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Probabilistic Analysis of Small-signal Stability of
Large-scale Power Systems as Affected by

Penetration of Wind Generation
S. Q. Bu, Student Member, IEEE, W. Du, H. F. Wang, Senior Member, IEEE, Z. Chen, L. Y. Xiao and H. F. Li

Abstract—This paper proposes a method of probabilistic
analysis to investigate the impact of stochastic uncertainty of
grid-connected wind generation on power system small-signal
stability. The proposed method is “analytical” in contrast to the
numerical method of Monte Carlo simulation which relies on
large number of random computations. It can directly calculate
the probabilistic density function (PDF) of critical eigenvalues
of a large-scale power system from the PDF of grid-connected
multiple sources of wind power generation, thus to determine
the probabilistic small-signal stability of the power system as
affected by the wind generation. In the paper, an example of
16-machine power system with 3 grid-connected wind farms is
used to demonstrate the application of the proposed method. The
results of probabilistic stability analysis of the example power
system are confirmed by the Monte Carlo simulation. It is shown
that the stochastic variation of grid-connected wind generation
can cause the system to lose stability even though the system is
stable deterministically. The higher the level of wind penetration
is, the more the probability that the system becomes unstable
could be. Hence indeed penetration of stochastically variable
wind generation threats stable operation of power systems as
far as system small-signal stability is concerned.

Index Terms—Correlations, Gram-Charlier expansion, Monte
Carlo simulation, probabilistic analysis, probabilistic density
function (PDF), power system small-signal stability, wind power
generation.

I. INTRODUCTION

GRID-connected wind power sources have been increas-
ingly brought into the conventional power systems re-

cently. Their grid connection may significantly affect power
system dynamics and operational characteristics, including
small-signal stability. There has been a great effort in inves-
tigating the impact of increasing penetration of wind gen-
eration on power system small-signal stability recently [1]-
[6]. Though work presented in [1]-[6] are the results of case
studies, it has clearly indicated that the grid-connected wind
generation affects power system small-signal stability, some-
times detrimentally [1]-[6]. Therefore, it is an essentially im-
portant work to examine carefully the effect of grid-connected
wind generation on power system small-signal stability. On
the other hand, the generation capability of wind power
sources relies on the conditions of natural environment, such
as wind speed. Their grid-connection introduces significant
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stochastic fluctuation of generation which could be potentially
spatial dependent. The impact of the generation uncertainty
caused by the stochastically variable wind sources on power
system small-signal stability is an issue that has neither been
encountered by power transmission with conventional power
generation and nor considered by the deterministic analysis in
[1]-[6].

The first application of probabilistic analysis in power
systems was by Borkowska (1974) in [7] for the power
system load flow study (PLF), then further developed by
Allan in [8] and [9]. The probabilistic analysis was firstly
introduced into studying power system small-signal stability
by Burchett and Heydt (1978) in [10]. Generalized tetrachoric
series was used in [10] to determine the stochastic distribution
density of system critical eigenvalues, hence the probability
of the small-signal stability of the power system. In [10] the
influence of uncertainty in system parameters from several
sources subject to the multivariate normal distribution was
considered. This analytical method was later developed to
accommodate random variables with any type of distribution
by using a moment approach in [11]. A series of work later
in [12] and [13] has further improved the various aspects of
the analytical methods of power system probabilistic small-
signal stability, including probabilistic eigenvalue sensitivity
analysis for the design of power system stabilizers in [14]-
[16]. Among various methods of probabilistic analysis, the
Gram-Charlier expansion based (or named cumulant-based)
method of probabilistic analysis has been widely used in many
applications of stochastic static analysis of power systems in
[17]-[22]. The method can be used to approximate any type
of distributions and is capable of handling large-scale power
systems with high efficiency.

