
Efficient advanced encryption standard implementation using
lookup and normal basis

Burns, F., Murphy, J., Kolemans, A., & Yakovlev, A. (2009). Efficient advanced encryption standard
implementation using lookup and normal basis. IET Computers and Digital Techniques, 3(3), 270-280. DOI:
10.1049/iet-cdt.2008.0049

Published in:
IET Computers and Digital Techniques

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

http://pure.qub.ac.uk/portal/en/publications/efficient-advanced-encryption-standard-implementation-using-lookup-and-normal-basis(6f60de54-5220-4770-b768-6b5d0f529990).html


Published in IET Computers & Digital Techniques
Received on 30th May 2008
Revised on 24th October 2008
doi: 10.1049/iet-cdt.2008.0049

ISSN 1751-8601

Efficient advanced encryption standard
implementation using lookup and normal basis
F. Burns J. Murphy A. Koelmans A. Yakovlev
School of Electrical and Computer Engineering, Merz Court, University of Newcastle Upon Tyne, Newcastle Upon
Tyne NE1 7RU, UK
E-mail: f.p.burns@ncl.ac.uk

Abstract: A new type of advanced encryption standard (AES) implementation using a normal basis is presented.
The method is based on a lookup technique that makes use of inversion and shift registers, which leads to a
smaller size of lookup for the S-box than its corresponding implementations. The reduction in the lookup size
is based on grouping sets of inverses into conjugate sets which in turn leads to a reduction in the number of
lookup values. The above technique is implemented in a regular AES architecture using register files,
which requires less interconnect and area and is suitable for security applications. The results of the
implementation are competitive in throughput and area compared with the corresponding solutions in a
polynomial basis.

1 Introduction
The current NIST advanced encryption standard (AES) is
the symmetric block cipher Rijndael [1]. The AES is the
preferred algorithm for implementations of cryptographic
protocols that are based on a symmetric cipher. It is
currently designed to process data blocks of 128 bits, using
keys of lengths 128, 192 and 256 bits. The mathematics
behind the AES is centred on Galois arithmetic making
use of transformations based on inversion and multipication.

A variety of ways have been attempted to implement the
AES standard efficiently. These range from
implementations that aim to achieve high throughput [2]
to implementations that achieve low area [3]. In [4],
various FPGA architectures are presented to improve the
throughput of the AES. In [5–7] various efficient area
implementations are described of the AES in ASIC
covering architectures of differing bit width. Our approach
targets the latter low-area level implementation domain.

This paper describes a novel architecture for the AES based
on normal basis rather than polynomial basis. It makes use
specifically of the inverse calculation in GF. Normal basis is
frequently used in cryptographic applications for providing

efficient implemenations [8]. Hardware implementations
using normal basis arithmetic typically have less power
consumption than other bases. This is particularly true in
the case of the squaring operation in the normal basis which
requires only a rotation operation.

Efficient software and hardware implementations of the
basic arithmetic operations (addition, multiplication and
inversion) in the Galois field GF(2m) are desired in
cryptography. This is particularly relevant in the case of the
AES. Many AES architectures attempt compaction of
the S-box [9, 10] or the inverse function [11] to improve
the overall performance. The S-box operation is the largest
device and requires more area in general than the other
operations. Different approaches have been attempted for
S-box compaction varying from the use of subfields [12] to
the use of lookup techniques. Recent approaches have made
use of lookup for the S-box [13], but this tends to
consume large amounts of area. For this reason, research
into optimisation of the S-box [14] is important in its
own right.

The architecture here compacts the size of the inverse
operation used in the S-box but using the normal basis
rather than the polynomial basis. Several attempts have

270 IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 270–280

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt.2008.0049

www.ietdl.org



been made in the normal basis to find an efficient
implemention for the inverse function [15, 16]. However,
these make use of a multiplicative approach, incorporating
several multipliers, which in turn leads to more area
consumption. The architecture presented here makes
unique use of the squaring operation and lookup to provide
for a more efficient architecture.

The lookup technique presented here is incorporated into a
regular architecture which makes use of register files (RFs).
These are used to contain the intermediate AES state. This
reduces the overall level of interconnect as it obviates the
need for an explicit ShiftRow operation later, thereby
reducing the area. In addition, the design here is based on
a regular architecture, as it is considered an important
aspect of design for security, which facilitates security
implementation. Power-balancing benefits from the regular
architecture, lookup tables and registers, which are regular
and more easily power-balanced.

Section 2 introduces some normal basis preliminaries.
Section 3 gives a brief overview of the AES algorithm.
Section 4 describes the AES architecture together with the
inversion model. Section 5 gives comparisons and Section 6
provides some conclusions.

2 Normal basis preliminaries
The basis chosen here for implementing the AES is the
normal basis. First, we introduce some basic theory. In the
following, it is assumed that p is a prime number, q is
a power of p and that Fq denotes a finite field of q
elements. The characteristic of Fq is p. The field Fqn is
always considered as an n-dimensional extension of Fq and
is, thus, a vector space of dimension n over Fq. The Galois
group of Fqn over Fq is cyclic and is generated by the
Frobenius mapping s (a) ¼ aq, a [ Fqn .

