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Abstract 1 

Lipid peroxidation is a common feature of many chemical and biological processes, 2 

and is governed by a complex kinetic scheme. A fundamental stage in kinetic investigations 3 

of lipid peroxidation is the accurate determination of the rate of peroxidation, which in many 4 

instances is heavily reliant on the method of finite differences.  Such numerical 5 

approximations of the first derivative are commonly employed in commercially-available 6 

software, despite suffering from considerable inaccuracy due to rounding and truncation 7 

errors.  As a simple solution to this, we applied three empirical sigmoid functions (viz. the 8 

Prout-Tompkins, Richards & Gompertz functions) to data obtained from the AAPH-mediated 9 

peroxidation of aqueous linoleate liposomes in the presence of increasing concentrations of 10 

Trolox, evaluating the curve fitting parameters using the widely-available Microsoft Excel 11 

Solver add-in.  We have demonstrated that the five-parameter Richards’ function provides an 12 

excellent model for this peroxidation, and when applied to the determination of fundamental 13 

rate constants, produces results in keeping with those available in the literature.  Overall, we 14 

present a series of equations, derived from the Richards’ function, which enables direct 15 

evaluation of the kinetic measures of peroxidation.  This procedure has applicability not only 16 

to investigations of lipid peroxidation, but to any system exhibiting sigmoid kinetics.  17 
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1. Introduction 1 

Peroxidation of unsaturated fatty acids is a common feature of many chemical and 2 

biological processes, and has been shown to proceed via a well-defined free radical chain 3 

reaction, involving the formation of conjugated dienes (Sevanian & Hochstein, 1985).  Due to 4 

their continuous -bonding system, conjugated dienes absorb electromagnetic radiation in 5 

the 230 – 235 nm (UV) regions (max 234 nm; max 2.95  104 M-1cm-1) (Antolovich et al. 6 

2002) and when examined over these wavelengths, a time-dependent increase in UV 7 

absorbance is observed, which reflects the classical free radical sequence of initiation, 8 

propagation and termination (Schneider et al., 1998).  Such free radical processes are 9 

subject to autocatalysis, and accordingly, plots of absorbance vs. time have an overall 10 

sigmoid appearance, with distinct regions of the sigmoid curve corresponding to a particular 11 

stage of the peroxidation chain reaction (Giseg & Esterbauer, 1994; Raveh et al., 2000). 12 

 13 

Initiation is a relatively slow process, in which allylic hydrogen atoms are abstracted 14 

from cis-cis pentadiene centres due to low bond dissociation energies (Porter et al., 1994), 15 

and is represented as a lag in UV absorbance, which may be quantitatively measured by the 16 

lag time (tlag) of the reaction (Cadenas & Sies, 1998).  The propagation phase, which 17 

involves the rapid production of conjugated dienes, is characterised by an exponential 18 

increase in UV absorbance, and can be assessed in two main ways: the maximum rate of 19 

oxidation (max), and the time at which maximum rate was achieved (tmax)
 (Pinchuk & 20 

Lichtenberg, 2002).  Termination of the free radical chain reaction may arise from biradical 21 

quenching, and produces (inter alia) lipid hydroperoxides, which decompose to a variety of 22 

aldehydes, ketones and hydrocarbons.  This manifests as an asymptote to the x-axis, which 23 

gradually declines as the decomposition reactions advance (Porter et al., 1981). 24 

 25 

A widely applied strategy for evaluating lipid peroxidation is the continuous monitoring 26 

of conjugated diene production at max 234 nm (Esterbauer et al. 1989).  However, in many 27 
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routine investigations, data from such a technique is processed using finite differences (an 1 

approximation of the first derivative), which is then used to determine max and the rate 2 

constants for the reaction, as well as for the graphical determination of lag time (Fig. 1).  3 

Such approaches are useful and relatively straightforward, but approximating first derivatives 4 

numerically is subject to a range of errors, particularly rounding and truncation errors and 5 

where possible analytical expressions should be used (Morton & Mayer, 2005).  Since a 6 

variety of autocatalytic reactions have been successfully modelled using sigmoid functions 7 

(Herney-Ramireza et al., 2011), a similar approach may provide a more precise means of 8 

determining the kinetic constants of lipid peroxidation.  9 

 10 

Analysis of sigmoid curves can be approximated by composite methods (Leith et al., 11 