Non-analytical method to determine power system prob-
abilistic stability is the Monte Carlo simulation [23]. It is
successfully employed in [24] to study the effect of uncertainty
of grid-connected wind generation on power system small-
signal stability. The Monte Carlo simulation is to generate a
large number of random computational scenarios according to
the distribution density of the stochastic sources, such as wind.
Accumulation of computational results of deterministic power
system small-signal stability (the critical eigenvalues) from
all the scenarios forms the distribution density of the critical
eigenvalues, hence to determine the power system probabilistic
stability. Obviously, though the Monte Carlo simulation can
provide accurate results, it is a method of extremely time
consuming. Therefore, it has been well accepted that the



2 IEEE TRANSACTIONS ON POWER SYSTEMS

analytical method of probabilistic analysis is more applicable,
especially for the study of probabilistic stability of large-scale
power systems. The Monte Carlo simulation can be used as
a way to evaluate and confirm the correctness of probabilistic
analysis.

This paper presents the probabilistic analysis of power
system small-signal stability considering the stochastic un-
certainty introduced by multiple grid-connected wind power
sources and their spatial correlations. The Gram-Charlier ex-
pansion based method is employed to derive the probabilistic
density function (PDF) of system critical eigenvalues from the
well-known Weibull distribution of wind speed. The method of
probabilistic analysis presented in the paper can determine the
probabilistic small-signal stability of power systems penetrated
by multiple wind power sources by just performing the step-
by-step computation proposed once. Hence it successfully
avoids the complex convolution calculation and high compu-
tational burden of the Monte Carlo simulation. The paper is
organized as follows. In Section II, a simple case without
considering the spatial correlations of grid-connected wind
generation is given in order to give a clear presentation. On
the basis of Section II, the case of taking account of the
correlations between different wind power sources is further
examined in Section III. The Gram-Charlier expansion based
method is modified to accommodate the more realistic case
that the grid-connected wind generation could be spatially
correlated. In Section IV, an example of 16-machine 5-area
power system with 3 grid-connected wind power sources is
given. The Monte Carlo simulation is used to confirm the
correctness and accuracy of the method proposed. Results of
probabilistic stability analysis of the example power system
demonstrate that the stochastic variation of grid-connected
wind generation affects the small-signal stability of the power
system. Probabilistic stability changes significantly with the
variation of level of wind penetration.

II. PROBABILISTIC ANALYSIS OF SMALL-SIGNAL
STABILITY OF POWER SYSTEMS WITH INDEPENDENT

GRID-CONNECTED MULTIPLE WIND POWER SOURCES

A. Distribution function of wind power generation [25]

Eq. (1) is the Weibull (or normal skew) distribution, which
is considered to be one of the most applicable descriptions of
stochastic fluctuation of wind power generation. In (1), Pwi is
the active power supplied by the ith wind generation source
(wind farm) connected to a multi-machine power system,
fpi(·) is the PDF of the wind power, vci the cut-in wind speed,
vri the rated wind speed, vfi the furling wind speed, Fsi(·)
the CDF of Weibull distribution of wind speed, δ(Pwi) the
impulse function, and Pri the rated wind power.

fpi(Pwi) =



[
1− (Fsi(vfi)− Fsi(vci))

]
δ(Pwi),

for Pwi = 0

bi
di

(
Pwi − hi

di
)bi−1exp

[
− (

Pwi − hi
di

)bi
]
,

for 0 < Pwi < Pri

[
Fsi(vfi)− Fsi(vri)

]
δ(Pwi − Pri),

for Pwi = Pri

0, for Pwi < 0 or Pwi > Pri
(1)

Parameters in (1) are given by the following equations

bi = (
σi
µi

)−1.086, di =
Priµi

(vri − vci)Γ(1 + 1/bi)

hi = − Privci
vri − vci

(2)

where Γ(·) is a Γ function, µi and σi are the mean and standard
deviation of wind speed respectively.