The polynomial basis is a basis for finite extensions of
finite fields. Let a [ GF(pm) be a root of a primitive
polynomial of degree m over GF(p). The polynomial basis
of GF( pm) is then {1, a, . . . ,am�1}.

A normal basis of Fqn over Fq is a basis of the form
N ¼ {a, aq, . . . , aqm�1

}, that is, a basis consisting of all
the algebraic conjugates of a fixed element. We say that a

generates the normal basis N, or a is a normal element of
Fqn over Fq. In either case, we are referring to the fact that
the elements a, aq, . . . ,aqm�1

are linearly independent over
Fq. For the normal basis {a0, a1, . . . ,an�1}, it is assumed
that ai ¼ aqi

for a [ Fqn with i ¼ 0, 1, . . . , n� 1.

Assume a base element a0 ¼ 010 taken from the trinomial
x3
þ x2
þ 1 over GF(23). The following values can be derived

from a0 by consecutive squaring a1 ¼ 100, a2 ¼ 111.
Because these three values are linearly independent, they
may be used in the formation of a normal basis. All other
elements are linearly dependent on these elements and can

be formed from a linear combination of them. For
example, in the normal basis the element 110 equates to
111þ 100 ¼ 011 in the polynomial basis.

Squaring or raising to a power of 2n in the normal basis
equates to a simple rotation of the bits. Table 1 shows a
comparison between the squaring operation for the
trinomial x3

þ x2
þ 1 in the polynomial basis and in the

normal basis, starting from a ¼ 010. It can be seen that a
simple rotation is needed in the normal basis to square its
equivalent value in the polynomial basis.

The multiplicative inverse of a value a, denoted 1/a or a21,
is the number which, when multiplied bya, yields 1. Assuming
that a(x) stands for the polynomial representation of the field
element a, the multiplicative inverse of a field polynomial
value a(x) denoted a�1(x) is found from the following
equation a(x) � a�1(x) mod m(x) ¼ 1, where m(x) is the
irreducible polynomial used for generating the field.

We can combine the operations for inverse and squaring or
raising to a power of n. The sequence of these two operations
does not affect the result. This may be expressed using the
following equation

(a�1)n
¼ (an)�1 (1)

Because the squaring operation in the normal basis is cyclic
(i.e. rotation of bits); it forms a cyclic set. Because of the
commutativity implied by (1), for each set of squares that a
value belongs to there must also be a corresponding inverse
value that exhibits similar behaviour under squaring. This
can be seen in Table 2 where consecutive rows in both
columns are squared and the inverse of each row on the left
appears to the right. We refer to each of the cyclic
sequences appearing in each column as a conjugate set.

Table 1 Squaring operation in polynomial and normal basis

Polynomial basis Normal basis

010 001

100 010

111 100

Table 2 Squaring operation and inverse in normal basis

Normal basis Normal basis inverse

001 011

010 110

100 101

IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 270–280 271
doi: 10.1049/iet-cdt.2008.0049 & The Institution of Engineering and Technology 2009

www.ietdl.org



Examination of these values for the whole field leads to the
following useful observations.

Lemma 1: If an element a in conjugate set A has an inverse
in another conjugate set B, then each of the remaining values
in conjugate set A formed from a by the squaring operation
must have an inverse value in conjugate set B.

This implies that the ordered conjugate set A in this case
has a corresponding ordered conjugate set B containing all
the inverses of conjugate set A.

Lemma 2: If an element a in conjugate set A has an
inverse in the same conjugate set A, then each of the
remaining values in conjugate set A formed from a by
the squaring operation must have an inverse value in
conjugate set A also.

This implies that the ordered conjugate set A in this case
contains all of the inverses of each of its elements. The
above observations are used to define the core inversion
unit for the AES which is described in the following
sections.

3 AES algorithm
The AES is a round-based, symmetric block cipher. The
symmetric block cipher Rijndael was standardised by the
National Institute of Standards and Technology in
November 2001. It is defined for a block size of 128 bits
and key lengths of 128, 192 and 256 bits. A block diagram
of the AES subsystem is shown in Fig. 1.

The datapath of the AES is based on four different
transformations that are performed repeatedly in a certain
sequence over the state. The state consists of four rows of
bytes, each containing N bytes, where N is the block length
divided by 32. Each of the transformations, which are
described in the following, maps a 128-bit input state to a
128-bit output state.

SubBytes: The SubBytes transformation is a nonlinear
substitution operation that works on bytes. Each byte of the
input state is replaced using the same substitution function
(called S-box). The S-box is defined as the multiplicative
inverse in the Galois field GF(28) with the irreducible
polynomial m(x) ¼ x8

þ x4
þ x3
þ xþ 1 followed by an

affine transformation.

ShiftRows: In the ShiftRows transformation, the bytes in
the last three rows of the state are cyclically shifted over the
different numbers of bytes (offsets). This is done according
to the equation Sr,c ¼ Sr,(cþshift(r, N ))mod N. The first row is
not shifted.

