
A constraints-based resource discovery model for multi-provider
cloud environments

Wright, P., Sun, Y. L., Harmer, T., Keenan, A., Stewart, A., & Perrott, R. (2012). A constraints-based resource
discovery model for multi-provider cloud environments. Journal of Cloud Computing: Advances, Systems and
Applications , 1(6). DOI: 10.1186/2192-113X-1-6

Published in:
Journal of Cloud Computing: Advances, Systems and Applications

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2012 Wright et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:16. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/10077077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/a-constraintsbased-resource-discovery-model-for-multiprovider-cloud-environments(bc3accb6-1bb0-429d-8dc9-9d84ed91ecb9).html

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6
http://www.journalofcloudcomputing.com/content/1/1/6

RESEARCH Open Access

A constraints-based resource discovery model
for multi-provider cloud environments
Peter Wright, Yih Leong Sun*, Terence Harmer, Anthony Keenan, Alan Stewart and Ronald Perrott

Abstract

Increasingly infrastructure providers are supplying the cloud marketplace with storage and on-demand compute
resources to host cloud applications. From an application user’s point of view, it is desirable to identify the most
appropriate set of available resources on which to execute an application. Resource choice can be complex and may
involve comparing available hardware specifications, operating systems, value-added services (such as network
configuration or data replication) and operating costs (such as hosting cost and data throughput). Providers’ cost
models often change and new commodity cost models (such as spot pricing) can offer significant savings. In this
paper, a software abstraction layer is used to discover the most appropriate infrastructure resources for a given
application, by applying a two-phase constraints-based approach to a multi-provider cloud environment. In the first
phase, a set of possible infrastructure resources is identified for the application. In the second phase, a suitable
heuristic is used to select the most appropriate resources from the initial set. For some applications a cost-based
heuristic may be most appropriate; for others a performance-based heuristic may be of greater relevance. A financial
services application and a high performance computing application are used to illustrate the execution of the
proposed resource discovery mechanism. The experimental results show that the proposed model can dynamically
select appropriate resouces for an application’s requirements.

Introduction
Infrastructure providers offer flexible and cost-effective
resources for hosting network-centric and cloud appli-
cations. An infrastructure provider rents compute and
storage resources together with network bandwidth
and supporting services, according to prespecified user
requirements, for precisely the length of time that a user
requires them. Rented resources may be used to (i) host all
of an application’s infrastructure, or (ii) support overflow
capabilities during high-load situations, or (iii) provide
disaster recovery capabilities. The cost of renting infras-
tructure resources is inexpensive due to economies of
scale. Moreover, an infrastructure can be tuned to the
current load of an application or the current revenue
generated by an application.

Infrastructure providers are increasingly supplying the
cloud marketplace with storage and on-demand com-
pute resources to host cloud applications. Amazon Elastic
Compute Cloud (EC2) [1], ElasticHosts [2], GoGrid [3],
Flexiscale [4] and Rackspace [5] all supply resources to the

*Correspondence: ysun05@qub.ac.uk
Belfast e-Science Group, Queen’s University Belfast, Belfast, UK

IaaS (Infrastructure as a Service) market. Each infrastruc-
ture provider offers a particular infrastructure capacity,
with a variety of hardware configurations, operating sys-
tems and supporting services. Different providers offer
different pricing structures for using their infrastructure
resources and they may have different application pro-
gramming interfaces (APIs) for requesting and configur-
ing resources. This makes it difficult for users to migrate
between providers within a multi-provider cloud market-
place in order to minimize the cost of using resources.

One way to utilise the cloud marketplace is to develop
models for mapping application constraints onto ranges
of infrastructure products. As the infrastructure provider
marketplace develops and user expectations increase,
providers are introducing a richer set of pricing mod-
els and value-added services. For example, Amazon now
offers Spot Prices for their resources; these allow resources
to be obtained at significant discounts to their normal
fixed price structures. Other providers offer ranges of net-
work bandwidth options and services, such as resilience
and load scaling. These capabilities are added dynamically.
In order to automate the process of resource selection for

© 2012 Wright et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6 Page 2 of 14
http://www.journalofcloudcomputing.com/content/1/1/6

a particular application, techniques for expressing infras-
tructure and software requirements are needed. From the
application user’s point of view, there is a challenge to
find appropriate resources within a multi-provider cloud.
Searching for infrastructure resources by hardware speci-
fications, such as CPU or memory, may not be sufficient. A
user may be interested in searching for resources by oper-
ating system type or by requiring particular software items
or services. For example, a user may require two compute
nodes with hardware configurations of 2.4GHz dual core
Intel CPU, 2GB memory, 250GB local disk, running a 32-
bit Ubuntu 9.10 Karmic system pre-installed with JDK 1.6
and Tomcat 5.0 web server, with each compute node being
located at a different geographical location (for resilience)
with a low network latency. A user should be able to com-
pare easily alternative options and select resources from
different infrastructure providers.

In this paper we propose and build an infrastructure
resource discovery engine which operates in a multi-
provider cloud marketplace with multiple kinds of user
requirements (including cost). In particular we utilise a
constraints-based model so as to provide flexibility in
terms of provider independence as well as giving an
abstract view of infrastructure capabilities. We describe
a two-phase software abstraction model which facili-
tates infrastructure resource discovery across multiple
providers. An application’s hosting requirements are spec-
ified by means of constraints. We describe an abstract
interface for managing resources in a multi-provider envi-
ronment and study how infrastructure features and user
requirements can be expressed and used to find suitable
resources for hosting an application.

Background
An infrastructure provider is an entity that offers
resources for lease according to a specific pricing model,
along with a management interface for users to browse,
purchase, monitor and control resources. A resource may
be a compute resource with a selected operating system,
a storage resource or a service providing predefined func-
tionality. For most providers a compute resource is a virtual
machine (VM) with a specific hardware configuration and
operating system type - it may also contain other software
or data required by a user. Infrastructure providers offer
different hardware configurations with varying pricing
models. Each physical infrastructure resource is owned
by an infrastructure provider and will usually be shared
between a number of users. In this section, we com-
pare the resources offered by three popular infrastructure
providers. We discuss some of the research works related
to this field.

What infrastructure providers offer
Currently, it is difficult to compare the different resource
options. Comparision of resources is likely to become
more complex as additional value-added services are
offered by providers directly. Table 1 provides a sum-
mary of resources possibilities offered by three different
infrastructure providers.

Hardware configuration unit
Amazon EC2 provides hardware configurations using
variety of instance types – Standard, Micro, High-Memory,
High-CPU, Cluster-Compute, or Cluster-GPU instances;
and different sizes – Small, Medium, Large, Extra Large,

Table 1 Comparison of product offerings by Amazon EC2, Flexiscale and GoGrid

Amazon EC2 Flexiscale GoGrid

Hardware
Configuration
Unit

Sizes: small, medium, large, extra-large,
etc; Instance Types: standard, micro,
high-memory, high-cpu, etc.