B. Moments and cumulants of wind power generation

The wind power variation is defined to be ∆Pwi = Pwi −
Pw0i, where Pw0i is the deterministic wind power generation.
According to the probability theory, the nth moment α(n)

∆Pwi
of the wind power variation, ∆Pwi, can be computed from (1)
as follows

α
(n)
∆Pwi

=

∫ Pri−Pw0i

−Pw0i

xndFpi(x) =

∫ Pri−Pw0i

−Pw0i

xnfpi(x)dx

=
[
1− (Fsi(vfi)− Fsi(vci))

]
(−Pw0i)

n

+
[
Fsi(vfi)− Fsi(vri)

]
(Pri − Pw0i)

n

+
n∑
k=0

Ckn(di)
k(hi − Pw0i)

n−k
∫ (

Pri−hi
di

)bi

(−hidi )bi
τ
k
bi e−τdτ

(3)

where Ckn = n!
k!(n−k)! and

∫ (
Pri−hi
di

)bi

(−hidi )bi
τ
k
bi e−τdτ is an incom-

plete Γ function. Appendix A gives details of derivation of
(3).

The nth order cumulant, γ(n)
∆Pwi

, also known as the semi-
invariant, is the polynomial in α

(1)
∆Pwi

, α
(2)
∆Pwi

, · · ·α(n)
∆Pwi

, for
example from [26] and [27]

γ
(1)
∆Pwi

= α
(1)
∆Pwi

γ
(2)
∆Pwi

= α
(2)
∆Pwi

− (α
(1)
∆Pwi

)2

γ
(3)
∆Pwi

= α
(3)
∆Pwi

− 3α
(1)
∆Pwi

α
(2)
∆Pwi

+ 2(α
(1)
∆Pwi

)3

· · · · · · · · ·

(4)

Hence by using (4), the nth order cumulant, γ(n)
∆Pwi

, can be
computed from the various-order moments.
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C. Cumulants and central moments of stochastic variation of
critical eigenvalue

According to the probability theory in [26] and [27], if
the relationship between a random variable ρ and m other
independent random variables ηj , j = 1, 2, · · ·m is linear, that
is ρ = a1η1 + a2η2 + · · ·+ amηm, their nth order cumulants
satisfy the following equation

γ(n)
ρ = an1γ

(n)
η1

+ an2γ
(n)
η2

+ · · ·+ anmγ
(n)
ηm (5)

If there are m grid-connected wind generation sources (wind
farms) in the multi-machine power system and λk = ξk+ jωk
is the kth eigenvalue (critical eigenvalue) of the power system,
the following relationship between the critical eigenvalue and
the wind power generation can be established for power system
small-signal stability analysis

∆λk = ∆ξk + j∆ωk =

m∑
i=1

[(∂λk/∂Pwi)∆Pwi]

=

m∑
i=1

[[
Re(∂λk/∂Pwi)

]
∆Pwi + j

[
Im(∂λk/∂Pwi)

]
∆Pwi

]
(6)

where Re(·) and Im(·) denote the real and imaginary part
of a complex variable respectively. The sensitivity of the
critical eigenvalue with respect to m wind power sources at
an equilibrium point in (6) can be computed conveniently in
a numerical way in [28] given by the following equation

∂λk
∂Pwi

=
λk(Pwi + ∆Pwi)− λk(Pwi)

∆Pwi
, i = 1, 2, · · ·m (7)

The assumption of linearity is implied in deriving (6).
For small-signal stability analysis, linearized model of power
systems is used and the nonlinearities are not considered [29].
Hence, the assumption of linearity in (6) is tenable.

From (5) and (6) it can have

γ
(n)
∆ξk

=

m∑
i=1

{[
Re(

∂λk
∂Pwi

)

]n
γ

(n)
∆Pwi

}
(8)

where γ
(n)
∆ξk

is the nth order cumulant of the stochastic
variation of the real part of the critical eigenvalue, ∆ξk. The
mean of ∆ξk is µ∆ξk = γ

(1)
∆ξk

. It is noted that (8) is derived
under the assumption that all the wind power sources are
independent. In practice this is true if wind farms locate far
away to each other geographically. The spatial correlations
between different wind farms will be considered in Section
III.

The nth order central moment, β(n)
∆ξk

, of ∆ξk is calculated
from its cumulants by using the following equations in [26]
and [27]

β
(1)
∆ξk

= 0

β
(2)
∆ξk

= γ
(2)
∆ξk

= σ2
∆ξk

β
(3)
∆ξk

= γ
(3)
∆ξk

β
(4)
∆ξk

= γ
(4)
∆ξk

+ 3(γ
(2)
∆ξk

)2

· · · · · · · · ·

(9)

where σ∆ξk is the standard deviation of ∆ξk.