MixColumns: The MixColumns transformation maps each
column of the input state to a new column in the output state.
Each input column is considered as a polynomial over
GF(28) and multiplied with the constant polynomial
a(x) ¼ {03}x3

þ {01}x2
þ {01}xþ {02} mod x4

þ 1.

AddRoundKey: The AddRoundKey transformation is self-
inverting. It maps a 128-bit input state to a 128-bit output
state by XORing the input state with a 128-bit round key.

These transformations are applied to a 128-bit input block
in a certain sequence to perform an AES encrytion. The
transformations are grouped into so-called rounds. There
are three different types of rounds, namely, the initial
round, the normal round and the final round. The
transformations of the different rounds and the sequence of
the rounds are shown in Fig. 1. The initial round performs
an AddRoundKey operation only. A normal round
performs all of the operations. The final round performs all
of the operations apart from the MixColumns operation.
The number of rounds depends on the key size. For a 128-
bit key, the number of rounds is 10.

4 Basic architecure
The proposed architecture for the AES is based on a
pipelined lookup architecture that uses multiple clocks. The
architecture shown has a blocksize of 128-bits and a 32-bit
width datapath. The diagram for the architecture is shown
in Fig. 2.

In Fig. 2 each inversion unit loads a value from one of the
four RFs shown at the bottom, which contains the AES state.
It is assumed that the AES state is already represented in the
normal basis and no conversion from the polynomial basis is
required. At the top of Fig. 2, the SubBytes operation
requires inversion followed by an affine transformation.
Four inversion units are employed. Each inversion unit
includes a lookup table with 34 8-bit entries based on the
theory outlined in Section 4.1. Each inversion unit after
inversion subsequently outputs a value to its own register.
The outputs of the inversion units are then passed to a
normal basis affine block and each affine result isFigure 1 AES subsystem

272 IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 270–280

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt.2008.0049

www.ietdl.org



subsequently stored in an 8-bit register. The output from this
forms the input to the MixColumns operation below. There
are four 8-bit identical mix units that are used to carry out an
appropriate mix operation (described in Section 4.4). Once
the mix operation has occured, the output word formed
from concatenating the output of the mix units is then
XORed with the key and written to the RFs.

The ShiftRows operation is not shown here as this is
implemented implicitly by the appropriate selection of
values from the RFs which is explained in Section 4.5.

4.1 Normal basis inversion

The theory in Section 2 can be used to derive the basic
inversion architecture. It is based on the correspondence
between the different conjugate sets specified in Section
2. This correspondence makes it possible to define an
inversion architecture based on register rotation and lookup
values. It makes use of one lookup value from a conjugate
set and its corresponding inverse either from another or the
same set as follows.

1. If a conjugate set value contains its inverse in another
conjugate set, then both the conjugate set value and the
corresponding inverse value may be used as lookup values.

2. If a conjugate set value has its inverse in its own set, then
only this conjugate set value is used as a lookup value.

If a value is chosen as a lookup value using (1) or (2), it is
referred to as a conjugate set leader.

A diagram showing the basic principles of the inversion
architecture is shown in Fig. 3.

At the top of Fig. 3 is a register. This can operate using the
rotation operation RL as defined below.

Definition 1: RL(an, an�1, an�2, . . . , a2, a1) ¼ (an�1,
an�2, . . . , a2, a1, an).

An equivalence relation can be defined in terms of this
operator by the stipulation that two values are equivalent if
one can be transformed into the other by possibly repeated
applications of the RL operation.

At the bottom is a rotate right register. This can operate in
a similar manner using the rotate operation RR as defined
below.

Definition 2: RR(an, an�1, . . . , a3, a2, a1) ¼ (a1, an,
an�1, . . . , a3, a2).

The architecture loads a normal basis field element into the
top register, and this is rotated repeatedly until the conjugate
set leader from its conjugate set is found. The top register is
governed by an asynchronous control signal which uses a test,
TST (OR tree test), to see if a lookup value has been found.
When this value is found, the bottom register is loaded with
the lookup value and the top register is loaded with a new
value. The bottom register is rotated right the same
number of times until the inverse of the original value in
the normal basis is contained in the bottom register.

At the centre of Fig. 3 is the lookup table, which is formed
from a group of conjugate set leaders. As an example of how a
conjugate set lookup table is formed, consider the polynomial
x4
þ xþ 1 in GF(24). The inverse table for this field

poynomial is shown in Table 3.

The polynomial basis to the normal basis conversion table
for this field polynomial is shown in Table 4.

To find a group of conjugate set leaders, the following
algorithm (Fig. 4) can be used, where FL contains the set

Figure 3 Inversion architecture

Figure 2 AES architecture

IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 270–280 273
doi: 10.1049/iet-cdt.2008.0049 & The Institution of Engineering and Technology 2009

www.ietdl.org



of values from GF(2n); CL contains the set of conjugate set
leaders which are cumulatively selected from FL.

By applying the algorithm to the above field, using
Tables 3 and 4 to find the inverses, the following group of
conjugate set leaders in the normal basis can be found
0001(4), 0011(4), 1101(4), 0101(2), 1111(1), 0000(1). The
number in brackets gives the number of values in each
corresponding conjugate set. For this example, five lookup
table values are required. Zero is not included as this is the
default value that is used if no lookup value can be found.
The lookup table is shown in Table 5.