Server Unit: combination
of different CPU, memory
and storage.

Cloud Server Size based on
RAM.

Operating System Type Amazon Machine Images (AMI). Standard Windows or
Linux ISO images.

GoGrid Server Images.

Pricing
Structure

Virtual
Machine

On-demand Instance, Reserved Instance
and Spot Instance pricing.

Server Units. Based on the amount
of RAM deployed (RAM
hours)

Storage Storage attached to VM is free; Other
storage offerings like Elastic Block Store
(EBS) is charged based on provisioned
storage and I/O request; Simple Storage
Service (S3) is charged based on bucket
location, redudancy durability and data
transfer request.

Disk space is charged per
month per GB of storage
space allocated no matter
it is attached to a server or
not.

Additional storage space
is charged by monthly
usage.

Data
Transfer

Based on availability zones and regions;
No charge within same region.

Traffic on private VLAN
is free; inbound and out-
bound traffic on public
VLAN is charged.

Inbound transfer is free;
outbound transfer is
charged.

The following table compares the product offerings by Amazon EC2, Flexiscale and GoGrid.

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6 Page 3 of 14
http://www.journalofcloudcomputing.com/content/1/1/6

Double Extra Large or Quadruple Extra Large. For exam-
ple, an EC2 High-CPU Medium instance provides a 1.7GB
memory, 5 EC2 compute units (2 virtual cores with 2.5
units each) and 350 GB of local storage, 32-bit platform
virtual machine. A Flexiscale virtual machine is marketed
using server units. A server unit is a combination of dif-
ferent numbers of CPU cores, memory and storage–for
example, a virtual machine with 2GB memory and 1 CPU
core. GoGrid supplies infrastructure using Cloud Server
Size, based on RAM. A GoGrid cloud server can be a
virtual machine with 2 CPU cores, 100GB storage and
2GB RAM.

Operating system type
An infrastructure resource is associated with an operat-
ing system type. In Amazon EC2, an operating system is
offered as Amazon Machine Images (AMIs). Each AMI
is pre-configured with a specific operating system type
and possibly bundled with different software. A standard
Amazon AMI could be a Ubuntu 10.04 Lucid operat-
ing system with (or without) pre-installed Java 1.6 and
JBoss applications. Flexiscale offers standard Windows
(e.g. Windows Server 2008) or Linux (e.g. CentOS Linux
5.4) operating systems. Users can install their own operat-
ing systems by downloading and booting from ISO images.
GoGrid provides operating systems by means of server
images which can be a standard Windows (e.g. Windows
Server 2008) bundled with additional packages such as
IIS 7.0, Fast CGI PHP, MS SQL Server Standard 2008
database software or just a bare operating system with no
extra packages.

Pricing structure
There is a wide range of pricing structures for infrastruc-
ture resources. The provider Amazon EC2 has a variable
price structure for using infrastructure resources; the cost
of a resource depends on the size of the instance and the
region in which it is running. Prices for using Linux or
Windows also vary. As well as standard pricing for On-
Demand Instances, Amazon EC2 also provides Reserved
Instance and Spot Instance pricing structures. The pricing
of Reserved Instance is a one-time payment for a specific
period which offers a significant discount for the instance
running within that period. Spot Instance provides a way
to bid for and possibly purchase unused Amazon EC2
capacity. The price charged for Spot Instance (Spot Price)
fluctuates with the level of demand, and is typically sig-
nificantly less expensive than the normal Amazon EC2
pricing. When bidding for a Spot Instance, a user speci-
fies a maximum bid price. If a Spot Price exceeds a user’s
maximum bid price, then the VM instance is terminated
by Amazon EC2 and no charged is applied for usage. Oth-
erwise the user leases the VM for a period of time and

the charge for usage is the Spot Price for the usage period.
The internet data transfer cost depends on the Amazon
EC2 Availability Zones and Regions. Other than default
local VM storage, Amazon EC2 also provides other stor-
age options, namely Elastic Block Store (EBS) and Simple
Storage Service (S3). The charge for EBS usage is based on
the provisioned storage and I/O requests. The charge for
S3 is based on the S3 bucket location, redundancy dura-
bility and the data transfer request (PUT, COPY, POST,
LIST, GET).

Flexiscale services are priced in terms of units. A pack-
age of units must be purchased in advanced to enable
usage of Flexiscale services. Units can be used to purchase
four types of Flexiscale service, namely Servers, Disk, Net-
work and Software Images. Each type of service is priced
over a specific time period. The charge for a Flexiscale
server depends on the number of CPU cores and the
amount of RAM acquired. Disk usage is charged by allo-
cated disk space and the number of I/O accesses made to
disk. Inbound and outbound network traffic on the pub-
lic VLAN is also charged. Each account is allocated blocks
of public IP addresses and private VLANs to use as they
wish. Open source operating systems are free but usage of
Windows operating system activates a further charge.

GoGrid pricing depends on server RAM hours, out-
bound data transfers and storage usage. GoGrid provides
a pay-as-you-go pricing model as well as monthly pre-paid
plans which offer better value for most applications. Only
outbound data transfer is charged (inbound data transfer
is free). Cloud storage by GoGrid is optional and is deter-
mined by the maximum storage space utilisation within a
given billing cycle.

Related work
There are a number of alternative approaches for offer-
ing and selecting resources for the cloud marketplace. For
example, there are a number of open source IaaS provider
implementations that expose clusters of VM hosts as IaaS
resources. These include Eucalyptus [6], OpenNebula [7]
and Nimbus [8]. Most clone Amazon’s EC2 API to allow
easy access through existing technologies. These imple-
mentations offer a set of cloud management operations;
however, they are resource-centric, giving external defini-
tions of the capabilities of particular resource types and
prices (refer Table 1).

The RESERVOIR [9] framework creates an environ-
ment where different cloud services (or resources) can
be managed together. Services are encapsulated in a Vir-
tual Execution Environment (VEE). Virtualisation tech-
nology and physical resources are represented using a
Virtual Execution Environment Host (VEEH), which is
managed by the Virtual Execution Environment Manage-
ment (VEEM) system. VEEM utilises OpenNebula and
manages the deployment and migration of VEE on VEEH.

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6 Page 4 of 14
http://www.journalofcloudcomputing.com/content/1/1/6

A Service Manager (SM) is introduced to instantiate the
service applications and manage the service level agree-
ment (SLA). The RESERVOIR framework provides a ser-
vice specification mechanism [10] to define application
configurations by extending DMTF’s OVF standard [11].
This service specification includes VM details, applica-
tion settings and deployment setings. The RESERVOIR’s
approach gives a provider-focused view of resources. It
allows service providers to specify a complete definition
of their cloud services.