D. Gram-Charlier expansion

From the cumulants and central moments of ∆ξk, the CDF
of the standardized ∆ξk, ∆ξk =

∆ξk−µ∆ξk

σ∆ξk

, can be obtained
by using the following well-known Gram-Charlier expansion

F∆ξk
(x) = g0Φ(x) +

g1

1!
Φ
′
(x) +

g2

2!
Φ
′′
(x) +

g3

3!
Φ
′′′

(x) + · · ·
(10)

where F∆ξk
(x) is the CDF of ∆ξk, Φ(x) the CDF of standard

normal distribution respectively and the prime symbol denotes
various-order derivatives of Φ(x). Coefficients in the Gram-
Charlier expansion of (10) are the polynomial in the central
moments of ∆ξk as given by [26] and [27] as follows

g0 = 1

g1 = g2 = 0

g3 = −
β

(3)
∆ξk

σ3
∆ξk

g4 =
β

(4)
∆ξk

σ4
∆ξk

− 3

· · · · · · · · ·

(11)

E. CDF and PDF of real part of critical eigenvalue

Obviously, the CDF of ∆ξk can easily be obtained from
that of ∆ξk to be

F∆ξk(x) = F∆ξk
(
x−∆µ∆ξk

σ∆ξk

) (12)

Because ∆ξk = ξk− ξk0 (ξk0 is the deterministic value of the
real part of λk), the CDF of ξk can be obtained to be

Fξk(x) = F∆ξk(x− ξk0) (13)

The PDF fξk(x) is the derivative of the CDF of ξk obtained
in (13).

The wind power distribution is not continuous as given by
(1)[25], and thus fξk(x) 6= 0 only exists over a certain interval
of ξk, i.e.,

[
ξkl, ξkr

]
. The CDF and PDF given by (13) is for

ξk within
[
ξkl, ξkr

]
and their value at the left end (ξk = ξkl)

and right end (ξk = ξkr) of the interval needs to be calculated
separately. Hence (13) needs to be modified. This modification
is carried out by dividing the wind generation sources into
two groups firstly. Group A is of positive Re(∂λk/∂Pwi)
and group B is of negative Re(∂λk/∂Pwi). In deterministic
eigenvalue analysis, ξk is calculated as ξkl, when the wind
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generation sources in group A is at the cut-in wind power
(i.e., Pwi = 0, i ∈ A) and in group B is at the furling wind
power (i.e., Pwi = Pri, i ∈ B). ξkr is calculated similarly but
when the wind generation sources in group A is at the furling
wind power and group B the cut-in wind power. The modified
CDF and PDF are

fξk(x) =



∏
i1∈A,i2∈B

[
1− (Fsi1(vfi1)− Fsi1(vci1))

]
×
[
Fsi2(vfi2)− Fsi2(vri2)

]
δ(x− ξkl),

for x = ξkl

derivative of (13), for ξkl < x < ξkr

∏
i1∈B,i2∈A

[
1− (Fsi1(vfi1)− Fsi1(vci1))

]
×
[
Fsi2(vfi2)− Fsi2(vri2)

]
δ(x− ξkr),

for x = ξkr

0, for x < ξkl or x > ξkr

Fξk(x) =


0, for x ≤ ξkl
(13), for ξkl < x < ξkr

1, for x ≥ ξkr
(14)

Finally the probability of the small-signal stability of the
power system with m grid-connected wind power sources, as
far as the kth eigenvalue (critical eigenvalue) is concerned,
can be defined and computed to be

P (ξk < 0) = Fξk(0) =

∫ 0

−∞
fξk(x)dx (15)

where Fξk(x) and fξk(x) are the CDF and PDF of ξk
respectively.

