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We present a mechanism for cooling atoms by a laser beam reflected from a single mirror. The cooling relies
on the dipole force and thus in principle applies to arbitrary refractive particles including atoms, molecules, or
dielectric spheres. Friction and equilibrium temperatures are derived by an analytic perturbative approach.
Finally, semiclassical Monte Carlo simulations are performed to validate the analytic results.
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I. INTRODUCTION

Optical cooling of atoms has come a long way since it
was first proposed; magneto-optical traps are even found in
undergraduate laboratories �1–3�. The field of ultracold mol-
ecules, in contrast, is still in its infancy. Ultracold diatomic
alkali metal molecules ��100 �K for Rb2 �4�� are routinely
produced from Bose-Einstein condensates through Feshbach
resonances. Some groups �see, for example, �5,6�� have dem-
onstrated the possibility of cooling the internal degrees of
such molecules, cooling ultracold dialkali metal molecules to
their lowest rovibronic levels by means of laser-stimulated
state transfer processes.

Present methods of producing ultracold samples suffer
from one of two major drawbacks: either they are specific to
particular species or they produce very low densities. The
bulk of optical cooling methods is applicable only to a hand-
ful of species because they rely on a closed optical transition
within which the population can cycle �7�. Most atoms and
molecules do not have such a transition available but instead
exhibit a large number of loss channels through which the
population is gradually lost, halting the cooling. Samples of
cold molecules are therefore generally produced by capturing
the low-velocity tail of the Maxwell-Boltzmann distribution
of a hotter initial sample �8�. However, such filtering meth-
ods do not lead to an increase in the phase-space density and
thus only capture a small fraction of the initial population,
leading to very dilute samples.

One possibility to solve this problem is through the use of
nonresonant processes �9� or cavities �10–14�. The latter re-
quires extremely high-precision alignment of the cavity mir-
rors as well as complicated loading of the molecules into the
optical cavity mode. The requirements for integrated systems
near the surface of a substrate in the form of atom chips �15�
are even more stringent.

Here, we investigate a mechanism for the cooling of a
particle using only a single plane mirror in place of a cavity.
In principle, this scheme only relies on the dipole force of a
refractive particle in a laser beam and thus applies to a wide
range of atomic and molecular species as well as, for ex-
ample, dielectric micro- or nanospheres. However, in the

present work we focus on the basic principles of the cooling
scheme and thus restrict the analysis to the simplest case of a
two-level atom.

Conceptually, one can view the interaction between the
atom and the mirror as being closely related to that between
a micromechanical oscillator, acting as a mobile mirror, and
a second mirror. Such schemes have been investigated both
theoretically �16,17� and experimentally �18,19� in various
configurations.

Although we have recently shown that one can treat these
two situations as two opposite limits of the same model �20�,
the situation we explore here behaves differently, and this
can be attributed to two facts. First, the coupling strength
between the static and moving scatterer �atom or mirror� is
very different in the two cases: an atom merely perturbs the
field it interacts with, whereas a mirror acts as a moving
boundary condition and changes the field significantly. Sec-
ond, the effect we investigate here is only dominant at large
atom-mirror separations. Thus, our proposed cooling scheme
operates in a parameter regime that is as yet mostly unex-
plored.

This paper is structured as follows. In the next section we
introduce the key features of our system and propose a
simple classical explanation of the cooling scheme. In Sec.
III the relevant quantum equations of motion are introduced.
Section IV solves these equations of motion analytically
through the use of perturbative methods, whereas Sec. V
gives the results of numerical simulations used to explore the
implications of the theory in further detail. Section VI com-
pares our results with those of traditional Doppler cooling,
and finally Sec. VII summarizes and concludes our discus-
sion.