1996), but it is often more appropriate to use a curvilinear approach to ensure smooth 12 

transitions from one stage to the next.  Such curvilinear equations are referred to as sigmoid 13 

functions, first proposed by Verhulst (Verhulst, 1839), and later used by Prout and Tompkins 14 

to describe the decomposition of potassium manganate(VII) (Brown & Glass, 1999)  The 15 

Prout-Tompkins equation has the integrated form: 16 

 17 

𝑦 =  
𝑎

1 + exp[−𝑏 𝑥 − 𝑐 ]
 

 

(1) 

 18 

in which the parameter a is the upper asymptote, b is a curvature constant and c is the point 19 

of inflection at which the curvature changes from convex to concave, or vice versa.  Despite 20 

the considerable utility of such four-parameter sigmoid functions, the inherent symmetry 21 

around the parameter c makes them unsuitable for more complex kinetic profiles.  Richards 22 

(Richards, 1959) introduced an additional curvature constant, d, to account for asymmetry: 23 

 24 

𝑦 = 𝑎 1 + 𝑏 exp −𝑐𝑥  1 (1−𝑑)   (2) 



Page 5 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

5 

The asymmetry described by Richards’ equation is at the expense of an additional 1 

parameter, which in terms of physicochemical or biological processes, has no actual 2 

meaning, and is therefore difficult to estimate.  An alternative approach, in which the 3 

Richards’ parameter d  0, was described by Gompertz (Gompertz, 1825) and contains only 4 

three parameters: 5 

 6 

𝑦 = 𝑎 exp{− exp[ 𝑥 − 𝑐 ∙ 𝑏 ]}  (3) 

 7 

A variety of sigmoid functions have been successfully applied to models of bacterial 8 

growth (Dalgaard & Koutsoumanis, 2001; Simon & Karim, 2001), the baroreceptor reflex 9 

(McDowall & Dampney, 2006), pharmacological concentration-effect curves (Giraldo et al., 10 

2002) and the crystallization of fats (Foubert et al., 2003).  However, to the best of our 11 

knowledge, this approach has not been applied to lipid peroxidation.  A conceptually similar 12 

method was reported by Molinari and co-workers in which splines were used to model 13 

peroxidation of low density lipoprotein (Molinari et al., 2002).  This method was particularly 14 

effective in evaluating the peroxidation of lipids, although the mathematics of the process is 15 

likely to be less familiar to many researchers.   16 

 17 

Evaluation of the kinetics of lipid peroxidation is a well-established field, and the rate 18 

constants for many common substrate-oxidant systems have been well-characterised 19 

(Antunes et al., 1996).  To achieve this, kinetic data can be evaluated using finite 20 

differences, or by dedicated curve fitting software.  Although this latter technique is 21 

undoubtedly very accurate, we sought to model lipid peroxidation using empirical sigmoid 22 

functions, establishing the curve fitting parameters using the Microsoft Excel Solver.  This 23 

approach does not require any specialised software, or programming skills, and provides a 24 

fast, accurate means of evaluating kinetic data.  In so doing, we propose an alternative 25 
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definition of lag time, as the time at which the change in the rate of peroxidation is maximal 1 

(the maximum of the second derivative). 2 

 3 

2. Materials & Methods 4 

2.1 Materials 5 

All chemicals were of at least analytical grade and used as supplied by Sigma-Aldrich 6 

(Poole, UK) unless otherwise stated.  All aqueous solutions were prepared using Milli-Q 7 

double-deionised water (resistance > 18 m/cm2) (Millipore, Bedford, MA, USA) stored over 8 

Chelex-100 resin.  All absorbance measurements were made on a Shimadzu UV-visible 240 9 

spectrophotometer (Antwerp, Belgium) attached to a PC for data acquisition. 10 

 11 

2.2 Substrate Preparation 12 

Linoleate liposomes were prepared weekly using a standard method (Surrey, 1964) 13 

with minor modification.  In brief, 250 L of neat linoleic acid (3.2 M) were added drop wise, 14 

with stirring, to 5 mL of borate buffer (0.05 M, pH 9) containing 5 % Tween-20 and 0.1 % 15 

EDTA.  Sodium linoleate liposomes were formed through addition of 0.1 M NaOH to pH 10.5 16 

and the final volume adjusted volumetrically to 50 mL with borate buffer.  The substrate was 17 

stored as 5 mL aliquots under argon at 4 oC in amber-glass vials until required. 18 