The SLA@SOI [12] framework introduces a multi-layer
SLA management framework for service-oriented infras-
tructures. The SLA@SOI model consists of terms, service
level objectives (SLO) and conditional rules. Terms are the
attributes that define the infrastructure resources, such as
number of CPU cores, memory allocation, or resource’s
geographical region. SLOs are the attributes for mon-
itoring resource performance, such as CPU utilisation.
Conditional rules define the actions that need to be exe-
cuted if there are changes in resource performance (SLA).
The SLA@SOI approach is focused on the management,
monitoring and readjustment of SLAs.

The Intercloud project [13] implements an ontology-
based resource catalog that captures the features and
capabilities offered by cloud providers. The proposed
ontology defines the physical attributes of resources, such
as CPU and storage. It also defines other features of
resources, such as security, recovery, and compliance
capabilities from the provider’s point of view.

The Mosaic [14,15] project studies the cloud interop-
erability and portability issues. It also tries to address
service discovery, service composition and SLA manage-
ment issues. It proposes an ontology [16] for resource
annotations. The Mosaic’s ontology defines a set of non-
functional and functional properties which are used to
describe cloud resources. The definition of SLA in Mosaic
follows the SLA@SOI concepts.

A resource discovery model for multi-Cloud
applications
The proposed resource discovery model is based on
the notion of service-centric systems which are subse-
quently deployed as dynamic applications which reside
in a multi-provider cloud. The usage of infrastructure
resources is application dependent: some applications are
implemented using a dynamic collection of infrastructure
resources; others only use cloud resources during periods
of high load, or to provide disaster recovery.

An infrastructure provider agnostic approach
In the model, applications are agnostic to the underly-
ing provider; this means that applications can use the
most appropriate cloud resources when they are needed.
The Zeel/i framework[17] uses the customised mecha-
nisms of a host provider to configure an environment for a
user. The environment is wrapped in a provider-agnostic
API which insulates applications from provider APIs (see
Figure 1). The first step in using Zeel/i is to determine the
current resource marketplace, i.e. the cloud of resources
currently made available from resource providers which
satisfy the application’s requirements. The choice of the
most suitable provider depends on the constraints of the
application and also on the kind of financial arrangements
that suit the application owner (forming a financial agree-
ment with a provider may be as simple as creating an
account and providing credit card details, but it could also
involve personally auditing the provider’s data centres for
particular application domains, such as financial services).
Once a pool of resources is defined, an application can
select and allocate appropriate resources. In order to be
provider-neutral, Zeel/i takes a discovery-based approach
where an application attempts to find resources (from the
pool of acceptable providers) that meet its requirements–
this approach is explained in detail in the next section.
Once a collection of feasible resources, called resource

Figure 1 A provider-agnostic resource cloud model. A provider-agnostic API that insulate users or applications from different implementation of
different provider API.

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6 Page 5 of 14
http://www.journalofcloudcomputing.com/content/1/1/6

templates, have been identified for an application, they can
be filtered using a heuristic (e.g. cheapest cost) to select
the best match for an application.

Once an appropriate resource has been identified, it
can be reserved. A reservation is a short-term hold
on resources designed to provide a guarantee that the
resources will be available when needed. Once resources
are needed they are instantiated, which provides the
application with a running resource which it can use.
When the application finishes with a resource, it dis-
cards it by returning it to the provider. An illustra-
tion of the resource discovery and utilisation model is
shown in Figure 2. The resource model allows applica-
tion users to specify resources without the knowledge
of the internal implementation of the underlying infras-
tructure provider. This insulates users from the frequent
changes that arise in an underlying provider’s APIs (for
managing infrastructure resources). The resource model
allows applications to take a dynamic, commodity-based
approach to resource usage. An application cloud can
be deployed and scaled according to application and
system constraints, costed within a given budget and
have portability over the set of available infrastructure
providers.

Using two-phase constraints-based discovery approach
Currently, cloud providers advertise their resources
through websites. Typically, users write code targeted for
a single cloud provider, statically selecting resource types
for their applications. Often they build customised operat-
ing system images to enable their software to be deployed
onto these resources. When a provider changes its pricing
structure or adds new features and value-added services
(which they do on a near-weekly basis), users must re-
evaluate their cloud environment and decide whether they
should switch provider, resources, or even modify their
operating system images.

This static human-driven approach does not scale to a
world in which multiple providers, each with their own
unique features, compete for users’ workloads. Providers
are interested in packaging and selling infrastructure
products–their products include templates for resource
types, each with a given amount of RAM, CPU count and
often some scratch storage. Typically, the requirements of
an application are more complex than available resource
templates; for example,

• a database component may require storage resilience
of 99.9999%;

• a transcoder used in a digital media video application
may prefer a CPU with the SSE 4.2 instruction set;

• low latency between some services is required if
acceptable performance is to be guaranteed.

Currently, there is a mismatch between the provider
perspective of neatly packaged ranges of infrastructure
products and the application perspective of constraints
between services.

Constraints optimisation engine
In [18], we propose a model to formulate the appli-
cation requirements into constraints. Various types of
constraints are identified:

• a hardware constraint refers to hardware
requirements of the application, such as CPU or
RAM.

• a storage constraint refers to storage requirements of
the application, such as persistent storage space.

• a software constraint refers to any software or service
utilised by the application, such as Java JDK 1.6.

• a performance constraint refers to the Quality of
Service (QoS) or Service Level Agreement (SLA) that
the application need to achieve, such as response
time and network latency.

• a cost constraint refers to the budget or cost
restriction of the application, such as a maximum of
$1 per hour per infrastructure resource.

• a compliance constraint refers to any standard,
regulatory or compliance requirements that the
application need to comform with, such as data center
standard TIA-942 or UK Data Protection Act 1998.

The two-phase constraint model is illustrated in
Figure 3. An application’s constraints are partitioned into
hard constraints and soft constraints. Hard constraints
refer to must-have requirements which persist and are
invariant during execution, such as CPU, memory, or
legislation regulations; soft constraints refer to desired
requirements which can change or be re-prioritised, such
as the cost of consuming resources. The classification
of requirements into hard constraints or soft constraints
depends on user’s need. For example, network latency can
be classified as soft constraints if an application prefer a
fast response time; however, one could classify network

Figure 2 A provider-agnostic resource cloud lifecycle model. The resource cloud lifecyle model.

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6 Page 6 of 14
http://www.journalofcloudcomputing.com/content/1/1/6

Figure 3 Two-phase resource selection from providers. A two-phase resource selection approach involving hard constraints and soft constraints.

latency as hard constraints if the application’s response
time must not exceed certain threshold limit.