II. MOTIVATION

We start with a classical explanation of the situation,
which provides the motivation for the mathematical model
presented in the next section. The phenomenon of optical
binding has been known for some time �see, for example,
�21–23�� and is now a common occurrence. At a basic level,
optical binding takes place between two dielectric spheres
when one sphere focuses the light onto a second sphere,
which is subsequently trapped. If we now consider just one
such sphere in front of a mirror, the modified electric field
will be reflected back toward the sphere itself. In essence,
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then, the sphere will be attracted to its own image. However,
this interaction is delayed by the time 2� it takes the distur-
bance in the electric field to travel from the sphere to the
mirror and back, where � is the time that light from the atom
takes to reach the mirror. Suppose now that the sphere is
moving parallel to the plane of the mirror with velocity v, as
shown in Fig. 1�a�. In this case, the sphere moves a distance
2v� during the light round-trip time. Thus, the disturbed light
field lags behind the particle and creates an attractive force in
the direction opposite to the motion of the particle. This at-
tractive force can be shown to be a viscous force; i.e., it is
proportional to v. This scenario also applies to the case of a
single atom interacting with an off-resonant beam, where the
atom can effectively be modeled as a refractive particle. Note
that the interaction between a single atom and its image in a
distant mirror has already been demonstrated �24,25�.

Alternatively, we may consider the same situation in the
reference frame of the moving particle, as shown in Fig.
1�b�. In this case both the incident laser beam and its reflec-
tion are tilted by an angle �=arcsin�v /c� with respect to
normal incidence on the mirror. The sum potential is there-
fore offset from the particle position by an amount propor-
tional to its velocity, leading again to a velocity-dependent
force opposing the motion.

Similar arguments apply for a particle moving along the
direction of the pump beam, i.e., orthogonal to the mirror. In
this case, the phase of the reflected beam is determined by
the interaction of the particle with the pump at the earlier
time 2�. In effect, the atom exerts a delayed phase change on
the light field, dragging the potential along with itself while
moving and thus creating a nonconservative force. This ef-
fect is similar to the “position dependent phase locking” de-
scribed in �26�.

III. MATHEMATICAL MODEL

In order to analyze the principles of the proposed cooling
scheme most clearly, we simplify the situation described
above to a one-dimensional �1D� scheme and assume a
single two-level atom as the particle to be cooled. A sche-
matic of the system is shown in Fig. 2.

The atom has a transition frequency �a and a decay rate
2� and is described by the operators p̂ and x̂ associated with
the atomic momentum and position, respectively, and by the

atomic dipole raising ��̂+� and lowering ��̂−� operators. The
atom is coupled to a continuum of quantized electromagnetic
modes with frequencies � and standing-wave mode func-
tions f�� ,x�=sin��x /c�, described by the field annihilation
â��� and creation operators â†���. The mirror is at position
x=0. For simplicity, we neglect the frequency dependence of
the atom-field coupling and assume a single coupling coeffi-
cient g. Finally, mode �0 is pumped by a laser, which enters
our analysis as an initial condition, and far-off-resonant
pumping is assumed, ���= ��a−�0�	�, where the atom
mainly acts as a refractive particle and spontaneous scatter-
ing is reduced. For the numerical examples given in this
paper, we consider 85Rb atoms and a realistic pump beam
that is detuned from the 5S1/2→5P3/2 transition of 85Rb by
several linewidths.

The starting point for describing the coupling between the
atom and the field modes is the quantum master equation


̇̂ = −
i

�
�Ĥ, 
̂� + L
̂ , �1�

where 
̂ is the density operator of the full system comprising
all modes and the atom. Applying the dipole and rotating
wave approximations and in a frame rotating with the driving

frequency �0, the Hamiltonian Ĥ reads as

Ĥ =
p̂2

2m
+ ���̂+�̂−� ��� − �0�â†���â���d�

− i�g� ��̂+â���f��, x̂� − H.c.�d� , �2�

and the damping term associated with atomic decay into
modes other than the 1D system modes reads as

L
̂ = − ���̂+�̂−
̂ + 
̂�̂+�̂− − 2�
−1

1

N�u��̂−e−iux̂
̂eiux̂�̂+du� .

�3�

Here N�u� describes the 1D projection of the spontaneous
emission pattern of the atomic dipole. In the low saturation
regime we can adiabatically eliminate the internal atomic
dynamics and formally express the dipole operator as

FIG. 1. Schematic of the cooling scheme. �a� In the laboratory
frame, an atom moving with velocity v parallel to a mirror, a dis-
tance �c away, interacts with a pump beam and its time-delayed
reflection. �b� In the frame of the atom, the �relativistically trans-
formed� pump beam and its reflection are tilted by an angle �
=arcsin�v /c� and produce a net retarding force, F.