 19 

2.3 Preparation & Characterisation of the Oxidant 20 

An aqueous solution (20 mM) of the hydrophilic azo-initiator AAPH was prepared daily 21 

in 0.05 M PBS (pH 7.4), and stored at 4 oC until required and on ice during use.  The rate 22 

constant (k1) for the unimolecular decomposition of AAPH was determined at 37 oC by 23 

monitoring the first-order loss of the azo chromophore (max 366 nm; max 22 M-1 cm-1) 24 

(Werber et al., 2011) over a period of 5 hours.  25 

 26 

 27 
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2.4 Oxidation of Substrate 1 

The oxidation of linoleate was achieved by addition of 100 L of linoleate substrate to 2 

850 L of  PBS (0.05 M, pH 7.4) followed by 50 L of 40 mM AAPH in a semi-micro quartz 3 

cuvette (final concentrations: linoleate, 1.6 mM; AAPH, 2 mM).  Linoleate was also oxidised 4 

in the presence of increasing concentrations of Trolox1 (2  8 M).  Since AAPH has a 5 

relatively high absorbance under 260 nm, a second cuvette containing only oxidant and 6 

buffer was prepared to correct for any absorption change due to the decomposition of the 7 

azo compound.  The progress of the oxidation was monitored by following the production of 8 

conjugated dienes at 234 nm and 37 oC.   9 

 10 

Identical parallel peroxidations were performed in a thermostatically-controlled water 11 

bath (37 oC), allowing removal of aliquots of the reaction mixture at various time points.  The 12 

peroxidation reaction was terminated in these aliquots by the addition of 20 L of BHT (5 mM 13 

in methanol), and the concentration of the two major linoleate hydroperoxides, E,E-9-14 

HPODE and E,E-13-HPODE, determined by reversed-phase HPLC (Perkin-Elmer Series 15 

200 HPLC) on a C18 column (Phenomenex) using methanol/ammonium acetate (10 mM, pH 16 

5) (95/5% v/v) as mobile phase.  Eluted hydroperoxides were detected by post-column 17 

chemiluminescence using a luminol/peroxidase system (Bowry & Stocker, 1993).  18 

 19 

2.5 Kinetic Analysis of Data 20 

Raw data from all experiments was exported in ASCII format and parsed using 21 

Microsoft Excel 20072 for Windows (Microsoft Cooperation, Redmond, WA, USA).  Data 22 

were initially evaluated to identify Amax and the rate of oxidation was estimated using the 23 

method of finite differences (Eqn. A3), which allowed identification of max, tmax and tlag using 24 

conventional methods. Following these initial estimates, experimental data were fitted to 25 

                                                      
1
6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid. 

2
Microsoft Excel 2010 for Windows is now available.  The curve fitting procedures have been validated for this 

version of the software.  
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three empirical sigmoid functions (Eqns. 1  3) using the Microsoft Excel Solver to evaluate 1 

the curve fitting parameters for each (Bourg, 2005).  Further details of the curve fitting 2 

procedure are available on request from the corresponding author.  To determine selected 3 

rate constants, a steady state (Rice-Herzfeld) approach was applied (Wright, 2004), 4 

according to the scheme depicted in Fig. 2. 5 

 6 

2.6 Statistical Analysis of Data 7 

 Non-parametrically distributed data were assessed by the Mann Whitney U test or by 8 

Kendall rank-order correlation using the Statistics Package for Social Sciences (SPSS) for 9 

Windows.  Results are given as mean  standard deviation unless otherwise stated.  P < 10 

0.05 was considered as statistically significant. 11 

 12 

3. Results & discussion 13 

3.1 Kinetics of AAPH decomposition 14 

AAPH was selected as an initiator of peroxidation in order to obtain a constant and 15 

well-characterised rate of chain initiation.  The rate of alkyl radical production from AAPH (A 16 

in Fig. 2) was determined by following the disappearance of the azo chromophore at max 17 

366 nm (Fig. 3) giving k1 = 2.07  0.18  10-6 s-1 (t½ = 93 hrs) a value in agreement with that 18 

previously reported (1.36  10-6 s-1) (Niki et al., 1990).  The rate of alkylperoxyl generation 19 

(R1) determined by this method was calculated as 4.14  1.1  10-8 M s-1 (for 20 mM AAPH), 20 

which equates to a rate of chain initiation in the aqueous phase (R3,aq) of 3.97  10-8 M s-1 21 