In the first phase, the proposed model only utilises hard
constraints. A set of possible resources is generated which
satisfies the constraints; each resource is associated with a
cost model which can be interrogated with usage scenarios
(such as “4 days of use, 8GB of inbound internet band-
width, 4GB of outbound internet bandwidth, 1TB of data
stored for 4 days”) to determine a cost, taking into account
of bulk discounts, special offer periods, etc.

The following code fragment illustrates how application
constraints can be expressed:

HardwareConstraint cpu = new
CPUCoreConstraint(4)

HardwareConstraint ram = new
RAMConstraint(8, GIGABYTES)

SoftwareConstraint os = new
OperatingSystemConstraint
(UBUNTU 10 04)

StorageConstraint storage = new
StorageConstraint(1, TERABYTES,
new StorageResilence(99.9999))

ComplianceConstraint compliance =
new DatacenterConstraint
(Compliance.TIA942)
Resource[] resources = FindResources
ByConstraints(cpu, ram, os,
storage, compliance)

The proposed model uses a Constraints Optimisation
Engine to find the most appropriate resources for an appli-
cation. The engine combines data from a Box Provider,
a History Database, a Specification Factory, a Usage Sce-
nario Estimator, and a Constraints Validator. The con-
straints optimisation process is illustrated in Figure 4.

The Box Provider supplies information about those
infrastructure providers with which the application user
has already established a financial agreement. The model
allows a user to choose which providers to activate in

Figure 4 Constraints optimisation process. A constraints optimisation process.

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6 Page 7 of 14
http://www.journalofcloudcomputing.com/content/1/1/6

the system. By adopting a provider-agnostic approach, the
model offers a single and harmonised view of multi-cloud
infrastrasture resources.

The History Database is a component that holds his-
torical monitoring data. This includes information such
as provisioning latency, probabilities of failure for partic-
ular providers, hardware offers, application-specific per-
formance and other general performance benchmarks
such as CPU, RAM, Disk, or Network data. Historical
monitoring data allows the system to select the most
appropriate resource based on actual observed behaviour,
rather than provider-advertised performance data. This
allows users to react immediately to cloud problems,
such as provider failure. Consequently, the provision-
ing system can avoid resources that have a history of
unreliability.

The Specification Factory component can combine all of
the hardware and software options that are made avail-
able by infrastructure providers in order to generate a pool
of available resources–resource templates (search space).
For example, a compute resource offered by Amazon AWS
EC2 could be a High-CPU Medium instance combined
with a Ubuntu 11.04 Natty AMI image in the AWS EU
region; or it could be a Standard Small instance com-
bined with a Windows Server 2008 AMI image in the AWS
US-East region. In order to allow runtime discovery of
resources which satisfies the constraints of the applica-
tion it is necessary to have a clearly defined description
of cloud resources. There are similarities between the
Specification Factory and intercloud research; for exam-
ple, in Bernstein et al. [19], cloud resources are described
using semantic web techniques. The proposed solution is

based on high-level constraints which can be applied to
multiple description formats–for example, against a set
of Java interfaces, SPARQL queries against an RDF ontol-
ogy or constraints in a rules engine–whilst keeping an
application-based viewpoint to keep the model at a level
appropriate to users.

The Constraints Validator is used to filter the resource
set (search space) by ensuring that all application con-
straints are satisfied. The engine makes a move by choos-
ing a resource from the search space, and checking if
that particular resource meets the application constraints;
if the constraints are satisfied, then the move is valid.
A solution path is formed by combining (chaining) each
valid move (see Figure 5). A set of solution paths (solu-
tion space), which satisfy the application constraints, will
be generated. If none of the available resources satisfy the
constraints, no solution is generated. A “degraded” solu-
tion path, which only partially satisfies the application
constraints (e.g. with lower hardware specifications) could
be offered. The use of “degraded” solution paths is not
considered in this paper.

The Usage Scenario Estimator can be used to estimate
the cost of a specific usage scenario. The engine generates
the solution space (identified from the Constraints Val-
idator) and assigns a cost to each solution path. The cost
is an estimate of a typical usage scenario for a particular
application, with chargeable operations, such as:

• the cost of allocating/deallocating a resource;
• the cost of reserving a resource;
• the cost of keeping a resource switched on for an

application-specified period of time;

Figure 5 Constraints optimisation solution paths. A solution path using the proposed constraints optimisation mechanism.

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6 Page 8 of 14
http://www.journalofcloudcomputing.com/content/1/1/6

• the cost of using a certain amount of
incoming/outgoing bandwidth within the provider
(for an application-specified period of time);

• the cost of performing a number of I/O operations on
a local or a SAN disk (for an application-specified
period of time);

• the cost of storing a given volume of data on a local
or a SAN disk (for an application-specified period of
time).

A heuristic can give weights to each of these factors in
order to obtain an application-centric metric. In the pro-
posed model, cloud application developers create costing
scenarios as an integral part of the development process–
this adds an additional development cost but it simplifies
the process of integration in a multi-provider marketplace.
The model provides a number of predefined scenarios,
such as, compute-only, network-only and storage-only:
these scenarios allow developers to use the model with-
out significant extra effort. Once a metric is identified, the
engine can select the best solution path that match the
application requirements.

For example, suppose that a user needs to provision a
web application which requires three compute resources
with the following requirements:

• Ubuntu Maverick operating system
(hard constraint 1)

• at least 1 CPU, 1 GB Memory, 20 GB disk space for
each compute resources (hard constraint 2)

• must be located within EU region (hard constraint 3)
• must be from a reliable infrastructure provider with

at least 99% uptime (hard constraint 4)
• a maximum budget of $0.50 per hour for 30 days

period (soft constraint 1)
• a network latency of less than 100 milliseconds

between each compute resources (soft constraint 2)

In the proposed model, the Box Provider component
establishes a provider-agnostic view of a multi-provider
infrastructure cloud. The Specification Factory generates a
list of resource templates which denote the resource offer-
ings from different infrastructure providers. The initial
set of resource templates could be huge in size, depend-
ing on the number of infrastructure providers being used.
For example, nearly half a million resource templates could
be generated for the Amazon AWS provider (by com-
bining different AWS instance types with different AMI
images, regions and availability zones). The size of the
search space varies depending on the search algorithm. A
naive exhaustive search to find Y candidates from a pool
of X resources could generate (XY) different combina-
tions (assuming the same type of resource template can be
reused). In practice, it is highly desirable to limit the search
space by imposing sufficient hard constraints using differ-
ent heuristic algorithm. For example, if location treated as
a hard constraint, then the search space could be signifi-
cantly reduced (see Table 2). In phase-one of the proposed
model, the Constraints Optimisation Engine identifies a
subset of suitable resource templates which meet all of the
hard constraints. These templates are then validated using
information from the History Database and Constraints
Validator. In phase-two search of the model, the engine
applies a cost model to each feasible resource template,
allowing the Usage Scenario Estimator to compare the soft
constraints. For a usage scenario where the cost constraint
is the major factor, the engine assigns a higher weighting
to this constraint and tries to identify the cheapest solu-
tion path (Figure 5) at the time that the infrastructure is
being deployed. In practise, usage scenarios may change
over time. If the network latency becomes more impor-
tant than cost, then the engine assigns a higher weighting
to the network latency (and possibly selects a different
solution path).

