed the antimicrobial activity of all possible forms of the 

closely-related P. distincta distinctins [19, 20]. They found that the heterodimer has broad-

spectrum antimicrobial activity, and that the dimers (hetero- or homo-) are more active than 

the separate monomers. 

With the P. burmeisteri distinctins differing in only a single amino acid residue, the 

bioactivity is likely to be very similar. This would mean that the relative amounts of distinctin 

chains in the P. burmeisteri skin secretion is consistent with maximization of its bioactivity. 

To assess this, we performed pilot bioactivity studies (E. coli growth inhibition test) using 

dilution series of equivalent amounts of monomeric and in vitro dimerized synthetic peptides 

(see Fig. 4). Our preliminary data indicate that indeed the P. burmeisteri dimers have higher 

specific bioactivity than the monomers, and that the sample containing the heterodimer 

exhibits the highest antibiotic effect, confirming what was reported for P. distincta distinctin. 

With the present emergence of multiple-drug resistant strains of many pathogenic micro-

organisms and diseases requiring a pharmaceutical solution, the development of novel and 

potently-active pharmaceutical agents with potential clinical and therapeutic applications 

could be exemplified by natural molecules like the P. burmeisteri distinctin heterodimer 

reported here.  
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5. Conclusion 

 

Distinctin, a 5.4 kDa heterodimeric peptide with antimicrobial activity was identified within 

the skin secretion of Phyllomedusa burmeisteri. Molecular cloning of the cDNA encoding the 

two chains that constitute this heterodimeric peptide reveals they originate from two different 

mRNA-encoded precursors, each with their separate start and stop codon. MS analysis 

showed that in the crude venom the two chains are primarily present as the heterodimer A-B, 

a subfraction as homodimer B-B, whereas neither homodimer AA nor the individual A of B 

chains were observed. In vitro oxidation experiments with synthetic chains showed no 

preferential formation of hetero- of homodimer, suggesting there is an alternative mechanism 

for dimer formation in-vivo. To our knowledge this is the first example of an amphibian skin 

dimeric peptide that is formed by covalent linkage of two chains that are the products of 

different mRNAs. 
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Figures Legends 

 

Figure 1: Nucleotide sequences of precursor cDNAs encoding Phyllomedusa burmeisteri 

distinctin chain A (A) and distinctin chain B (B) cloned from a skin secretion-derived library. 

Putative signal peptides (double-underlined), mature processed peptides (single-underlined) 

and stop codons (asterisks) are indicated. 

 

Figure 2: Distinctin dimers in native P. burmeisteri skin secretion. (A) Combined MS 

spectrum of elution times in nanoLC chromatogram of both distinctin dimers. Spectrum 

shows presence of heterodimer (green peaks) and homodimer B-B (magenta peaks), among 

several other (higher and lower abundant) non-distinctin peptide peaks. Both distinctin dimers 

appear as multiply charged ions (z=5 until z=10) with heterodimer being most abundant. (B) 

Tandem MS of heterodimer (precursor ion at m/z 909.190 selected ([M+6H]
6+

)) showing b-, 

y-, and i- (immonium) ions from both chains A and B. Insert shows primary structure of chain 

A and B with all detected b- and y- ions indicated. 

 

Figure 3: Zoomed-in area of PTM-driven differential peptide display of native crude P. 

burmeisteri venom (in blue) and DTT-reduced venom (in red): inserts show [M+4H]
4+

 ions of 

distinctin monomeric chains A (A) and B (B) and [M+7H]
7+

 ions of distinctin heterodimer 

(AB). Note that sum of mass (A) and mass (B) minus mass (2H) exactly equals mass (AB). 

Ions common in both samples have blue and red colors superimposed, yielding blackish spots. 

Red color of monomers A and B indicate that these ions are not observed in native venom, 

whereas, conversely, blue heterodimer ions reveal that no heterodimer was detected in DTT-

reduced venom. (Full PTM-driven differential peptide display is provided as Supplementary 

Fig. 1). 

 

Figure 4: Deconvoluted MS spectra of in vitro dimerization of synthetic distinctin chains A 

and B. (A-C) “SYNTHETIC CHAIN(S) A/B/A&B” represent the mixture after one week of 

incubation of the respective chains in water. (D-F) “SYNTHETIC DIMERS A-A/B-B/A-B” 

show the oxidation products after one week in bicarbonate buffer pH 8.0. Masses of 

respective chains (monomers) and dimers are indicated by arrows. 