As an example, suppose we wish to use the lookup table to
find the inverse of 0010 (polynomial basis) for x4

þ xþ 1 in
GF(24). The inverse of 0010 in the polynomial basis is 1001,
which can be found using a(x) � a21(x) mod m(x) ¼ 1.
Using Table 4 the normal basis of 0010 is 1001. This has
to be rotated left once to find its conjugate set leader 0011
in the left of Table 5. The inverse of the conjugate set
leader in Table 5 is 1101. Rotating this right once gives
1110. The polynomial basis value for this can be seen to be
1001 which is the required inverse.

Table 6 shows the type and number of lookup values for
polynomials of different orders. The first two columns give
the order and the polynomial. The terms(entries) column
shows the number of conjugate sets together with their size
in brackets. The final two columns show the total lookup
size and the normal size of the polynomial field in terms of
its entries.

The example that follows is based on the inverse used for
the AES encryption standard. The irreducible polynomial
generator used for the inverse for the AES is
x8
þ x4
þ x3
þ xþ 1 in GF(28), which appears in the last

row of Table 6. Table 7 shows the normal basis inverse
table for this field polynomial formed using a ¼ 33.

By applying the selection algorithm described earlier in
this section to the above example, the following group of
conjugate set leaders in the normal basis can be found:
97(8), B8(8), C9(8), 2B(8), EE(4), E6(8), 04(8), 75(8),
C1(8), B0(8), 52(8), D9(8), 5A(8), 9F(8), 7D(8), 0C(8),
14(8), 33(4), F6(8), 87(8), 42(8), 55(2), 23(8), A8(8),
6D(8), 8F(8), FE(8), 7A(8), 98(8), D1(8), C6(8), 4D(8),
88(4), 34(8) and FF(1). As before, the number in
brackets gives the number of values in the corresponding
conjugate set. For this example, 35 lookup values are
required.

4.2 Reduced lookup and timing

The lookup table for the AES table can be modified by
rotating the values to derive new values while maintaining
the inverse relation between the input and output. The
logic for the lookup can be reduced by rotating values in
the conjugate set leader table so that matching bits coincide
in specific columns. This is arranged such that bits 7 and 6
are set to the values 0 and 1 in each row. By rotating the
conjugate set leaders of the previous section, the following
group of conjugate set leaders can be found: 5E(8), 71(8),
4E(8), 56(8), 77(4), 6E(8), 40(8), 75(8), 70(8), 61(8),
52(8), 67(8), 5A(8), 7E(8), 7D(8), 60(8), 50(8), 66(4),
6F(8), 78(8), 42(8), 55(2), 46(8), 51(8), 6D(8), 7C(8),
7F(8), 7A(8), 62(8), 47(8), 6C(8), 4D(8), 44(4) and 68(8).
Each new conjugate set leader now has bits 7 and 6 set to
0 and 1. The table of rotated lookup values with inverses is
shown in Table 8. This indicates that the value FF is
removed from the table, reducing it to 34 values. The FF

Table 3 Polynomial inverse table for x4
þ xþ 1

x\y 00 01 10 11

00 0000 0001 1001 1110

01 1101 1011 0111 0110

10 1111 0010 1100 0101

11 1010 0100 0011 1000

Table 4 Polynomial to normal basis conversion table for
x4
þ xþ 1

x\y 00 01 10 11

00 0000 1111 1001 0110

01 0011 1100 1010 0101

10 0001 1110 1000 0111

11 0010 1101 1011 0100

Table 5 Conjugate set leaders and inverses in normal basis

Conjugate set leader Inverse

0001 0100

0011 1101

1101 0011

0101 1010

1111 1111

Figure 4 Conjugate set leaders

274 IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 270–280

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt.2008.0049

www.ietdl.org



value is detectable if no match is found. The gate equivalent
(GE) value, in terms of basic gates, for the rotated lookup
after logic minimisation is 134.

The timing for the lookup makes use of a clocking scheme
that is based on two clocks: a main clock Tc and a faster clock
that is half its period, tc. The clocks work in combination
with the control signals. The faster clock tc is used for
clocking the shift registers. These are shifted 2 bits at a
time in a tc cycle and the first pair of consecutive values
from left to right is tested. This test is based on whether
the most significant 2 bits of the first value (bits 7 and 6)
or the most significant 2 bits of the next value (bits 6 and
5) have been set to 0 and 1, respectively. If either one of

the pair is set, a lookup is made on the corresponding
value that has this setting. If either combination is not
apparent for the first pair of values, then a double shift is
made, which requires no lookup. A preliminary shift is
made upon loading the top register based on the above
test. The actual lookup is executed using the slower clock
Tc. The critical path for the lookup is 8 gates. Out of 256
values, there are 64 bytes which have the 0 and 1
combination which require the lookup, and 34 of these are
conjugate set leaders. This reduces the overall lookup effort
considerably.