(taking R3 = 2eR1, assuming an efficiency, e, of 0.48; Rackova et al., 2002). 22 

 23 

The use of azo-initiators such as AAPH in lipid peroxidation studies is controversial, 24 

principally on the grounds of physiological relevance.  However, when undertaking kinetic 25 

studies of simple two-component systems (substrate and antioxidant), their use greatly 26 
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simplifies kinetic analysis, as it permits a steady-state (Rice-Hertzfeld) treatment of the 1 

system.  Azo compounds readily undergo thermolysis to produce alkyl radicals which can 2 

induce free radical or nucleophilic oxidation, the former through combination with molecular 3 

oxygen to produce alkylperoxyl radicals.  This goes some way to address the question of 4 

biological relevance, as peroxyl radicals play a major role in oxidative stress in vivo 5 

(Spiteller, 1998).  Recently, Werber and co-workers demonstrated that at low pH, thermal 6 

decomposition of AAPH predominates (producing alkyl radicals), but at pH  7, hydrolysis 7 

dominates, producing 2,2-azobis-(2-carbamoylpropane), which does not undergo thermal 8 

decomposition to form alkyl radicals (Werber et al., 2011).  These findings may go some way 9 

to explain the low phase-transfer efficiency reported for AAPH-mediated peroxidations 10 

(typically 28 – 55 %; Burton & Ingold, 1981). 11 

 12 

3.2 Kinetics of linoleate peroxidation 13 

Data for our curve fitting procedure was generated by following the AAPH-mediated 14 

peroxidation of aqueous linoleate liposomes ( Trolox) at max 234 nm, correcting for UV 15 

absorbance due to azo decomposition products.  As expected, plots of absorbance vs. time 16 

had an overall sigmoid appearance, with a dose-responsive increase in lag time with 17 

increasing concentrations of Trolox (representative data is shown in Fig. 4).  Occasionally, at 18 

0 M Trolox, there was an identifiable lag phase, inconsistent with the kinetic profile 19 

expected with azo-initiators.  This was due to autooxidation in some aliquots of linoleate, 20 

subsequently confirmed by strong absorbance at 3400 cm-1 (hydroperoxides) and 1750 cm-1 21 

(carbonyls) on FT-IR ATR spectra (Thermo Nicolet) (Vlachos et al., 2006) and by 22 

measurement of the UV absorbance of the liposomes at 234 nm (data not shown). 23 

 24 

The rate of chain initiation in the lipid phase was determined from the gradient of Fig. 5 25 

(i.e. an inhibition method; Niki et al., 1986), which gave R3,lipid = 9.44  10-9 M s-1, a value in 26 
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excellent agreement with that reported by Liu (2006) (7.70  10-9 M s-1) for a similar 1 

peroxidation system (10.9 mM linoleate, 20mM AAPH).  Thus, for our system, the phase 2 

transfer efficiency () is in the region of 23 %, which in light of the findings of Werber et al. 3 

(2011) (described in section 3.1) may be ascribable to the slightly basic pH of our oxidation 4 

system.  Similar kinetic data were obtained from measurements of E,E-9-HPODE and E,E-5 

13-HPODE formation (not shown).  6 

 7 

We selected linoleate as a substrate as its peroxidation is well-characterised, and the 8 

final concentration of linoleate used (1.6 mM) would appear to be in keeping with that 9 

expected in vivo (2 mM) (Glaser et al., 2010), as well as observing the critical micelle 10 

concentration of 1 mM (Fygle & Melo, 1996).  Admittedly, following the formation of 11 

conjugated dienes at max 234 nm is limited in terms of discriminating between the products 12 

of oxidation.  However, the high signal-to-noise ratio and potential for continuous monitoring 13 

make this technique enduring.  As a companion to this method, we followed the concomitant 14 

formation of E,E-9-HPODE and E,E-13-HPODE by HPLC with chemiluminescent detection, 15 

observing a close agreement between the two methods (R2  0.91), as previously 16 

highlighted by Bowry & Stocker (1993).  A superior companion to measurement of 17 

conjugated dienes at max 234 nm would be to adopt a mass spectrometry (MS) approach to 18 

measure formation of diverse linoleate oxidation products (e.g. epoxy- and oxo-derivatives).  19 

A popular and effective method is Ag+-Coordination Ionspray (CIS) MS, which utilizes silver 20 

ions’ ability to coordinate with double bonds, increasing detection accuracy through the 21 

characteristic doublet isotopic pattern of [M + Ag107]+ and  [M + Ag109]+ [Bayer et al., 1999].  A 22 

particularly useful CIS-MS target is to follow the fragmentation of hydroperoxides through 23 