FIG. 2. Schematic representation of the key components of the
system under consideration. The atom is separated from the mirror
by a distance �c and lies in a standing wave maintained by the
pump beam.
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�̂− = −
i� + �

�2 + �2g� f��, x̂�â���d� + �̂−, �4�

where �̂− is a noise term �27�.
In the following, we present two different ways of pro-

ceeding from this point. In the first instance we approximate
further and use perturbation theory to derive the force expe-
rienced by the atom analytically, in Sec. IV, and in the sec-
ond instance we derive semiclassical equations of motion.
The latter approach is then applied to numerical simulations
of the situation in Sec. V.

IV. ANALYZING THE MODEL: A PERTURBATIVE
APPROACH

A. Friction force

We first derive an analytical approximation for the friction
on the atom. To this end, we treat atomic motion semiclassi-
cally and thus replace the operator x̂ by an atomic position x.
After inserting Eq. �4� into Eqs. �2� and �3�, we obtain the
Hamiltonian

Ĥ =� ��� − �0�â†���â���d�

+ �g2D����� sin��1x/c�sin��2x/c�â†��1�â��2�d�1d�2,

where we have defined D���=� / ��2+�2�. As a conse-
quence of the assumed large pump detuning �, we in the
following neglect that part of the decay term L
̂ which leads
to spontaneous scattering of photons between the quantized
modes by the atom.

Let us first consider a stationary atom at a fixed position
x=x0. Starting with the Heisenberg equation of motion for
the annihilation operators,

d

dt
â��,t� =

i

�
�Ĥ, â��,t�� ,

we arrive at the integrodifferential equation

d

dt
â��,t� = − i�� − �0�â��,t�

− ig2D���sin��x/c�� sin��1x/c�â��1,t�d�1.

�5�

We now assume coherent states at all times for the fields and
replace the operators with their respective expectation val-
ues. Since we are pumping the atom at a single frequency,
we take the initial condition a�� ,0�=A��−�0�, where A is
the amplitude of the pump field, such that �A�2 is the pump
power in units of photons per second and  is the Dirac 
function. We now expand the fields a�� , t� in the weak-
coupling limit in powers of the coupling constant,

a��,t� = 	
n

an��,t��g2D����n, �6�

with an�� , t� being the nth coefficient of the series expan-
sion. Solving Eq. �5� by perturbation theory then yields the
zeroth-order term in g2D���,

a0��,t� = A�� − �0� , �7�

and the first-order term

a1��,t� = A
exp�− i�� − �0�t� − 1

� − �0
sin��x/c�sin��0x/c� .

We now proceed to find, to second order in g2D���, the static

force, F�x0 , t�=−�Ĥ /�x, acting on the atom,

F�x0,t� =
�

c
�A�2g2D����0
sin�2�0x0/c�

−
�

2
g2D���sin2��0x0/c��4 cos2��0x0/c� − 1�� .

The first term in the above equation describes the interaction
of the atom with the unperturbed pump field, whereas the
second term is the lowest-order correction of the force due to
the back action of the atom on the light fields. Note that this
force is independent of time.

Similarly, we can now calculate the force on an atom
moving at a constant velocity v. For this we assume that the
atom follows a trajectory given by x�t�=x0+v�t− t0�, where
t0 is a long-enough time for the system to reach a stationary
state; i.e., t0 is larger than twice the propagation time �
=x0 /c of the light from the atom to the mirror. We can then
solve Eq. �5� up to first order in both v and g2D���. The
friction force in the longitudinal direction is finally obtained
as

F��x0,t� =
2���0

c2 v�A�2�g2D����2sin2�2k0x0�

−
2���0

2

c2 v��A�2�g2D����2sin�4k0x0� . �8�

The second term in Eq. �8� is larger than the first by a factor
of the order k0x0=�0x0 /c and is therefore dominant if the
distance of the atom from the mirror is much larger than an
optical wavelength. We may then approximate the longitudi-
nal friction force by