The inversion unit is pipelined to make both shift
registers work simultaneously. The inversion architecture is

Table 6 Lookup size

Order Polynomial Terms(entries) Lookup size Field size

n ¼ 3 x3
þ x2
þ 1 2(3), 1(1) 3 8

n ¼ 4 x4
þ x3
þ 1 3(4), 1(2), 1(1) 5 16

n ¼ 5 x5
þ x4
þ x2
þ x1
þ 1 6(5), 1(1) 7 32

n ¼ 6 x6
þ x5
þ 1 9(6), 2(3), 1(2), 1(1) 13 64

n ¼ 7 x7
þ x6
þ 1 18(7), 1(1) 19 128

n ¼ 8 x8
þ x4
þ x3
þ x1
þ 1 30(8), 3(4), 1(2), 1(1) 35 256

Table 7 Hex normal basis inverse table for x8
þ x4
þ x3
þ xþ 1

x\y 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 2F 5E B4 BC 7B 69 4E 79 BA F6 B1 D2 46 9C D9

1 F2 44 75 31 ED D7 63 56 A5 34 8C B0 39 49 B3 9E

2 E5 57 88 86 EA 74 62 83 DB A3 AF 8B C6 C0 AC 01

3 4B 13 68 DD 19 B6 61 FD 72 1C 92 E1 67 3E 3D F3

4 CB DE AE 91 11 F5 0D 52 D5 1D E8 30 C4 AD 07 8F

5 B7 7D 47 6B 5F AA 17 21 8D 5C 81 9A 59 84 02 54

6 96 36 26 16 D0 71 BB 3C 32 06 6D 53 C2 6A FB A0

7 E4 65 38 DF 25 12 C3 CC CE 08 7C 05 7A 51 E7 CD

8 97 5A BD 27 5D D8 23 EC 22 98 EB 2B 1A 58 A4 4F

9 AB 43 3A C1 D1 C5 60 80 89 EE 5B FE 0E F0 1F F9

A 6F C8 FA 29 8E 18 D6 C7 BE B5 55 90 2E 4D 42 2A

B 1B 0B B8 1E 03 A9 35 50 B2 EF 09 66 04 82 A8 E6

C 2D 93 6C 76 4C 95 2C A7 A1 E0 E2 40 77 7F 78 FC

D 64 94 0C E3 DA 48 A6 15 85 0F D4 28 F7 33 41 73

E C9 3B CA D3 70 20 BF 7E 4A F1 24 8A 87 14 99 B9

F 9D E9 10 3F F8 45 0A DC F4 9F A2 6E CF 37 9B FF

IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 270–280 275
doi: 10.1049/iet-cdt.2008.0049 & The Institution of Engineering and Technology 2009

www.ietdl.org



made to run efficiently so that it only uses up the necessary
number of clocks required for each rotation. The clock signal
for the top register is governed by a control signal which uses
a test to see if a lookup value has been found. The test makes
use of an OR tree to test that all the bits are not zero. If a
zero is returned, a further test for the most significant bit
is made to distinguish 00 found from the FF found.
When a lookup value is found, the bottom register is
loaded with the lookup value and the top register is loaded
with a new value.

4.3 Normal basis affine

An affine transformation must be applied to the output of
each inversion unit. One affine unit is used by each of the
inversion units. The original specification requires the
following affine transformation (over GF(28))

bi ¼ bi� b(iþ4)mod 8� b(iþ5)mod 8� b(iþ6)mod 8� b(iþ7)mod 8� ci

(2)

for 0 �i , 8, where bi is the ith bit of the byte, and ci is the
ith bit of a byte c with the value f63g. This is depicted in
matrix form in [1].

The polynomial basis transformation has an equivalent
representation in the normal basis. This can be found using
a similarity transformation to the matrix based on the
change of basis. The resulting normal basis equations
generated for the affine transformation are given below for

a ¼ 33

q(0) ¼ i[6]� i[2]� i[1]� i[0]� 1

q(1) ¼ i[6]� i[5]� i[2]

q(2) ¼ i[5]� i[4]� i[3]� i[1]

q(3) ¼ i[6]� i[4]� 1

q(4) ¼ i[4]

q(5) ¼ i[5]� i[4]

q(6) ¼ i[7]� i[6]� i[5]

q(7) ¼ i[6]� i[5]� i[3]� 1

This represents a reduction in logic over the polynomial basis.
It is worth pointing out that for the AES inversion there are
128 different normal basis representations. Each one of these
will reduce to a different affine solution depending on the
value of a that is chosen in the formation of the normal
basis. A reduction is possible by exploring the alternative
values of a. Table 9 shows different affine solutions for
different values of a. The XOR numbers can be reduced by
factoring the matrix or finding common subexpressions (e.g.
i[6] � i[5] in the example).