Table 2 Experimental result for financial services application

Application’s Requirements

4 CPU, 4GB RAM, 1000GB Disk, 64-bit platform, Ubuntu Maverick

within EU region

max $1 per hour

P1 P2 P3 P4 P5 P6 Total

No constraints 244552 63282 78972 25668 39108 1248 452830

Hardware / Software (hard constraints) 24 18 18 12 12 9 93

Location (hard constraints) 0 0 18 0 0 9 27

Cost (soft constraints) 0 0 12 0 0 9 21

Infrastructure Providers:

P1 = AWS US East ; P2 = AWS US West ; P3 = AWS EU West

P4 = AWS AP North East ; P5 = AWS AP South East ; P6 = Flexiscale UK

Suitable resource templates available from different providers after applying different constraints.

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6 Page 9 of 14
http://www.journalofcloudcomputing.com/content/1/1/6

This model provides a unified framework for comparing
infrastructure resources in order to select the most appro-
priate combination of resources for a given application.
In the model, applications are insulated from the rapidly
changing provider APIs and from the dynamically chang-
ing collection of infrastructure products and services. The
view of the model is application oriented and infras-
tructure products are chosen to satisfy the application
requirements.

Exemplar applications
A financial services application and a high performance
computing application are used to illustrate the execution
of the proposed resource discovery mechanism.

A financial services application
The financial services domain provides a challenging envi-
ronment for infrastructure deployment. Other than gen-
eral requirements, such as hardware (CPU, memory), soft-
ware (C++ compiler) and storage (disk space), the finan-
cial services domain requires the use of other stringent
requirements, such as data quality and integrity, security
(encryption and authorisation), performance (response
time, network latency) and compliance (legislation reg-
ulations) [20]. In order to satisfy the constraints of
high availability and high site resilience, multiple mirror-
infrastructures can be provisioned in different geograph-
ical locations (location constraints); however, the per-
formance constraints may require low network latency
between different sites. These opposing requirements of
geographical separation and low latency have the potential
to severely prune the solution space.

We have worked with a financial services company
to develop a prototype system to provision a resilient
financial infrastructure. The simplified infrastructure in
Figure 6 shows a financial services feed which streams data
to two database replicas, against which worker jobs, in a

dynamically deployed Condor[21] pool, run queries and
perform processing. The following constraints are used to
guide infrastructure product selection.

The data coming from the financial services feed has
an approximate flow rate of 500Kbps from 8.00am to
4.30pm (approximately 2 gigabytes per day). This infor-
mation is sufficient to model the bandwidth cost involved
in a potential database replica placement. The database
replicas require:

• incoming internet bandwidth of at least 500Kbps
from the financial services feed and outgoing
500Kbps to the other database replica

• between 10Mbps and 20Mbps of bandwidth to the
condor pool nodes (to satisfy each node’s 2Mbps
requirement)

• minimal latency to ensure that the condor pool
acquires timely data feeds despite synchronisation

• sufficient redundancy and site resilience to ensure
that there is a very high probability that at least one
infrastructure branch survives a major provider
failure

• legislation compliance to ensure that no data is
stored or transmitted outside of the EU region.

The condor pool should have the lowest possible latency
link to the database server. They do not have to be geo-
graphically distributed. This latency requirement, along
with the condor pool bandwidth constraint results in a
pool being placed on the same provider’s resources. A key
benefit of our proposed approach is its two-phase nature
as illustrated in Figure 3.

The initial search phase identifies only resources which
are suitable for the Database Replica Nodes and the
Condor Nodes. The hard constraints include the hard-
ware specifications and advertised/observed reliability, as
well as the software configuration, such as the operat-
ing system type associated with it. The hard constraints

Figure 6 An example financial services setup. A simplified infrastruture for a financial services feed application.

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6 Page 10 of 14
http://www.journalofcloudcomputing.com/content/1/1/6

also include location restriction. For example, as part of
the financial services compliance requirements, no data
should be hosted or transmitted outside the EU region.

The second phase selection balances the complexities of
cost, non-functional requirements and preferences across
many providers, known as soft constraints in our proposed
model. Delaying consideration of cost until the second
phase also enables a much more sophisticated view of
the price of a system as a whole rather than the cost
of individual resources from providers–considering costs
per resource may not result in the most appropriate infras-
tructure for an application. The infrastructure for the
financial system is shown in Figure 6; the compute nodes
to be used for Condor are expensive while the database
replica server is relatively cheap. This results in an appli-
cation infrastructure with low cost. A search based solely
on individual resources could reject the condor segment
of the infrastructure as being too expensive.

A high performance computing application
Conventional high performance computing (HPC) appli-
cations run on super-computers, compute clusters or
grids, which typically reside within organisation bound-
aries. Cloud Computing offers an alternative platform for
executing HPC application.

Block Matrix Multiplication is used as an example of
how HPC applications can be mapped onto Cloud infras-
tructure resources. The multiplication of an m × p block
matrix A and a p × n block matrix B can be defined as:

1 ≤ i ≤ m . 1 ≤ j ≤ n . Cij =
p∑

k=1
AikBkj

where each element of matrices A and B is defined as a
sub-matrix. The following example illustrates the cases
where m, n, p = 2 (i.e. 2 × 2 block matrices).

Consider two 16K × 16K matrices, each composed of
four 8K ×8K square blocks. A straightforward multiplica-
tion requires 8 matrix-matrix multiplications followed by
four matrix additions. The operations can be carried out
in parallel using 8 Cloud compute resources. Each matrix-
matrix multiplication requires three matrices (two input
matrices and one result matrix) in memory during execu-
tion. Using 64-bit precision, each 8K ×8K matrix requires
512 MB RAM. Therefore each Cloud compute resource
must have at least 1.5 GB RAM. Another possible con-
straint is fast turnaround-time. In this case reliable high
performance compute resources are preferred.