F��x0,t� = − 2��k0
2v��A�2 g2�

�2 + �2�2

sin�4k0x0� . �9�

Supposing that the species we are cooling is 85Rb, and set-
ting �A�2=62.5� / �2��, �=−10�, �=0.25 /�, and Gaussian
beam waist w=0.7 �m, Eq. �9� predicts 1 /e cooling times
on the order of 2 ms. The value for � that we use implies a
separation between the atom and the mirror on the order of
several meters. We suggest that this problem can be over-
come through the coupling of the light into an optical fiber,
thereby avoiding the effects of diffraction. A recent experi-
ment making use of a similar technique is described in �28�.

Equation �9� indicates an exponential decay or increase in
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velocity. We define the heating coefficient � of an ensemble
of atoms as the proportionality constant in the relation
dp2 /dt=�p2, which thus depends on position as sin�4k0x0�.
Moreover, since p2�T for a thermal ensemble, we also have
dT /dt=�T. Figure 3 shows a plot of � against atomic posi-
tion, where we introduced the coordinate x0� relative to the
nearest node of the standing-wave pump. It is only in certain
intervals that we expect the longitudinal force to be a damp-
ing force, as indicated in Fig. 3 by the shaded regions.

We now derive the friction force in the transverse direc-
tion, i.e., orthogonal to the pump beam. In this case the cou-
pling constant g becomes a function g�r�, where r is the
coordinate in the transverse direction. For an atom moving at
small constant velocity, we may write g�r0+v�t− t0��
�g�r0�+v�t− t0�g��r0� where g��r�=dg /dr. Substituting this
in Eq. �5� we can derive an expression for the friction force,

F��x0 , t�=−�Ĥ /�r, in the direction of r,

F��x0,t0� = − 4��v��A�2 2gg��

�2 + �2�2

sin3�k0x0�cos�k0x0� .

This transverse friction force is also shown in Fig. 3 assum-
ing a Gaussian mode function of waist w=0.7 �m. Note that
F� and F� are comparable in magnitude for the parameters
chosen here where the mode waist is comparable to the op-
tical wavelength and that there exist regions where both
these forces promote cooling.

In the remainder of this paper, however, we will concen-
trate on a one-dimensional treatment of the problem and
therefore only consider the longitudinal friction force. This
could correspond, for example, to the imaging arrangement
of Eschner et al. �24�.

In terms of more familiar parameters, we can rewrite Eq.
�9� in the limit ���	� as

F��x0,t� = − 4vs�
�a

�w2�k0
2� sin�4k0x0� , �10�

where s=g2�A�2 / ��2+�2� is the maximum saturation param-
eter of the atom in the standing wave, �a=3�2 / �2�� is the

atomic radiative cross section, and where we used the rela-
tion 2�g2 /�=4�a / ��w2�.

Aside from allowing us to make predictions of cooling
times, Eqs. �9� and �10� also highlight the dependence of this
cooling effect on the variation in certain physical parameters.
In particular, F� depends on the square of the detuning,
which means that it is possible to obtain cooling with both
positive and negative detunings. The friction force also
scales with w−4 and �A�2. Hence, for a fixed laser intensity,
proportional to �A�2 /w2, i.e., fixed atomic saturation, friction
still scales with w−2 and thus tight focus is needed in order to
have a sizeable effect. A very promising feature of these two
equations is the linear dependence of the cooling rate on �. In
Sec. V we further analyze the dependence of the cooling rate
on the various parameters and support the validity of the
analytic solution by comparing it with the results of simula-
tions.

B. Localizing the particle

Equation �9� shows that, in order to observe any cooling
effects, we need to localize the particle within around � /8.
This can be achieved, for example, by an additional far-off-
resonant and tightly focused laser beam propagating parallel
to the mirror forming a dipole trap centered at a point x0. We
characterize this trap by means of its spring constant kt such
that the trapping force is given by Ft=−kt�x−x0� or equiva-
lently by the harmonic-oscillator frequency �t=��kt /m�,
where m is the mass of the atom.