III. CONSIDERATION OF SPATIAL CORRELATIONS
BETWEEN WIND POWER SOURCES

A. Spatial correlations of wind generation

As it is explained in [30], the correlation between two wind
power sources is closely related to their geographical distance.
Two locations over 1200km have a correlation coefficient
close to 0, whilst very close locations (less than 100km)
have a correlation coefficient close to 1. This can be used
to approximately estimate their correlation coefficient ρij and
thus to establish the correlation coefficient matrix

[
ρij
]
m×m

for m grid-connected wind power sources [30].
If there are sufficient wind speed data available, the cor-

relations between pairs of wind speed can be calculated to
be

ρij =
Cov(vi, vj)

σviσvj
(16)

where vi and vj are wind speed random variables correspond-
ing to two wind power source locations, Cov(vi, vj) represents
the covariance of the speed vi and vj , and σvi and σvj are the
standard deviations of the speeds.

For each wind speed random variable, vi or vj , a wind speed
sample series can be generated correspondingly. Each wind
speed sample series should satisfy the Weibull distribution
and contain the spatial correlation. There are several methods
available to generate the eligible wind speed sample series,
such as the normal transformation method in [31] and [32]
and the Copulas in [33].

With the wind speed sample series available, the wind
power sample series with correlations (i.e.,

[
Pwi
]
Ns×1

) can
be generated by employing the power-wind speed curve of
each wind power sources described in [25]. The wind power
variation sample series

[
∆Pwi

]
Ns×1

can be obtained to be

[
∆Pwi

]
Ns×1

=
[
Pwi
]
Ns×1

−
[
Pw0i

]
Ns×1

, i = 1, 2, · · ·m
(17)

where Ns is the size of each wind power sample series and[
Pw0i

]
Ns×1

is a vector with all the samples equal to the
deterministic value Pw0i.

B. Modification of (8) to consider the wind correlations
When the correlation of the different wind power sources

is considered, (8) is modified to calculate the nth order cross
cumulant of ∆ξk to be

γ
(n)
∆ξk

=
m∑
i1=1

m∑
i2=1

· · ·
m∑

in=1[
Re(

∂λk
∂Pwi1

)× · · · × Re(
∂λk
∂Pwin

)︸ ︷︷ ︸
n

γ
(n)
∆Pwi1···in

]
(18)

where γ(n)
∆Pwi1···in

denotes the nth order cross cumulants of the
multiple wind power variations. For independent wind power
sources, i1 = i2 = · · · = in = i. The cumulant γ(n)

∆Pwi1···in
is

equal to γ(n)
∆Pwi

and (18) becomes (8).
Normally the higher order cross cumulants of ∆ξk have

less impact on the accuracy of the CDF and PDF curve of ξk.
Hence it is only needed to calculate the first several order cross
cumulants of ∆ξk by using (18) to include the correlation. The
cumulants of the rest with higher orders can still be calculated
by (8) so as to reduce the computation cost. The 1st order cross
cumulant of wind power variation is still γ(1)

∆Pwi
. Their 2nd and

3rd order cross cumulants can be easily calculated from the
following equations given by [26] and [27]

γ
(2)
∆Pwi1i2

= β
(2)
∆Pwi1i2

= E
[
(∆Pwi1 − µ∆Pwi1

)(∆Pwi2 − µ∆Pwi2
)
]

γ
(3)
∆Pwi1i2i3

= β
(3)
∆Pwi1i2i3

= E
[
(∆Pwi1 − µ∆Pwi1

)(∆Pwi2 − µ∆Pwi2
)

(∆Pwi3 − µ∆Pwi3
)
]

(19)

where β(n)
∆Pwi1···in

is the nth order cross central moment and
µ∆Pwin

is the mean of ∆Pwin . The expected values in (19)
can be calculated directly when each wind power variation
sample series is obtained. Hence by using (18) and (19), first
three order cross cumulants of ∆ξk are obtained.
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C. Modification of (14)

Firstly, a vector of the approximate values of ξk is calculated
to be

[
ξk
]
Ns×1

=
[
ξk0

]
Ns×1

+

m∑
i=1

{[
Re(

∂λk
∂Pwi

)

][
∆Pwi

]
Ns×1

}
(20)

where
[
ξk0

]
Ns×1

is a vector with all the samples equal to the
deterministic value ξk0. Then the maximums and minimums of
the vector