Hock cleavage, which can be used to determine the involvement of specific intermediates in 24 

lipid oxidation (e.g. bicyclic endoperoxides) [Yin et al., 2005]. 25 

 26 
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3.3 Sigmoid models of linoleate peroxidation 1 

We sought to determine whether a classic sigmoid function could adequately model 2 

linoleate peroxidation, and whether such modelling could be determined without the aid of 3 

dedicated curve-fitting software.  To achieve this, kinetic data were exported to Microsoft 4 

Excel and fitted to each of the three sigmoid functions described in section 1 (Eqns. 1 – 3) 5 

using the Solver add-in. Visual inspection of Fig. 6 shows that the curve predicted by the 6 

Richards’ function intersected each data point of the observed data, and easily 7 

accommodated the asymmetry associated with lipid peroxidation curves.  This was 8 

supported by correlation analysis (observed vs. calculated) in which the Richards’ equation 9 

had a much stronger Kendall rank-order correlation coefficient (R2  0.998; P < 0.005) than 10 

other models (Table 1). 11 

 12 

 The Microsoft Excel Solver evaluates curve fitting parameters using a GRG2 algorithm, 13 

utilizing Newton-Raphson iterations to determine the root of the gradient of the function 14 

(Flystra et al., 1998).  A drawback to this procedure is that initial guesses for each parameter 15 

must be provided.  For the Prout-Tompkins and Gompertz functions, these parameters were 16 

easily approximated from the respective equations (Eqns. A5 - A6).  For the Richards’ 17 

function, the curve fitting parameters have no physicochemical meaning (other than a, the 18 

maximum absorbance) and supplying initial guesses for these parameters was by trial and 19 

error.  Exemplar curve fitting parameters and curvilinear equations are given in Table 2. 20 

 21 

On the basis of these findings, the Richards’ function (Eqn. 2) was partially 22 

reparameterised (Eqn. 4) and differentiated with respect to time to provide an expression for 23 

the rate of oxidation (Eqn. 5). 24 

 25 

𝐴 = 𝑎 1 + 𝑏 exp −𝑐𝑡  1 (1−𝑑)   (4) 

 26 
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𝑑𝐴

𝑑𝑡
=

𝑐𝐴

 𝑑 − 1  1 −  𝐴 𝑎  𝑑−1 
 

 

(5) 

 1 

To obtain the point of inflection, the second derivative was obtained (Eqn. A7), which equals 2 

zero when t = tmax and therefore has a first root equal to tmax.  Alternatively, tmax was more 3 

conveniently evaluated directly from the curve fitting parameters (Eqn. 6): 4 

 5 

𝑡𝑚𝑎𝑥 =   
1

𝑏
  ln

𝑏

(𝑐 − 1)
  

 

(6) 

 6 

The absorbance at tmax (Atmax) was similarly determined from the curve fitting parameters 7 

(Eqn. 7) which allowed accurate calculation of the parameter  (Eqn. 8) (max is evaluated by 8 

setting A = Atmax in Eqn. 5): 9 

 10 

𝐴𝑡𝑚𝑎𝑥 =  𝑎𝑐1 (1−𝑐)   (7) 

 11 

𝜏 =  
𝐴𝑡𝑚𝑎𝑥 −  𝜈𝑚𝑎𝑥 . 𝑡𝑚𝑎𝑥  

𝜈𝑚𝑎𝑥
 

 

(8) 

 12 

We propose that the solution to Eqn. 8, the time () corresponding to the maximum of 13 

the second derivative, is a suitable alternative definition of lag time (the x-intercept of a 14 

tangent to max).  The two parameters have common mathematical origins: lag time can be 15 

considered to correspond to the rapid onset of peroxidation, which on a plot of d2A/dt2 vs. t, 16 

will have a maximum corresponding to lag time, and therefore .  The relationship between 17 

these two parameters is sufficiently strong (R2 = 0.999) to make such a redefinition 18 

compelling.  Evaluating lag time in this manner removes subjective errors introduced by 19 

graphical determination, and can be extended to include inhibition time (tinhb), a common 20 

kinetic measure in antioxidant studies. 21 
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 To validate our approach against existing methods, we evaluated a number of kinetic 1 

parameters using established methods (finite differences, graphical determination of lag time 2 

and classical steady-state equations3) and Eqns. 4 – 8.  Results (Table 3) demonstrate that, 3 

on average, kinetic parameters obtained from the Richards’ function are in good agreement 4 

with those obtained from the established methods.  The trend in the value of the kinetic 5 

constants with increasing concentrations of Trolox is in keeping with that reported by Niki et 6 