If we now assume that the atom oscillates as x�t�=x0
+xm sin��t�t− t0�� in the trap with a maximum distance xm of
the particle from the trap center and a corresponding maxi-
mum velocity vm, it is possible to derive a new friction co-
efficient by perturbation theory in xm. Proceeding along the
lines of Sec. IV A, we arrive at

F��x0,t� = − 2��k0
2vm� sinc�2�t��

� �A�2 g2�

�2 + �2�2

sin�4k0x0� . �11�

Note that this formula reduces to Eq. �9� in the limit of small
wt. The sinusoidal dependence on �t� can be explained in an
intuitive manner: the effect on the particle is unchanged if
the particle undergoes an integer number of oscillations in
the round-trip time 2�.

While Eq. �11� was derived for an oscillating particle, it is
still only correct to lowest order in xm and therefore does not
include the effect of a finite spatial distribution. In order to
obtain an estimate for the friction force in the presence of
spatial broadening, we calculate the overall energy-loss rate
experienced by the particle in terms of the time average of
Eq. �9�,

� dp2

dt
� = −

2�k0
2p0

2

m
��A�2 g2�

�2 + �2�2�
0

2�

sin�4k0x0

+ 4k0xm sin�T��cos2�T�dT , �12�

where p0=mvm is the maximum momentum of the particle in
the trap given by p0=xm

�mkt. The value of the integral in
Eq. �12� can be expressed as

-400

-200

0

200

400

0 λ/4 λ/2 3λ/4 λ

0

1

Longitudinal heating coefficient
Transverse heating coefficient

Field amplitude

Longitudinal cooling regions

Atom position, x�
0

F
ield

am
p
litu

d
e

(arb
.

u
n
its )

H
ea

ti
n
g

co
effi

ci
en

t
(s

−1
)

FIG. 3. �Color online� Spatial dependence of the longitudinal
heating coefficient � �thick solid line�. The shaded areas promote
cooling in the longitudinal direction. Also drawn is the transverse
heating coefficient �thin solid line� and the field amplitude �dotted
line�. Parameters are for Rb atoms and �A�2=62.5� / �2��, �=
−10�, �=0.25 /�, and w=0.7 �m.
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2�

4k0xm
�sin�4k0x0�J1�4k0xm� + cos�4k0x0�H1�4k0xm�� ,

where J1 is the order-1 Bessel function of the first kind and
H1 is the order-1 Struve function �29�. At the point of maxi-
mum friction, x0�=−3� /16, the integral in the above equation
reduces to 2�J1�4k0xm� / �4k0xm�, which can be readily evalu-
ated.

For small values of xm, the effect of this averaging pro-
cess is to introduce a factor of 1/2 into Eq. �11�, which can be
seen as being equivalent to the effect of cooling merely one
degree of freedom when the atom is in a harmonic trap.
Finally, Eq. �12� is modified similarly to Eq. �11� to include
the effects of the harmonic oscillation by replacing �
→sin�2�t�� / �2�t�. This results in an approximate expression
for the friction, taking into account the periodicity in the time
delay as well as spatial-averaging effects,

�F��x0,t�� = − �k0
2vm��A�2 g2�

�2 + �2�2

sinc�2�t���
0

2�

sin�4k0x0 + 4k0xm sin�T��cos2�T�dT . �13�

C. Capture range

As discussed above, the addition of the dipole trap intro-
duces several features into the friction force. Plotting the
variation in the friction force in Eq. �12� with the particle’s
initial momentum, as in Fig. 4, shows that the force changes
sign for high-enough initial momentum. This is due to the
broader spatial distribution for faster particles in the har-
monic trap. For fast-enough velocities, the particle oscillates
into the heating regions, as shown in Fig. 3, even if the trap
is centered at the position of maximum cooling. This defines
a range of initial momenta, starting from zero, within which
a particle is cooled by this mechanism; faster particles are
heated and ejected from the trap. Note that this result was
derived from the friction to lowest order in velocity v, and
higher order terms are expected to affect the capture range
further.