[
ξk
]
Ns×1

are determined. It is noted that there are
possibilities that multiple maximums and multiple minimums
exist in some cases. All the wind power data sets correspond-
ing to the maximums and minimums of

[
ξk
]
Ns×1

are recorded
(each wind power data set

[
Pw1, Pw2, · · ·Pwm

]
1×m is consist

of m wind power data which are respectively from the same
row of each

[
Pwi
]
Ns×1

as the maximum or minimum in[
ξk
]
Ns×1

).
Secondly, the deterministic eigenvalue analysis is carried

out to compute ξk by using the recorded wind power data
sets as output power of m wind power sources. ξkl and ξkr
are the smallest and largest ξk in the deterministic eigenvalue
analysis respectively. The probabilistic density of ξkl and ξkr
are calculated by

Nξkl
Ns

δ(x− ξkl), for x = ξkl

Nξkr
Ns

δ(x− ξkr), for x = ξkr

(21)

where Nξkl and Nξkr are the repeated numbers of ξkl and ξkr
in the deterministic eigenvalue analysis respectively. Hence,
the PDF and CDF of ξk with modified left and right ends are
obtained. The form of PDF and CDF of ξk is similar to (14),
but the probabilistic density values at left and right ends are
changed as given by (21).

IV. CASE STUDY

The probabilistic analysis of small-signal stability proposed
in the previous sections is tested in a 16-machine 5-area power
system with 3 grid-connected wind power sources, which is
shown in Fig. 1. Since the selection of installing locations
of the wind generators is not the issue of discussion in this
paper, it is assumed that the wind farms have already been
established at node 69, 70 and 71. This assumption does not
affect the demonstration and test of the proposed method of
probabilistic analysis.

The parameters of the wind generators and wind speed
distributions for Case A, B and C below are given in Appendix
B. The dynamic model of the DFIG rotor-side converter
controller has been considered and also presented in Appendix
B, as it is noted that the dynamics of rotor-side converter
controller has more significant impact on the power system
small-signal stability than grid-side converter controller in [1]-
[6]. The network data, system load condition, synchronous
generator model and parameters are given by [29]. Since
the paper mainly focuses on the impact of wind farms on
the power system small-signal stability, a simple one-order

excitation system has been employed for all the synchronous
generators (Appendix C) and there is no PSS installed.

A. Analytical Method and Monte Carlo Simulation

1) Case A (Normal load level without correlations of wind
power sources): From the deterministic small-signal stability
analysis, the 29th eigenvalue is identified to be the critical
oscillation mode, i.e., λ29 = −0.0106 ± j3.3004. Hence
deterministically the system is stable. The wind farm at node
69, 70 and 71 is denoted to be the 1st, 2nd and 3rd source of
wind generation respectively. The sensitivity computation of
the critical eigenvalue with respect to three sources of wind
generation is

∂λ29

∂Pw1
= 0.0096− j0.0489,

∂λ29

∂Pw2
= 0.0083− j0.0466

∂λ29

∂Pw3
= 0.0075− j0.0394

Table I shows the first five orders of moments and cumulants
of three wind power variations computed by using (3) and (4).
Table II gives the first five orders of cumulants and the central
moments of the real part of the critical eigenvalue obtained
from (8) and (9). Table III gives the first six coefficients of the
Gram-Charlier expansion. Then the probabilistic distributions
of the standardized critical eigenvalue are computed by use
of (10) and (11) and the PDF of the critical eigenvalue is
calculated by using (12) and (13). Finally, the PDF curve
obtained is modified by using (14) as presented in details in
the following. By deterministic eigenvalue analysis, ξ29l and
ξ29r are calculated to be -0.0185 and 0.0094 when all the
wind generation sources are at the cut-in wind power (0p.u.)
and the furling wind power (1p.u.) respectively. According to
the CDF of wind speed Fsi(·), the probabilistic density values
at ξ29l and ξ29r are computed to be 0.0117δ(x+ 0.0185) and
0.0003δ(x − 0.0094) respectively. Hence, the modified PDF
curve of the real part of the critical eigenvalue is obtained in
Fig. 2 according to (14).