Experimental result for resource selection
A prototype demonstrator has been implemented using
the proposed two-phase resource discovery model. Some
infrastructure providers offer resources across multiple
geographical regions. For example, in the demonstrator,

Amazon AWS is considered to be 5 sub-providers in dif-
ferent regions–US east, US west, EU west, AP north east
and AP south east. Infrastructure resources are described
in terms of resource templates, annotated with appropri-
ate metadata. Metadata information includes hardware
specification (e.g CPU, RAM, storage capacity), operating
system type, resource location and performance reliability.

Resource selection result for financial services application
In the financial services experiment, Amazon AWS and
Flexiscale are chosen as the infrastructure providers.
Resource templates and pricing structures are generated
dynamically during runtime depending on providers’
offerings (e.g. a new AWS AMI image is created). Initially,
before any constraints are imposed, there are nearly half
a million resources templates that are made available by
different providers. The number of suitable resource tem-
plates is significantly reduced once hard constraints and
soft constraints are taken into account (see Table 2). In the
experiment, the demonstrator takes an average of 32 sec-
onds to execute the resource discovery process. However,
almost 95% of the execution time is spent in establishing
a connection to the infrastructure providers’ API across
the internet and populating the resource templates in real-
time. This execution time could be improved by regularly
caching the resource templates in a local database.

Figure 7 shows the experiment result of the financial ser-
vices feed example. The prototype demonstrator selects
one infrastructure site at Amazon Dublin using a m1.large
instance for the Database and c1.xlarge instance for the
Condor Nodes; and another infrastructure site at Flexis-
cale London using 4 CPU 8GB RAM for the Database and
6 CPU 6GB RAM for the Condor Nodes. This fulfils the
general requirements (e.g. hardware, software, etc) as well
as other performance and compliance requirements that
each site must be reliable and geographically separated
from the other (while maintaining a low-latency link to the
data feed and each other).

Resource selection result for HPC application
In the HPC experiment, 90 resource templates are found
by using the proposed resource discovery model to search
for a 64-bit machine with at least 1.5 GB RAM and a
Ubuntu Oneiric operating system across all of the avail-
able infrastructure providers. Table 3 shows the top 10
cheapest resource templates, with the cheapest being an
AWS resource template, m1.large–64-bit with 2 CPU
cores and 7 GB RAM. By provisioning a cluster of
machines of the same type, the cheapest cost per hour for
8 compute resources is $2.80. If cost is of higher prior-
ity than turnaround-time, then AWS spot instances should
be preferred. In the proposed model, AWS spot instances
are differentiated by resource reliability attribute. Spot
instances are annonated as potentially unreliable resource

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6 Page 11 of 14
http://www.journalofcloudcomputing.com/content/1/1/6

Figure 7 Two-phase resource selection result. The selection result for the financial services infrastructure using the proposed two-phase
approach.

type since they may be terminated by the provider if
demand for the spot instances is strong. Table 4 shows the
top 10 of 90 results found from a similar search to that in
Table 3, but for spot instances instead of normal resources.
The cheapest instance is again an AWS resource template,
m1.large, but the cheapest cost of an 8 compute resources
is $0.96 per hour, a saving of $1.84 per hour.

If cost and turnaround-time are both high priorities,
then a different candidate could be considered. One way
of ensuring faster execution time is to utilize multiple
CPU cores on a compute resource. A multi-core compute
resource is typically more expensive, but by taking the
advantage of AWS spot instance, a more affordable com-
pute resource may be identified. Table 5 shows the top
10 of 29 results found in a search for a 64-bit machine
with at least 1.5 GB RAM, Ubuntu Oneiric OS and at
least 8 CPU cores. The cheapest cost per hour for an 8
compute resource is $1.76. A cluster of 8 c1.xlarge com-
pute resources is provisioned. A Java based parallel Block
Matrix Multiplication orchestration has been executed
on the cluster. The orchestration is dynamically installed
using a multi-threaded optimised GotoBLAS2 [22] library
on each machine instance. Table 6 shows the average, min-
imum and maximum execution times of 20 executions for
both 8K×8K and 16K×16K block matrix multiplications.
For comparison, Table 6 also shows the execution times
for computing the multiplication using a single c1.xlarge
instance.

The benefits of using two-phase approach
The proposed two-phase approach permits a second
phase of selection to be focused on the needs of the appli-
cation at the time that the infrastructure is being deployed.
For example, for media applications [23], deployment can
be batch based or on-demand, depending on the context
in which it is to be used. The application requirements are

the same in both cases; however, a batch system does not
require high network bandwidth and puts more emphasis
on storage size and speed. For the financial services exam-
ple, the demonstrator could select an alternative infras-
tructure provider if the cost of provisioning such infras-
tructure is cheaper at the time than the infrastructure in
the current one. For example, if the Amazon AWS data
transfer price is reduced, then the tool may give an alter-
native resource solution. In the financial services domain,
market conditions may alter the priority of an application’s
constraints: for example, after a major incident, such as
Japan’s tsunami or a major downgrade of US credit ratings,
the financial analyst may need to perform computation-
intensive analysis rapidly. Under these circumstances, the
cost of provisioning the infrastructure might become an
insignificant constraint; low latency between resources

Table 3 Experimental result for HPC application (normal
resources)

Provider Location Instance CPU RAM Cost per

type cores (GB) hour ($)

AWS US East us-east-1a m1.large 2 7 0.35

AWS US East us-east-1b m1.large 2 7 0.35

AWS US East us-east-1c m1.large 2 7 0.35

AWS US East us-east-1d m1.large 2 7 0.35

AWS US East us-east-1e m1.large 2 7 0.35

AWS EU West eu-west-1a m1.large 2 7 0.39

AWS EU West eu-west-1b m1.large 2 7 0.39

AWS EU West eu-west-1c m1.large 2 7 0.39

AWS US West us-west-1a m1.large 2 7 0.39

AWS US West us-west-1b m1.large 2 7 0.39

Top 10 resource templates found for a 64-bit normal compute resource with at
least 1.5 GB RAM and a Ubuntu Oneiric OS.

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6 Page 12 of 14
http://www.journalofcloudcomputing.com/content/1/1/6

Table 4 Experimental result 1 for HPC application (AWS spot instances)

Provider Location Instance CPU RAM Cost per

type cores (GB) hour ($)

AWS US East us-east-1a m1.large 2 7 0.12

AWS US East us-east-1b m1.large 2 7 0.12

AWS US East us-east-1c m1.large 2 7 0.12

AWS US East us-east-1d m1.large 2 7 0.12

AWS US East us-east-1e m1.large 2 7 0.12

AWS EU West eu-west-1a m1.large 2 7 0.15

AWS EU West eu-west-1b m1.large 2 7 0.15

AWS EU West eu-west-1c m1.large 2 7 0.15

AWS AP South East ap-southeast-1a m1.large 2 7 0.15

AWS AP South East ap-southeast-1b m1.large 2 7 0.15

Top 10 resource templates found for a 64-bit AWS spot instances with at least 1.5 GB RAM and a Ubuntu Oneiric OS.

might be the dominant constraint rather than geograph-
ical separation. An alternative solution which completely
replicates the infrastructure with a much better perfor-
mance (but more expensive) is preferred. For the HPC
example, a user may alter the priority of the cost constraint
or turnaround-time constraint. The demonstrator could
select an effective compute cluster which balances the cost
and turnaround-time requirements. Our proposed model
provides an holistic view of resource discovery which
allows us to constrain the cost for an entire infrastructure,
infrastructure branch or resource.