At particular values of x0�, e.g., at −3� /16, this capture
range can be conveniently estimated by using the location of
the first zero of the Bessel function,

p0 � 0.958��mkt�/k0 = 0.958m�t/k0. �14�

Thus, p0
2��t

2, and the capture range as defined in Fig. 4 is
expected to scale with the square of the trap frequency. We
compare this later in Sec. V with the results of numerical
simulations.

D. Diffusion and steady-state temperature

In the preceding discussion we found a friction force,
which cools an atom toward zero momentum. In practice, the
cooling process is counteracted by momentum diffusion due
to spontaneous scattering by the atom of photons from the
pump beam into other electromagnetic modes and between
the two counterpropagating components of the standing-
wave pump itself. In a simplified Brownian motion model,
this diffusion introduces a constant in the equation for
dp2 /dt, resulting in a constant upward shift of the curve in
Fig. 4. This slightly reduces the capture range for fast par-
ticles, but its main effect is to introduce a specific value of
the momentum where friction and diffusion exactly compen-
sate each other. This point corresponds to the steady-state
temperature achievable through the cooling mechanism dis-
cussed here.

To lowest order in the coupling coefficient g2, the diffu-
sion is given by the interaction of the atom with the unper-
turbed standing-wave pump field. In this limit, diffusion in
our system is therefore identical to that of Doppler cooling
�30–33�, where the diffusion coefficient D is given to lowest
order in s by

D = �2k0
2�s�cos2�k0x0� +

2

5
sin2�k0x0�� . �15�

The steady-state temperature TM of mirror-mediated cool-
ing is then obtained from kBTM =Dvm /F��x0 , t� where
F��x0 , t� is the friction force given by Eq. �11�. For ���	�
we find
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FIG. 4. Dependence of the heating rate �dp2 /dt� on the square of
the initial momentum, p0

2, for �t=0.45�2�� and x0�=3� /16. Other
parameters are as in Fig. 3. Cooling is achieved only for a finite
range of initial momenta.

ATOM COOLING USING THE DIPOLE FORCE OF A… PHYSICAL REVIEW A 80, 013836 �2009�

013836-5



TM =
1

5�

�

kB

�t�

g2

2 + 3 cos2�k0x0�
sin�2�t��sin�4k0x0�

. �16�

An example of the dependence of TM on the trap position is
shown in Fig. 5, predicting a minimum temperature on the
order of 400 �K. While this may seem large in comparison
to the Doppler temperature of 141 �K, one has to keep in
mind that TM, given by Eq. �16�, is insensitive to detuning
and, for far-off-resonant operation of the order of tens of
linewidths, it will be the dominant mechanism. This is fur-
ther discussed in Sec. VI. We also note that Fig. 5 further
highlights the importance of the requirement for localizing
the particle. Using Eq. �10� we can approximate the steady-
state temperature at the point of maximum friction by

kBTM �
�

�

�w2

8�a
.

It is interesting to note that this expression is closely related
to the expression for the limiting temperature in Doppler
cooling, kBT=��, but where � is replaced by the inverse of
the atom-mirror delay time, 1 /�, and where a geometrical
factor related to the mode area divided by the atomic cross
section is included.

V. NUMERICAL SIMULATIONS

In this section we now investigate a more accurate nu-
merical model to corroborate the simplified analytical results
obtained above. In order to render the problem numerically
tractable, the continuum of modes is replaced by a discrete
set of modes with frequencies �k, k=1, . . . ,N. Master Eq. �1�
is then converted by use of the Wigner transform into a
Fokker-Planck equation for the atomic and field variables.
Applying a semiclassical approximation and restricting the
equation of motion to second-order derivatives, one arrives
at an equivalent set of stochastic differential equations for a
single atom with momentum p and position x in a discrete

multimode field with mode amplitudes �k �34�,

dx =
p

m
dt , �17a�

dp = i��E�x�
d

dx
E��x� − E��x�

d

dx
E�x��dt − U0�E�x�

d

dx
E��x�

+ E��x�
d

dx
E�x��dt − kt�x − xt�dt + dP , �17b�

d�k = i�k�kdt − �iU0 + ��E�x�fk
��x�dt + dAk, �17c�

where fk�x�=sin��kx /c� are the mode functions, E�x�
=	k�kfk�x� is the total electric field, �k=�0−�k is the de-
tuning of each mode from the pump, U0 is the light shift per
photon, and � is the photon scattering rate. The terms dP and
dAk are correlated noise terms �34� responsible for momen-
tum and field diffusion.