al. (1986), specifically a decrease in the rate of propagation and kinetic chain length with 7 

increasing concentrations of Trolox.  More importantly, however, is the fact that the kinetic 8 

data calculated from the Richards’ function is in excellent agreement with that obtained from 9 

established steady state equations. 10 

  11 

 The Richards’ function has been criticised for a lack of physicochemical or biological 12 

meaning to the d-parameter (Tjørve & Tjørve, 2010), although the presence of four 13 

independent coefficients leads to considerable flexibility, enabling modelling of complex 14 

processes.  In this respect, it is similar to the Boltzmann equation (vide infra) which has been 15 

used to model haemolysis of red blood cells by AAPH (Tang & Liu, 2007). In this current 16 

investigation, the d-parameter appears to be critical, as it predicts the early exponential slope 17 

marking progression from the initiation phase to the propagation phase.  Given that our 18 

proposed definition of lag time corresponds to the transition between these two phases, it is 19 

crucial that this region of the peroxidation curve is modelled accurately.  More generally, the 20 

ability of the Richards’ function to accommodate the asymmetry associated with kinetic 21 

profiles of lipid peroxidation sets it apart from the other models investigated.  That in mind, it 22 

would be interesting to examine the association between the Richards’ parameters and the 23 

concentration of oxidant, as this latter factor can substantially alter the kinetic profile of lipid 24 

peroxidation; e.g. the biphasic profiles obtained at low concentrations of oxidant 25 

(Ziouzenkova et al., 1998). 26 

                                                      
3
 These calculations were performed using MATLAB (MathWorks, Natick, MA, USA). 
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𝑦 =  
∆𝑦

  1 + exp 𝑥 − 𝜏 /𝑑𝑥 + 𝑦𝑓𝑖𝑛𝑎𝑙  
 

 1 

3.4 Further Evaluation of Equations 4 – 8 2 

To explore the wider applicability of Eqns. 4 – 8, we applied the curve fitting process to 3 

previously collected data for the oxidation of VLDL (McEneny et al., 1997), LDL (McDowell et 4 

al., 1995) and HDL (McPherson et al., 2007) by aqueous copper(II) ions. The kinetic 5 

measures of lipid peroxidation were evaluated using commercially available software 6 

(SoftMax Pro, Molecular Devices Crop.), which uses finite differences, and by Eqns. 4 – 8.  7 

The kinetic plot for VLDL oxidation (Figure 7A) was characterised by an initial dip in UV 8 

absorbance, due to aggregation of the lipoproteins and subsequent Rayleigh scattering, 9 

which the Richards’ function could not model; however, this did not affect the determination 10 

of the kinetic constants (max = 1.36 nM s-1; tmax = 182 min;  = 137 min).  Similarly, the 11 

decomposition phase for LDL (Figure 7B) was not modelled by Richards’ function (max = 12 

4.38 nM s-1; tmax = 112 min;  = 79 min).  The kinetic plot for HDL was more hyperbolic in its 13 

overall form, which resulted in a poorer fit at the start and finish of the propagation phase 14 

(Figure 7C); this did not affect determination of kinetic constants (max = 1.90  nM s-1; tmax = 15 

56 min;  = 31 min). 16 

 17 

 The peroxidation of lipoproteins is mechanistically more complex than that of simple 18 

liposomes, largely because of the wide variety of antioxidant species present, but also due to 19 

the varying lipid content.  The nature of the oxidant is also crucial, as widely different kinetic 20 

profiles are obtained when copper(II), AAPH, haemin or myleoperoxidase are used to initiate 21 

oxidation (McPherson et al., unpublished).  Despite this, the Richards’ function adequately 22 

modelled copper(II)-mediated lipoprotein peroxidation, and produced estimates of max, tmax 23 

and lag time in agreement with those established in the literature (Schnitzer et al., 1995).  24 
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Thus, the curve fitting procedure we propose would seem to have a wide applicability to a 1 

variety of physicochemical studies. 2 

 3 

4. Conclusion 4 

We propose a model of lipid peroxidation based on a partial reparameterization of the 5 

Richards five-parameter logistic function, which does not rely on numerical methods of 6 

analysis, and can easily be performed using ubiquitous software such as Microsoft Excel.  7 