4.4 Normal basis mix

The MixColumns operation operates on the state column-
by-column, treating each column as a four-term
polynomial. The columns are considered as polynomials
over GF(28) and are multiplied by x4

þ 1 with a fixed
polynomial a(x), given by

a(x) ¼ 03†x3
� 01†x2

� 01†x� 02

Table 8 Rotated conjugate set leaders and inverses in normal basis

Conjugate set leader Inverse Conjugate set leader Inverse Conjugate set leader Inverse

5E 02 5A 81 6D 6A

71 65 7E E7 7C 7A

4E 07 7D 51 7F CD

56 17 60 96 7A 7C

77 CC 50 B7 62 26

6E FB 66 BB 47 52

40 CB 6F A0 6C C2

75 12 78 CE 4D AD

70 E4 42 AE 44 11

61 36 55 AA 68 32

52 47 46 0D

67 3C 51 7D

276 IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 270–280

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt.2008.0049

www.ietdl.org



As a result of the multiplication, the four bytes in a column
are replaced using the following equations

s00,c ¼ 02†s0,c � 03†s1,c � s2,c � s3,c

s01,c ¼ s0,c � 02†s1,c � 03†s2,c � s3,c

s02,c ¼ s0,c � s1,c � 02†s2,c � 03†s3,c

s03,c ¼ 03†s0,c � s1,c � s2,c � 02†s3,c

The MixColumns unit in the AES implementation has been
designed to operate in parallel. This implies that the
operations in the equations above are arranged to operate
on separate units. A diagram showing the mix operation is
shown in Fig. 5. The mix operation inputs four 8-bit
values and the appropriate multiplication operations are
executed according to the relative positioning of the inputs
(Fig. 2).

The mix requires multiplication by 02 and multiplication
by 03. The multiplication complexity can be reduced by
searching among 128 possible normal basis solutions
(these vary depending on the value of a). After
searching, a reduction is possible down to only a few
gates. It is also possible to reduce the multiplication
complexity in conjunction with the affine solution.
Table 10 shows different multiplication solutions for
different values of a.

The normal basis equations for multiplication by 2 for
a ¼ 33 are given below

q(0) ¼ i[7]� i[6]� i[4]� i[2]� i[1]

q(1) ¼ i[6]� i[5]� i[4]� i[1]

q(2) ¼ i[7]� i[4]� i[0]

q(3) ¼ i[4]� i[2]� i[0]

q(4) ¼ i[6]� i[5]� i[2]

q(5) ¼ i[7]� i[6]� i[2]� i[1]

q(6) ¼ i[6]� i[5]� i[4]� i[3]� i[2]� i[0]

q(7) ¼ i[6]� i[4]� i[2]� i[1]

Multiplication by 03 can be derived from XORing the
multiplication by 02. Sharing of multipliers is possible
between units. The output from the four mixes in Fig. 2
after concatenation represent a 32-bit subword of the text
value prior to the XOR-key operation.

4.5 Register files

The RF layout is shown in Fig. 6. Four RFs are used,
RF1. . .RF4, each containing four, 8-bit registers, which are
used to contain the representation of the state.

An element of the state is denoted by Sxy. The plaintext is
initially XORed with the first key and is input to the RFs
as follows: 1={S00, S10, S20, S30}, 2={S01, S11, S21, S31},

Figure 5 Mix operation

Table 10 Multiplication solutions for different values of a

a Multiplication x-or gates

27 21

29 19

71 18

36 18

24 17

3A 16

33 16

Figure 6 RF layout

Table 9 Affine solutions for different values of a

a Affine x-or gates

65 20

61 18

36 16

63 16

33 14

2E 13

26 13

IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 270–280 277
doi: 10.1049/iet-cdt.2008.0049 & The Institution of Engineering and Technology 2009

www.ietdl.org



3={S02, S12, S22, S32}, 4={S03, S13, S23, S33}. In this way,
each row, as specified in [1], is stored in its own RF.

When the RF values are accessed by the inversion units,
they are not read as original words from left to right. The
values are grouped and read in the following order
1={S00, S11, S22, S33}, 2={S01, S12, S23, S30}, 3={S02, S13, S20,
S31}, 4={S03, S10, S21, S32}, which refers to the order with
which the bytes are read from the RFs by the inversion
units. Each ordered group accessed by the four inversion
units corresponds to the required state elements that need
to be mixed together in order to form a new word. This
selection implies that the sequence of each row of the state
already corresponds to the pre-shifted row of the state.
This pre-shifting obviates the need for an explicit
ShiftRows operation later on. This lookahead indicates that
the values to be mixed are sent in groups to the inversion
unit directly from the RFs. This reduces the level of
interconnect and area considerably.

4.6 Key generation

The same datapath as for the main algorithm may be used for
key generation. This is made possible by extending the RFs
to create storage for the key. S-box operations are required
for key expansion. Since the data unit does not perform an
S-box operation when the last Affine, MixColumns and
AddRoundKey transformations are executed, the S-box
operations of the datapath can be used when they become
available towards the end of each round. A multiplexor in
the MixColumns is used to miss out the Mix operation.
The XOR-block is adapted for the remaining key additions
to produce the next key.

4.7 Decryption

The datapath is easily modified to work for decryption. For
ShiftRows the existing RFs are used to carry out pre-
shifting at no extra cost in hardware but using
the appropriate selection of address. For decryption, the
same S-boxes are used as for encryption. An inverse-affine
function must be added to each S-box, which needs to be

executed before the multiplicative inverse. The combined
S-box and its inverse is arranged to work in either direction
using multiplexing. Finally, the mix-function needs to be
augmented with the inverse-mix function and the
appropriate multiplexing added to sequence the correct
values.