In the following, we set the trap center to x0�=−3� /16,
which is the point where the analytic solution predicts the
maximum of the damping force. We use N=256 field modes
with a mode spacing of � /10. At the start of every simula-
tion, all field modes are empty with the exception of the
pump mode, which is initialized at 625 photons, correspond-
ing to a laser power of around 50 pW for our chosen param-
eters.

The simulations were performed in runs of several thou-
sand trajectories. Each such run was performed at a well-
defined initial temperature, with the starting momenta of the
particles chosen from a Gaussian distribution and the starting
position being the center of the trap.

A. Friction force and capture range

Figure 6 presents the results of a set of simulations per-
formed when setting the noise terms dP and dAk in Eqs. �17�
to zero, i.e., neglecting momentum and photon number dif-
fusion. The simulation data are compared with the result of
the perturbative calculations �Eq. �13��. For modest values of
�t, Fig. 6�a� justifies the averaging process used to derive Eq.
�12�, which was based on spatial averaging but neglecting
higher order terms in v. In contrast, for larger trap frequen-
cies, the numerical simulations diverge significantly from the
analytic result, as can be seen in Fig. 6�b�. We expect that the
terms in higher powers of the initial speed, which were
dropped in the perturbative solution, are responsible for this
discrepancy.

We have already seen, in Eq. �14�, that the capture range
is expected to scale as �t

2. For weak traps, as shown in Fig.
7, the numerical simulations agree well with these expecta-
tions. For stiffer traps, however, the capture range is consis-
tently larger than that predicted; in fact, the simulations pre-
dict a capture range of around 450 mK for a trap frequency
of 0.5�2��.
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FIG. 5. Calculated steady-state temperature TM for an atom con-
fined in a harmonic trap as a function of position while keeping the
detuning and pump field constant. �t=0.1�2��; other parameters
are as in Fig. 3.
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B. Steady-state temperature

The next step in our investigation was to run simulations
involving the full dynamics given by Eq. �17� including the
diffusion terms. Because of the discrete nature of the field
modes with uniform frequency spacing used in the simula-
tions, the numerically modeled behavior is always periodic
in time with a periodicity given by the inverse of the fre-
quency spacing. The simulations therefore cannot follow
each trajectory to its steady-state. Instead, simulations were
performed in several groups of trajectories, each group form-
ing a thermal ensemble at a well-defined initial temperature.
For each such group of trajectories the initial value of dT /dt
was calculated. The results for �t=0.5�2�� are shown in
Fig. 8, where the error bars are due to statistical fluctuations
for a finite number of stochastic integrations. The steady-
state temperature is that temperature at which dT /dt=0 as
clearly illustrated in this figure. For the chosen parameters,

our data suggest a steady-state temperature of 722�54 �K
with a 1 /e cooling time of around 3.0 ms. This compares
reasonably well with the steady-state temperature of 597 �K
predicted by Eq. �16�.

We finally performed a large number of simulations to
investigate the dependence of the steady-state temperature on
the trap frequency. Equation �16� indicates that as one de-
creases �t the steady-state temperature decreases. This is
clearly seen in Fig. 9, which compares the prediction of Eq.
�16� with a set of numerical simulations. The trend in the
data is reproduced well by the analytic expression. However,
the simulated steady-state temperature is consistently a little
higher than predicted. We expect that this discrepancy is due
to one of two reasons. �i� Equation �16� was derived from the
friction, Eq. �11�, i.e., without the spatial averaging of Eq.
�13�, which would reduce friction. �ii� Higher order terms in
the velocity v are also expected to reduce friction compared
to the lowest-order analytical result. In both cases, therefore,
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the analytic expression is expected to overestimate the fric-
tion force and thus to predict too-low temperatures.