This approach enables evaluation of max, tmax and lag time using only the four curve fitting 8 

parameters a, b, c and d, and led to a redefinition of the commonly employed kinetic 9 

measure lag time, generally regarded as the x-intercept of a tangent to max, but what we 10 

define as the time at which the second derivative is maximal.  Overall, our approach is 11 

simple and accurate, and is widely applicable not only to investigations of lipid/lipoprotein 12 

oxidation, but more widely to any kinetic system exhibiting sigmoid reaction curves. 13 

 14 
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TABLE 1 1 

Curve fitting statistics for sigmoid models of linoleate peroxidation at different 2 
concentrations of Troloxa. 3 
 4 

 Prout-Tompkins Richards Gompertz 

[Trolox] /M R2 RSS R2 RSS R2 RSS 

0.0 0.9940 0.2678 0.995 0.082 0.9998 0.0048 

2.0 0.9729 1.1204 1.000 0.000 0.9847 0.2985 

4.0 0.9560 2.2296 1.000 0.000 0.9641 0.8892 

6.0 0.9278 3.7978 1.000 0.000 0.9296 1.9414 

8.0 0.9068 4.9625 1.000 0.000 0.9020 2.7575 

 5 
aobserved data vs. modelled data; P < 0.001, n = 6 in all such cases; R2, Kendall rank-order 6 

correlation coefficient; RSS, relative sum of squares.  7 
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TABLE 2 1 
 2 
Curve fitting parameters for Richards’ function when applied to linoleate peroxidation.   3 
 4 

 Curve fitting parameters 

Curvilinear equation 

[Trolox] /M a b c d 

0.0 0.9751 1410870 0.2252 6.365 A = 0.9751(1410871exp-0.2252t)-0.1864 

2.0 0.9681 1410870 0.1865 5.662 A = 0.9681(1410871exp-0.1865t)-0.2145 

4.0 0.9617 1410870 0.1653 4.992 A = 0.9617(1410871exp-0.1653t)-0.2505 

6.0 0.9680 1410870 0.1540 3.907 A = 0.9680(1410871exp-0.1540t)-0.3441 

8.0 0.9618 1410870 0.1399 3.496 A = 0.9618(1410871exp-0.1399t)-0.4006 
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TABLE 3 
 
Comparison of kinetic measures of linoleate peroxidationa.   
 

 tmax /min Lag time /min max  10-8 /M s-1 R5  10-8 /M s-1 kcl 

[Trolox] /M (i)b (ii)c (i) (ii) (i) (ii) (i) (ii) (i) (ii) 

0.0 40 55 24 27 6.90 8.28 6.29 7.04 9.8 10.9 

2.0 60 68 32 37 6.89 8.10 5.20 4.03 8.1 8.7 

4.0 68 77 44 47 6.14 7.90 4.15 3.48 6.5 7.3 

6.0 80 85 52 60 5.91 7.45 3.68 5.57 5.7 6.3 

8.0 92 95 64 70 5.08 7.22 3.32 4.70 5.2 5.4 

 
a [Linoleate] = 1.16 mM; [AAPH] = 2.0 mM; R1 = 4.9  10-9 M s-1; R3,lipid = 6.44  10-9 M s-1; R5 = rate of propagation; kcl = kinetic chain length = R5/R3. 
b(i) finite differences/graphical method. 
c(ii) Richards’ function. 
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FIGURE LEGENDS 
 
Fig. 1 Kinetic profiles of lipid peroxidation.  A. Following conjugated diene formation at 

max 234 nm produces a plot in which maximum absorbance is achieved at Amax.  

Approximately halfway along the propagation slope, max is attained, which has a 
corresponding value on the abscissa, tmax; tlag is evaluated as the x-intercept of a 

tangent to max.  B. A plot of the first derivative (dA/dt ) shows the rate of 

peroxidation as a function of time and has a maxima at max.  A plot of the second 
derivative (d2A/dt2 ) shows the time dependency of the rate of peroxidation and 

has a maxima at  and a first root equal to tmax. 
 
Fig. 2 Steady state (Rice-Hertzfeld) treatment of lipid peroxidation. Thermolysis of 

AAPH produces alkyl radicals (A; k1 = 1.36  10-6 M-1 s-1), which rapidly combine with 

O2 to form alkylperoxyl radicals (AOO; k2 = 1  109 M-1 s-1), subsequently combining 

with linoleate in the initiation phase of peroxidation, forming linoleate radicals (k3 = 6  
101 M-1 s-1).  Linoleate radicals react with O2, forming linoleate peroxyl radicals (k4 = 1 

 109 M-1 s-1), which can react with further linoleate molecules to form additional 

linoleate radicals (k5 = 6  101 M-1 s-1).  Alternatively, a termination reaction can occur 
through biradical quenching or through the action of a chain-breaking antioxidant, e.g. 