TABLE I
MOMENTS AND CUMULANTS OF THREE WIND POWER

VARIATIONS

Moments of Three Wind Power Variations

α
(1)
∆Pwi

∗ α
(2)
∆Pwi

α
(3)
∆Pwi

α
(4)
∆Pwi

α
(5)
∆Pwi

0.0319 0.1080 0.0281 0.0262 0.0126

Cumulants of Three Wind Power Variations

γ
(1)
∆Pwi

γ
(2)
∆Pwi

γ
(3)
∆Pwi

γ
(4)
∆Pwi

γ
(5)
∆Pwi

0.0319 0.1070 0.0178 −0.0111 −0.0104

* i = 1, 2, 3 in this case.

It is well known that the convergence of Gram-Charlier
expansion varies from different conditions and there is no
theoretical simple way to determine the convergent order for
Gram-Charlier expansion. The convergent order of the series is
usually determined by trial and observation [17]. The Gram-
Charlier expansion with different orders is tried extensively
for applying the probabilistic small-signal stability analysis
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Fig. 1. Line diagram of example 16-machine 5-area power system integrated with wind power generation.

TABLE II
CUMULANTS AND CENTRAL MOMENTS OF CRITICAL

EIGENVALUE VARIATION

Cumulants of Critical Eigenvalue Variation (Real Part)

Mean Variance* γ
(3)
∆ξ29

γ
(4)
∆ξ29

γ
(5)
∆ξ29

8.10
×10−4

2.32
×10−5

3.35
×10−8

−1.82
×10−10

−1.51
×10−12

Central Moments of Critical Eigenvalue Variation (Real Part)

β
(1)
∆ξ29

β
(2)
∆ξ29

β
(3)
∆ξ29

β
(4)
∆ξ29

β
(5)
∆ξ29

0
2.32

×10−5
3.35

×10−8
1.14

×10−9
6.26

×10−12

* The variance of ∆ξk is equal to γ(2)
∆ξk

.

TABLE III
COEFFICIENTS OF GRAM-CHARLIER EXPANSION (REAL PART)

g0 g1 g3 g4 g5 g6

1 0 0 −0.2989 −0.3382 0.5794

proposed in this paper. It has been observed that the proposed
method with first five orders can achieve sufficient accuracy to
approximate the probabilistic density curve from the result of
Monte Carlo simulation (with 5000 iterations) shown in Fig.
2.

A comparison of computation time between the Monte
Carlo simulation and the analytical method proposed has been
carried out. Based on the same computational resource (Dell
OptiPlex 745, Intel Core 2 CPUs 2.66GHz, 3GB RAM), the
time of the Monte Carlo simulation with 5000 iterations is
15236.48 seconds, while only 38.56 seconds for the analyt-
ical method with first five-order Gram-Charlier expansion is
needed. The analytical method is about 395 times faster than
the Monte Carlo simulation.

Fig. 2. Real part PDF of critical eigenvalue obtained by analytical method
and Monte Carlo simulation (Case A).

According to the PDF of Fig. 2 it can be obtained that

P (ξ29 < 0) =

∫ 0

−∞
fξ29(x)dx = 0.9710 (22)

Eq. (22) indicates that when the stochastic variation of wind
generation is considered, the critical eigenvalue of the example
power system has a probability of 97.10% to remain in the
left half-plane. Hence although the system is considered to be
stable by the deterministic analysis, as the critical eigenvalue
is λ29 = −0.0106±j3.3004, it still has a probability of 2.90%
to be unstable due to the uncertainty of wind generation.

2) Case B (Load level close to the static stability limit
without correlations of wind power sources): At a stressed
load condition, the 29th eigenvalue is still identified to be the
critical oscillation mode, λ29 = −0.0005 ± j3.2445. Hence
deterministically the system is stable but very close to the
static stability limit. The sensitivity computation of the critical
eigenvalue with respect to three sources of wind generation is
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∂λ29

∂Pw1
= 0.0116− j0.0614,

∂λ29

∂Pw2
= 0.0100− j0.0589

∂λ29

∂Pw3
= 0.0085− j0.0516

By employing the same procedure as in Case A, the PDF
curve of the real part of the critical eigenvalue is shown by
Fig. 3. Fig. 3 also displays the confirmation from the result of
Monte Carlo simulation (with 5000 iterations).