The key generation is also easily modified for decryption.
This is made to work on-the-fly, that is, the key unit stores
the current RoundKey and is able to calculate the next or
preceding key, respectively. Augmenting encryption, key
generation with decryption can be executed efficiently using
appropriate multiplexing.

5 Comparisons
The AES encryption ASIC implementation is compared in
this section. For our implementation, the lookup tables
were reduced to equations and implemented in standard
gates. This was executed using our own automatic synthesis
tool which makes use of a two-level minimisation
algorithm. The implementation technology used was
Cadence ASIC 0.35 mm. Most other implementations are
implemented using FPGA and therefore only the direct
relevant ASIC comparisons are made here excluding
FPGA. The other implementations have been
implemented in varying process technologies. In addition,
the implementations that are used for comparison purposes
are in the polynomial basis. Table 11 shows the results for
the implementation.

In Table 11, the datapath widths are shown in terms of the
numbers of bits processed in parallel. Two sizes are used for
all implementations, either 32 bits or 8 bits. The next column
shows the areas in terms of their GEs. The implementation
technology for each is shown in the process column, which
ranges from 0.11 to 0.6 mm. The next column shows the
clock frequency in MHz, and the next the block clock
cycles. The block clock cycles column shows the number of
clock cycles to process one plaintext input. Finally, the
throughput column is shown in Mbps and the decryption
column is given in terms of the operation mode.

Table 11 AES Comparison

Implementation Width,
bits

Area,
gates

Process
mm

Frequency,
MHz

Block Clock
cycles

Throughput,
Mbps

Decryption

NB 32 4,800 0.35 132 108 156 yes

[3] 32 8,200 0.6 50 64 128 yes

[3] 32 12,894 0.6 50 34 241 yes

[6] 32 5,400 0.11 131 54 311 yes

[7] 8 3,200 0.13 130 160 104 no

[7] 8 3,100 0.13 152 160 121 no

[17] 8 3,400 0.35 na 1032 na no

278 IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 270–280

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt.2008.0049

www.ietdl.org



Comparing the results, it can be seen that the area for our
implementation fares well against comparable
implementations with a datapath width of 32 bits. The first
set of results for [3] has �70% more area and a throughput
which is 18% slower but which uses a slower process
technology of 0.6 mm. The second set of results for [3] has
a much larger area of approximately three times the value
but has a throughput which is �50% as fast. Although the
Satoh throughput is high [6], this is because of the faster
technology used and the critical path is known to be
longer, meaning an improvement would be apparent in our
implementation with an upgrade in technology. Generally,
the improvement in area is significant and exhibits a
considerable reduction over alternative small area AES
solutions of a similar 32-bit width.

The GE count for our normal basis implementation comes
to 4800. The majority of the area is taken up by storage,
which includes the data and key and which accounts for
�40% of the area. The next largest area is taken by the
shifting and lookup logic which accounts for �20% of the
total area. The control represents about 8% of the total area.

The core logic functionality for the normal basis S-box
shows a reduction of 25% over implementations using
subfield S-boxes including [3, 6, 17], where the gate count
is approximately 190 against 134 for our lookup logic. For
S-boxes where shift registers and pipeline registers are
taken into account, the normal basis technique appears to
be roughly on a par basis. For S-boxes using more
traditional lookup methods, such as [12], the normal basis
implementation shows a significant improvement.

The bottle-neck in terms of time for our implementation
comes from the inverse function. The large clock Tc that is
used for the lookup operation is set at 132 MHz. The
lookup block which has a size of 134 gates and a low
critical path of 8 gates is used for determining this. The
smaller clock used in our implementation tc is set at half
this size. The total inverse time is determined by the
rotation time together with the lookup time. Because
the number of rotations required for each value entering
the inversion unit is different, and lookup reduction is also
used, an average estimate of the time is made. The average
time is derived from a simulation of a data set consisting of
several thousand inputs.

The comparisons against implementations with datapath
widths of 8 bits show that they are more efficient than our
implementation in terms of area but not by too large a
percentage on a par basis. However, this is generally at the
expense of a slower throughput that is significantly slower,
which makes our implementation competitive overall. The
explanation for the slower throughput is straightforward as
the bottle-neck for 8-bit wide implementations comes from
the mix operation (this assumes the S-box can be
pipelined) that can only execute 8 bits at a time.

Comparing power with other architectures is difficult
because of the different technologies used and the lack of
available data. As a basic estimate, the power consumption
is estimated to be �50% higher than that stated in [17].
Based on area and throughput comparisons, it is estimated
that the power consumption will be significantly less than
that of the other 32-bit architectures.

6 Conclusions
We have presented a novel efficient method of implementing
the AES algorithm in the normal basis using an approach
which includes shift registers and lookup tables. This
makes use of the commutative relationship between inverse
and square and lookup values. The results are promising,
particularly for the AES that makes use of inversion in the
field GF(28). As a result, the lookup size for inversion has
been reduced when compared with alternative lookup
implementations, and minimal lookup tables in terms of
their GE are used.