Conclusion
Cloud infrastructure providers offer highly flexible and
cost effective resources for use by a new generation of

Table 5 Experimental result 2 for HPC application (AWS
spot instances)

Provider Location Instance CPU RAM Cost per

type cores (GB) hour ($)

AWS US East us-east-1a c1.xlarge 8 7 0.22

AWS US East us-east-1b c1.xlarge 8 7 0.22

AWS US East us-east-1c c1.xlarge 8 7 0.22

AWS US East us-east-1d c1.xlarge 8 7 0.22

AWS US East us-east-1e c1.xlarge 8 7 0.22

AWS EU West eu-west-1a c1.xlarge 8 7 0.30

AWS EU West eu-west-1b c1.xlarge 8 7 0.30

AWS EU West eu-west-1c c1.xlarge 8 7 0.30

AWS US West us-west-1a c1.xlarge 8 7 0.30

AWS US West us-west-1b c1.xlarge 8 7 0.30

Top 10 resource templates found for a 64-bit AWS spot instance with at least 1.5
GB RAM, 8 CPU cores and a Ubuntu Oneiric OS.

network-centric infrastructure applications. The infras-
tructure marketplace is developing rapidly with new
providers, infrastructure products and value-added ser-
vices coming to the market. This rapid development
environment places significant strain on existing infras-
tructure application users because of the complexity of
selecting appropriate resources from a dynamic market-
place.

Mapping an application’s requirements onto a set of
resources is challenging. We have developed a two-
phase resource selection model using a constraints-based
approach which enables users to match their appli-
cations’ requirements to infrastructure resources. The
model provides an application-focused, rather than a
provider-focused, view of resources. This enables appli-
cation requirements to be expressed in a domain spe-
cific way rather than using the terms used by particular
providers. By adopting this application-centric approach,
constraints are used to express the requirements of an

Table 6 Execution time for Block Matrix Multiplication

Matrix Block Instances Avg S/D Min Max

size size used

8000 8000 1 41 23.77 24 76

4000 2 34.8 11.75 26 77

4000 4 18.25 3.02 15 26

4000 8 18 5.14 15 36

16000 16000 1 297.22 55.81 171 408

8000 2 270.95 35.25 246 365

8000 4 151.95 20.75 94 206

8000 8 103.55 22.73 77 155

Average, Standard Deviation, Minimum and Maximum times (in seconds) for
Block Matrix Multiplication using AWS c1.xlarge instances.

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6 Page 13 of 14
http://www.journalofcloudcomputing.com/content/1/1/6

application–sets of such constraints determine the multi-
resource requirements of an application. This approach
is usually applied in a two-phase manner that enables
users to select appropriate resources and then balance
the needs of the application infrastructure with functional
and non-functional requirements.

The constraints optimisation engine proposed in our
model is still in preliminary stage. We are currently
improving the engine by considering other optimisation
techniques [24-26] and rules engines [27,28]. We are
also investigating the possibility of describing application
requirements using domain specific ontologies. Scalability
is likely to be a problem when a large number of infras-
tructure providers are considered. We are investigating
a three-phase (or multi-phase) approach, which incorpo-
rate an additional phase to filter suitable providers before
searching for resources. We believe that our approach
offers an effective mechanism to compare and select
resources from the myriad of providers and infrastructure
products.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
The investigation of a resource discovery model for multi-provider cloud was a
joint research involving all of the authors. TH and RP initially defined the
research theme. TH, PW, YLS designed and implemented the model,
performed the financial services experiment and analysed the results. AK and
AS performed the HPC experiment and analysed the results. TH and AS
supervised the research. All authors read and approved the final manuscript.

Author’s information
PW is a Software Engineer at Belfast e-Science group. He received a BEng in
Computer Science from Queen’s University Belfast in 2005. YLS is a PhD
student in Computer Science at Queen’s University Belfast. He received a
MTech in Software Engineering from National University of Singapore in 2005.
TH is the Technical Director of the Belfast e-Science group. He received a PhD
in Computer Science from Queen’s University Belfast in 1987. AK is a PhD
student in Computer Science at Queen’s University Belfast. He received a
MEng in Computer Science from Queen’s University Belfast in 2006. AS is a
Lecturer at Queen’s University Belfast. He received a PhD in Computer Science
from Queen’s University Belfast in 1986. RP is Emeritus Professor of Software
Engineering at Queen’s University Belfast, Director of the Belfast e-Science
group, and Visiting Professor at University of Oxford. He received a PhD in
mathematics from Queen’s University Belfast in 1969.

Acknowledgements
This work is supported by the UK Technology Strategy Board under grant
TP/3/PIT/6/l/15656, the UK EPSRC under Platform grant EP/F066139/1 and
ECHO grant EP/I03405X/1, and the Knowledge Transfer Secondment (KTS)
award KTS-11-12.

Received: 10 February 2012 Accepted: 16 May 2012
Published: 21 June 2012

References
1. Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2.

Accessed 04 Jan 2012
2. ElasticHosts. http://www.elastichosts.com/. Accessed 06 Jan 2012
3. GoGrid. http://www.gogrid.com/. Accessed 04 Jan 2012
4. FlexiScale. http://www.flexiant.com/products/flexiscale/. Accessed 04 Jan

2012
5. RackSpace. http://www.rackspace.com/. Accessed 06 Jan 2012

6. Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L,
Zagorodnov D (2009) The Eucalyptus Open-Source Cloud-Computing
System. In CCGRID ’09: Proceedings of the 2009 9th IEEE/ACM
International, Symposium on Cluster Computing and the Grid 124–131.
Washington, DC, USA: IEEE Computer Society

7. Montero RS (2008) OpenNebula: The Open Source Virtual Machine
Manager for Cluster Computing. In Open Source Grid and Cluster
Conference. Oakland, CA

8. Marshall P, Keahey K, Freeman T (2010) Elastic Site: Using Clouds to
Elastically Extend Site Resources. In 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing 43–52. IEEE