VI. BEYOND ADIABATIC THEORY

All the theoretical analysis and simulations discussed so
far have been based on adiabatic elimination of the internal
atomic degrees of freedom and therefore neglected Doppler
cooling. In Fig. 10, we explore the variation in TM and the
Doppler temperature, TD, as a function of detuning from
resonance when the particle is at the point of greatest friction
�x0�=3� /16�, where TD is given by TD=−����2+�2� / �2��
for negative values of �. In the presence of both cooling
effects, the stationary temperature achieved by the system is
given by

T =  1

TM
+

1

TD
�−1

. �18�

Thus, for the parameters of Fig. 9, the calculated steady-state
temperature T reduces to 250 �K in the limit of vanishing
�t.

From Fig. 10 one can see that the mirror-mediated force,
for our tightly focused pump, is stronger than the
Doppler force for detunings larger than around 10� in mag-
nitude. In practice this has two implications: for large
negative detunings, we expect the steady-state temperature
of the system to be significantly lower than that predicted
by Doppler cooling; whereas for large positive detunings,
we still predict equilibrium temperatures of the order of
mK.

Both our perturbative expressions and our simulations
are calculated to lowest orders in the atomic saturation.
However, it is well known that in the limit of very large
detunings also higher order terms in the saturation parameter
s become significant. Using the full expression for the
diffusion constant �30�, we can estimate the detuning for

which we expect minimum diffusion and temperature. For
the value of the saturation parameter s�0.1 used throughout
this paper, it can be shown that TM attains a minimum at
detunings of up to several tens of linewidths. Our chosen
parameters are therefore within the range of validity of the
model.

VII. CONCLUSION

We have presented a mechanism for cooling particles by
optical means, which is based fundamentally on the dipole
interaction of a particle with a light beam and therefore does
not rely on spontaneous emission. The particle is assumed to
be trapped and is simultaneously driven by an off-resonant
laser beam. After the interaction with the particle the beam is
reflected back onto the particle by a distant mirror. The time
delay incurred during the light round trip to the mirror and
back is exploited to create a nonconservative cooling force.

The system was analyzed using stochastic simulations of
the semiclassical equations of motion representing a single
two-level atom coupled to a continuum of electromagnetic
modes. The results of these computations were found to
agree with the expectations of a perturbative analysis. Our
models predict sub-mK steady-state temperatures for 85Rb
atoms interacting with a tightly focused laser beam several
meters from the mirror, in an arrangement similar to that of
Ref. �24�. While most of the theory is presented for a one-
dimensional model, results for the friction force in the trans-
verse direction suggest that three-dimensional cooling is pos-
sible with this scheme.

The model presented here requires a large separation be-
tween the atom and the mirror, on the order of several
meters, for an observable cooling effect. This limitation can
be overcome in several ways. First, the light could propagate

100

1000

-1 -10

S
te

ad
y
-s

ta
te

te
m

p
er

at
u
re

(µ
K

)

Detuning, ∆ (units of Γ)

FIG. 10. Comparison between the calculated steady-state tem-
peratures for mirror-mediated cooling TM �dash-dotted line�, Dop-
pler cooling TD �dashed�, and in the presence of both effects T
�solid�, drawn as a function of detuning while keeping the satura-
tion parameter constant. �t=0.1�2��; other parameters are as in
Fig. 6.

0

500

1000

1500

2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7S
te

ad
y
-s

ta
te

te
m

p
er

at
u
re

,
T

S
(µ

K
)

Trap frequency, ωt (units of 2πΓ)

FIG. 9. Steady-state temperature for a number of simulations
�circles� compared to analytic formula �16� �solid line�. The solid
square represents the equivalent data from Fig. 8, resulting from a
much larger number of simulations. Parameters are as in Fig. 6.

XUEREB, HORAK, AND FREEGARDE PHYSICAL REVIEW A 80, 013836 �2009�

013836-8



in an optical fiber between the atom and the mirror to avoid
the effects of diffraction. Second, the required delayed re-
flection could be achieved through the use of a cavity instead
of a mirror; in contrast to cavity-mediated cooling schemes
�10–14�, the atom would remain external to the cavity. For a
time delay � of order 1 ns one would require a cavity quality
factor Q=�� �35� on the order of 106–107, which is achiev-
able with present-day technology �36�.
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