A low-cost implementation of the AES has been
presented, which targets a minimal number of gates. The
GE size is less than other presented works for datapath
widths of a similar size and competitive against those
which are not. This means that it is competitive from an
area-time perspective. The number of lookup accesses are
reduced, thereby improving latency. The regular RF design
indicates that the interconnect and area are also reduced.
The architecture would benefit from an improvement in
technology.

The regular architecture is considered an important aspect of
design for security, which facilitates security implementation.
There are benefits from the regular architecture, lookup tables
and registers that are regular and more easily power-balanced.

7 Acknowledgment
The authors would like to thank everyone who has
contributed to this work including the useful suggestions
made by the referees. This work was supported by EPSRC
grants GR/S81421 (SCREEN) and EP/F016786/1
(SURE).

8 References

[1] Natl Inst. of Standards and Technology:
‘Federal Information Processing Standard 197, The
Advanced Encryption Standard (AES)’, http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf,2001

[2] LIN T., SU C., HUANG C., WU C.: ‘A high-throughput low-cost
AES cipher chip’. IEEE Proc. 3rd Asia-Pacific Conf. ASICS
(AP-ASIC), August 2002

IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 270–280 279
doi: 10.1049/iet-cdt.2008.0049 & The Institution of Engineering and Technology 2009

www.ietdl.org



[3] MANGARD S., AIGNER M., DOMINIKUS S.: ‘A highly regular and
scalable AES hardware architecture’, IEEE Trans. Comput.,
2003, 52, (4), pp. 483–491

[4] ELBIRT A., YIP W., CHETWYND B., PAAR C.: ‘An FPGA-based
performance evaluation of the AES block cipher candidate
algorithm finalists’, IEEE Trans. VLSI Syst., 2001, 9, (4),
pp. 545–557

[5] HUANG Y., LIN Y., HUNG K., LIN K.: ‘Efficient implementation
of AES IP’. Circuits and Systems 2006, APCCAS IEEE Conf.,
2006, pp. 1418–1421

[6] SATOH A., MORIOKA S., TAKANO K., MUNETOH S.: ‘A compact
Rijndael hardware architecture with S-box optimization’.
Proc. Advances in Cryptology – ASIACRYPT 2001, 2001,
pp. 239–254

[7] HÄMÄLÄINEN P., ALHO T., HÄNNIKÄINEN M., HÄMÄLÄINEN T.:
‘Design and implementation of low-area and low-power
AES encryptionhardware core’. Proc. 9th EUROMICRO
Conf. Digital System Design (DSD006), 2006, pp. 577–583

[8] AL-SOMANI T., AMIN A.: ‘Hardware implementations of
GF(2̂m) arithmetic using normal basis’, J. Appl. Sci., 2006,
6, (6), pp. 1362–1372

[9] YU N., HEYS H.: ‘Investigation of compact hardware
implementation of the advanced encryption standard’.
Proc. IEEE Conf. CCECE, Saskatoon, Saskatchewan, May
2005, pp. 1069–1072

[10] VERBAUWHEDE I., SCHAUMONT P., KUO H.: ‘Design and
performance testing of a 2.29 GB/s Rijndael processor’,
IEEE J. Solid-State Circuits, 2003, 38, (3), pp. 569–572

[11] JING M., CHEN Y., CHANG Y., HSU C.: ‘The design of a fast
inverse module in AES’. Proc. Info-tech and Info-net,
Cong. ICII, 2001, pp. 298–303

[12] TILLICH S., FELDHOFER M., GROßSCHÄDL J.: ‘Area, delay, and
power characteristics of standard-cell implementations of
the AES S-box’. Proc. Embedded Computer Systems:
Architectures, Modelling, and Simulation, LNCS 4017, July
2006, pp. 457–466

[13] MCLOONE M., MCCANNY J.: ‘Rijndael FPGA implementation
utilizing look-up tables’, J. VLSI Signal Process. Syst, 2003,
34, (3), pp. 261–275

[14] CANRIGHT D.: ‘A very compact S-box for AES’. Proc.
7th Int. Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2005), LCNS 3659, 2005,
pp. 441–455

[15] TAKAGI N., YOSHIKI J., TAKAGI K.: ‘A fast algorithm for
multiplicative inversion in GF(2^m) using normal basis’,
IEEE Trans. Comp., 2001, 50, (5), pp. 394–398

[16] JENG J.: ‘Normal basis inversion in some finite fields’.
5th Int. Symp. Signal Processing and its
Applications, ISSPA099, Brisbane, Australia, August 1999,
pp. 701–703

[17] FELDHOFER M., WOLKERSTORFER J., RIJMEN V.: ‘AES
implementation on a grain of sand’, IEE Proc. Inf. Secur,
2005, 152, (1), pp. 13–20

[18] SOKOLOV D., MURPHY J., BYSTROV A., YAKOVLEV A.: ‘Design and
analysis of dual-rail circuits for security applications’, IEEE
Trans. Comp, 2005, 54, (4), pp. 449–460

280 IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 3, pp. 270–280

& The Institution of Engineering and Technology 2009 doi: 10.1049/iet-cdt.2008.0049

www.ietdl.org