9. Rochwerger B, Breitgand D, Levy E, Galis A, Nagin K, Llorente IM, Montero
R, Wolfsthal Y, Elmroth E, Caceres J, Ben-Yehuda M, Emmerich W, Galan F
(2009) The Reservoir model and architecture for open federated cloud
computing. IBM Journal of Research and Development 53(4): 4:1–4:11

10. Galán F, Sampaio A, Rodero-Merino L, Loy I, Gil V, Vaquero LM (2009)
Service specification in cloud environments based on extensions to open
standards. In Proceedings of the, Fourth International ICST Conference on
Communication System software and middleware, COMSWARE ’09
19:1–19:12. New York, NY, USA: ACM, http://doi.acm.org/10.1145/
1621890.1621915

11. Open Virtualization Format (OVF) Specification. DSP0243 1.0.0.
Distributed Management Task Force. Feb 2009. http://www.dmtf.org/
standards/ovf; Access date: 2012-01-09

12. Theilmann W, Yahyapour R, Butler J (2008) Multi-level SLA Management
for, Service-Oriented Infrastructures. In Towards a Service-Based Internet,
Volume 5377 of Lecture Notes in Computer Science, ed. Mähönen P, Pohl
K, Priol T 324–335. Springer Berlin / Heidelberg

13. Bernstein D, Vij D (2010) Using Semantic Web Ontology for Intercloud
Directories and Exchanges. In International Conference on Internet
Computing 18–24

14. Di Martino B, Petcu D, Cossu R, Goncalves P, Máhr T, Loichate M (2011)
Building a Mosaic of Clouds. In Euro-Par 2010 Parallel Processing,
Workshops, Volume 6586 of Lecture Notes in Computer Science, ed.
Guarracino M, Vivien F, Träff J, Cannatoro M, Danelutto M, Hast A, Perla F,
Knüpfer A, Di Martino B, Alexander M 571–578. Springer Berlin /
Heidelberg, http://dx.doi.org/10.1007/978-3-642-21878-1 70

15. Petcu D, Craciun C, Rak M (2011) Towards a cross-platform cloud API.
Components for Cloud Federation. In 1st International Conference on
Cloud Computing & Services Science 166–169

16. Moscato F, Aversa R, Di Martino B, Fortis T, Munteanu V (2011) An analysis
of mOSAIC ontology for Cloud resources annotation. In Computer
Science and Information Systems (FedCSIS), 2011 Federated Conference
on 973–980

17. Harmer T, Wright P, Cunningham C, Hawkins J, Perrott R (2010) An
application-centric model for cloud management. In Proceedings of the
2010 IEEE 6th World, Congress on Services 439–446. IEEE

18. Sun YL, Harmer T, Stewart A, Wright P (2011) Mapping Application
Requirements to Cloud Resources. In Proceedings of the Euro-Par 2011
Parallel Processing Workshops

19. Bernstein D, Vij D (2010) Intercloud Directory and Exchange Protocol
Detail using XMPP and RDF. IEEE Services 2010

20. Sun YL, Perrott R, Harmer T, Cunningham C, Wright P (2010) An SLA
Focused Financial Services Infrastructure. In Proceedings of the 1st
International Conference on Cloud Computing Virtualization. Singapore

21. Thain D, Tannenbaum T, Livny M (2002) Condor and the Grid. In Grid
Computing: Making the Global Infrastructure a Reality, ed. Berman F, Fox
G, Hey T. John Wiley & Sons Inc

22. GotoBLAS. http://www.tacc.utexas.edu/tacc-projects/gotoblas2.
Accessed 09 Jan 2012

23. Perrott R, Harmer T, Lewis R (2008) e-Science Infrastructure for Digital
Media Broadcasting. Computer 41(11): 67–72

24. Gregory J, Lin C (1996). Constrained Optimization In The Calculus Of
Variations and Optimal Control Theory. London: Chapman & Hall

25. Yeoh W, Felner A, Koenig S (2009) IDB-ADOPT: A Depth-First Search DCOP
Algorithm 132–146. Berlin, Heidelberg: Springer-Verlag, http://dl.acm.org/
citation.cfm?id=1614611.1614620

26. Bistarelli S, Foley S, O’Sullivan B, Santini F (2009) From Marriages to,
Coalitions: A Soft CSP Approach. In Recent Advances in Constraints,
Volume 5655 of Lecture Notes in Computer Science, ed. Oddi A, Fages F,

http://aws.amazon.com/ec2
http://www.elastichosts.com/
http://www.gogrid.com/
http://www.flexiant.com/products/flexiscale/
http://www.rackspace.com/
http://doi.acm.org/10.1145/1621890.1621915
http://doi.acm.org/10.1145/1621890.1621915
http://www.dmtf.org/standards/ovf
http://www.dmtf.org/standards/ovf
http://dx.doi.org/10.1007/978-3-642-21878-1_70
http://www.tacc.utexas.edu/tacc-projects/gotoblas2
http://dl.acm.org/citation.cfm?id=1614611.1614620
http://dl.acm.org/citation.cfm?id=1614611.1614620

Wright et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:6 Page 14 of 14
http://www.journalofcloudcomputing.com/content/1/1/6

Rossi F 1–15. Springer Berlin / Heidelberg, http://dx.doi.org/10.1007/978-
3-642-03251-6 1

27. Fages F, Martin J (2008) From rules to constraint programs with the
Rules2CP modelling language. In In Recent Advances in Constraints,
Revised Selected Papers of the 13th Annual ERCIM International
Workshop on Constraint Solving and Constraint Logic Programming,
CSCLP 2008, Lecture Notes in Artificial Intelligence 66–83. Springer-Verlag

28. JBoss Drools Planner. http://www.jboss.org/drools/drools-planner.
Accessed 10 Jan 2012

doi:10.1186/2192-113X-1-6
Cite this article as: Wright et al.: A constraints-based resource discovery
model for multi-provider cloud environments. Journal of Cloud Computing:
Advances, Systems and Applications 2012 1:6.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1007/978-3-642-03251-6_1
http://dx.doi.org/10.1007/978-3-642-03251-6_1
http://www.jboss.org/drools/drools-planner

	Abstract
	Introduction
	Background
	What infrastructure providers offer
	Hardware configuration unit
	Operating system type
	Pricing structure

	Related work

	A resource discovery model for multi-Cloud applications
	An infrastructure provider agnostic approach
	Using two-phase constraints-based discovery approach
	Constraints optimisation engine

	Exemplar applications
	A financial services application
	A high performance computing application

	Experimental result for resource selection
	Resource selection result for financial services application
	Resource selection result for HPC application
	The benefits of using two-phase approach

	Conclusion
	Competing interests
	Author's contributions
	Author's information
	Acknowledgements
	References