Trolox (k7 = 2  107 M-1 s-1). 
 
Fig. 3 Decomposition of AAPH at 37 oC.  The first order loss of the azo chromophore was 

followed at max 366 nm.  The gradient of the graph = k1 = 2.07  10-6 s-1. 
 
Fig. 4 Typical kinetic profiles of linoleate peroxidation.  Peroxidation of linoleate (1.6 

mM) by AAPH (2 mM) in the absence and presence of increasing concentrations of 

Trolox (0 – 8 M) was monitored at  = 234 nm for 2.5 hours.  An obvious dose-
response effect was observed with increasing concentrations of Trolox.  Results 

shown are those typical of such an experiment.  Figure legend: 0 M Trolox ; 2 M 

Trolox ; 4 M Trolox ; 6 M Trolox ; and 8 M Trolox . 
 
Fig. 5 Plot of lag time as a function of [Trolox]/[AAPH].  The gradient of the graph = 

R3,lipid = 9.44  10-9 M s-1. 
 
Fig. 6 Comparison of sigmoid models of linoleate peroxidation. Observed data (open 

circles, ) were co-plotted with data calculated from the Prout-Tompkins equation 

(dashed line ------), the Richards equation (solid line ) and the Gomperz equation 
(dotted line ).  In all instances, the Richards’ equation provided the best fit for the 
observed data.  Data shown are for the peroxidation of linoleate (1.6 mM) by AAPH (2 

mM) in the presence of 6 M Trolox and are typical of those obtained. 
 
Fig. 7 Curve fitting of the Richards’ function for peroxidation of VLDL, LDL and HDL. 

Data for peroxidation of VLDL (A), LDL (B) and HDL (C) was achieved as described  
and the observed data (open circles, ) co-plotted with data calculated by applying 

the Richards’ equation (solid line ). 
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APPENDIX 
Approximating Derivatives using Finite Differences 
 
By definition, the derivative of a function is given by: 

𝑓 ′ 𝑥 =  lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
 

 
(A1) 

 
The first derivative can be approximated using so-called finite differences to determine the 
gradient of an adjacent secant line: 
 

𝑓 ′ 𝑥 ≈  
𝑓 𝑥 + 𝛿𝑥 − 𝑓(𝑥)

𝛿𝑥
 

 
(A2) 

 
Equation (A2) is better approximated using the central difference approach, which smoothes 
the derivative at a particular point by taking into account the value on either side of the 
function: 
 

𝑓 ′ 𝑥 =  
𝑓 𝑥𝑖+1 − 𝑓(𝑥𝑖−1)

2𝛿𝑥
 

 
(A3) 

 
An extension of this approach is to use the five-point formula, which smoothes the derivative 
by taking into account a greater number of points on either side of the point under 
consideration: 
 

𝑓 ′ 𝑥 =  
1

12ℎ
[𝑓 𝑥𝑖−2 − 8𝑓 𝑥𝑖−1 + 8𝑓 𝑥𝑖+1 − 𝑓(𝑥𝑖+2) 

 
(A4) 

 
Determining Initial Guesses for the Curve Fitting Parameters for Equations 1 and 2 
 
Equations 1 and 2 can be rearranged (Eqn. A5 and A6) to enable evaluation of the curvature 
constant for each value of A and t; the average b is then used as an initial guess for the 
Solver programme. 
 

𝑏 =  
ln(𝐴 𝐴𝑚𝑎𝑥 ) 

𝑡 −  𝑡𝑚𝑎𝑥
 

 
(A5) 

 

𝑏 =  
ln [ln(𝐴𝑚𝑎𝑥 𝐴)] 

𝑡 −  𝑡𝑚𝑎𝑥
 

 
(A6) 

 
Second Derivative of Equation 5 
 

𝑑2𝐴

𝑑𝑥2
=  

𝑐𝑓′

 𝑑 − 1  1 − 𝑑 𝐴 𝐴𝑚𝑎𝑥  𝑑−1 
  

 
(A7) 
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Highlights, McPherson et al. (2012) 

 We investigated the application of three sigmoid functions to lipid peroxidation. 
 

 Results demonstrate that the five-parameter Richards’ function best described 
lipid peroxidation. 

 

 This work is applicable not only to lipid peroxidation/antioxidant studies, but to 
any phenomena observing sigmoid kinetics. 

 
 

 

*Highlights (for review)