 

Supplementary Figure 1: Full PTM-driven differential peptide display of P. burmeisteri 

crude venom. Selected area is zoomed-in in Fig. 3. 
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Figure 1 

(A)  M  A  F  V   K  K  S   L  L  L   V  L  F  L   G  L  V · 

    1 ATGGCTTTCG TTAAAAAATC TCTTCTCCTT GTACTTTTCC TTGGATTGGT 

 TACCGAAAGC AATTTTTTAG AGAAGAGGAA CATGAAAAGG AACCTAACCA 

 · S  F  S   I  C  E  E   E  K  R   E  T  E   E  D  E  N · 

   51 CTCCTTTTCC ATCTGTGAAG AAGAGAAAAG AGAGACTGAA GAGGACGAGA 

 GAGGAAAAGG TAGACACTTC TTCTCTTTTC TCTCTGACTT CTCCTGCTCT 

 ·  E  D  E   I  E  E   E  S  E  E   K  K  R   E  N  R 

  101 ATGAGGATGA AATAGAGGAA GAAAGTGAAG AGAAGAAAAG AGAGAATCGA 

 TACTCCTACT TTATCTCCTT CTTTCACTTC TCTTCTTTTC TCTCTTAGCT 

  E  V  P  A   G  F  T   A  L  I   K  T  L  R   K  C  K · 

  151 GAAGTACCTG CAGGATTCAC TGCATTGATT AAAACATTAA GAAAGTGTAA 

 CTTCATGGAC GTCCTAAGTG ACGTAACTAA TTTTGTAATT CTTTCACATT 

 · I  I  * 

  201 GATTATATAA TCTAAGTAGT ACAGTTATCA ATGATTATGC CAAAACCATA 

 CTAATATATT AGATTCATCA TGTCAATAGT TACTAATACG GTTTTGGTAT 

  251 TTAAAGCATA TTTAATGTAA AAAAAAAAAA AAAAAAAAAA AAAAAAAA 

 AATTTCGTAT AAATTACATT TTTTTTTTTT TTTTTTTTTT TTTTTTTT 

 

(B)      M  A  F  L   K  K  S   L  F  L   V  L  F  L   V  F  L · 

    1 ATGGCTTTCC TTAAAAAATC TCTTTTCCTT GTACTATTCC TTGTATTCCT 

 TACCGAAAGG AATTTTTTAG AGAAAAGGAA CATGATAAGG AACATAAGGA 

 · S  L  C   E  E  E  K   R  E  E   E  N  E   E  K  Q  E · 

   51 TTCTCTCTGT GAAGAAGAGA AAAGAGAAGA GGAAAATGAG GAAAAACAAG 

 AAGAGAGACA CTTCTTCTCT TTTCTCTTCT CCTTTTACTC CTTTTTGTTC 

 ·  D  D  Q   S  E  E   K  R  N  L   V  S  G   L  I  E 

  101 AAGACGATCA AAGTGAAGAG AAGAGAAATC TGGTGTCAGG TCTAATAGAA 

 TTCTGCTAGT TTCACTTCTC TTCTCTTTAG ACCACAGTCC AGATTATCTT 

  A  R  K  Y   L  E  Q   L  H  R   K  L  K  N   C  K  V · 

  151 GCAAGAAAAT ACCTTGAACA GCTGCATCGT AAACTAAAAA ATTGTAAAGT 

 CGTTCTTTTA TGGAACTTGT CGACGTAGCA TTTGATTTTT TAACATTTCA 

 · * 

  201 TTAAGAAAAT GTAAAATCTA AGACCTCTAA GAGTGTTTTC ACACGGTGTG 

 AATTCTTTTA CATTTTAGAT TCTGGAGATT CTCACAAAAG TGTGCCACAC 

  251 TTTTTGGTGT GTTTTTTGAT GCATTTTTTG TGCAGAGAGG CACAGCAATT 

 AAAAACCACA CAAAAAACTA CGTAAAAAAC ACGTCTCTCC GTGTCGTTAA 

  301 AATGCTTGCA TTTCTGCACA GGGAAGGCGT CGGAAAACGC ACCAAAAGCA 

 TTACGAACGT AAAGACGTGT CCCTTCCGCA GCCTTTTGCG TGGTTTTCGT 

  351 CACCTTATGA AACCACCCTA AGGAGCACAA TTACCAATCA TTGTGCCAAA 

 GTGGAATACT TTGGTGGGAT TCCTCGTGTT AATGGTTAGT AACACGGTTT 

  401 ATAAAATCCA GCATATTTAA ACAAAAAAAA AAAAAAAAAA AAAAAAAAAA 

 TATTTTAGGT CGTATAAATT TGTTTTTTTT TTTTTTTTTT TTTTTTTTTT 
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Figure 2 
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Figure 3  
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Figure 4 
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Graphical Abstract 
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Highlights 

 

1. Peptidome/transcriptome analysis of skin secretion of Phyllomedusa burmeisteri. 

 

2. The two chains of distinctin, a 5.4 kDa dimeric skin peptide, were shotgun cloned. 

 

3. Chains of this heterodimeric peptide are encoded by two different ORFs.  

 

4. In vivo, the hetero-dimeric distinctin is more abundant than homo-dimeric distinctin. 

 

5. In vitro oxidation of synthetic peptides showed no preferential hetero-dimerization. 