Fig. 3. Real part PDF of critical eigenvalue obtained by analytical method
and Monte Carlo simulation (Case B).

According to the PDF of Fig. 3 it can be obtained that

P (ξ29 < 0) =

∫ 0

−∞
fξ29(x)dx = 0.6112 (23)

Eq. (23) indicates that in the case of the stressed load level
of the example system close to the static stability limit, the
probability of the critical eigenvalue remaining in the left half-
plane drops dramatically to 61.12%. Hence the system could
become unstable with a high possibility when the stochastic
variation of wind generation is considered.

3) Case C (Normal load level with certain correlations of
wind power sources): In this case, the correlations between
three wind power sources are taken into account and the
load condition of Case A is selected. Hence, the results
of deterministic small-signal stability analysis and sensitivity
computation are exactly the same as Case A. Since there is
no wind speed data available for the example system, the
correlation coefficient matrix

[
ρij
]
3×3

is assumed according to
the geographical distance between the three wind farms given
by

[
ρij
]
3×3

=

 1 0.8 0
0.8 1 0
0 0 1

 (24)

Eq. (24) suggests that the first two wind power sources
are strongly correlated, while the third is independent with
the other two due to the long distance. By employing the
procedure presented in Section III, the 2nd and 3rd order cross
cumulants of ∆ξ29 are computed by (18) to be

γ
(2)
∆ξ29

= 3.63× 10−5, γ
(3)
∆ξ29

= 9.02× 10−8

The probabilistic density of ξ29l and ξ29r is calculated by (21)
to be

Nξ29l

Ns
δ(x− ξ29l) = 0.0396δ(x+ 0.0185)

Nξ29r

Ns
δ(x− ξ29r) = 0.0028δ(x− 0.0094)

Finally, the PDF curve of the real part of the critical eigenvalue
is shown by Fig. 4. The result of Monte Carlo simulation (with
5000 iterations) in Fig. 4 has verified the proposed method
when the correlations of wind power sources are considered.

Fig. 4. Real part PDF of critical eigenvalue obtained by analytical method
and Monte Carlo simulation (Case C).

According to the PDF of Fig. 4 it can be obtained that

P (ξ29 < 0) =

∫ 0

−∞
fξ29

(x)dx = 0.9334 (25)

Eq. (25) indicates that the consideration of correlation has
changed the probability of system small-signal stability. How-
ever, the correlation has much less impact on the probabilistic
stability than the varying load conditions as compared with
Case B.

B. Probabilistic Analysis on Different Levels of Wind Penetra-
tion

Since the wind mean speed may vary from time to time,
levels of wind penetration are variable and the operation
point and load conditions of the power system may change,
which can bring about the different probabilistic stability.
Hence proposed probabilistic analysis is carried out for the
example power system with changing level of wind generation.
Fig. 5 shows the result of computation of the probability
of small-signal stability of the example power system when
Pwi0, (i = 1, 2, 3) varies from 0 to 1 per unit unanimously.
Obviously it can be seen that with the increase of level of wind
penetration to the example power system, the probability of
small-signal stability of the system decreases. The worst case
is that when three wind farms operate at their rated generation
capacity, and the system is only of a probability of just above
20% to be stable.
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Fig. 5. Probability of system stability against different wind penetration
conditions.

V. CONCLUSION

The paper presents a method of probabilistic analysis of
power system small-signal stability considering the stochastic
uncertainty introduced from multiple grid-connected sources
of wind generation. The spatial correlations of different grid-
connected wind farms are considered. The method can directly
determine the system probabilistic stability by performing just
once the proposed step-by-step probabilistic analysis. Hence
it is very computationally efficient especially when applied in
large-scale power systems, as compared to the non-analytical
method of Monte Carlo simulation.

In the paper, an example 16-machine power system with 3
grid-connected wind farms is presented. The correctness and
accuracy of the proposed analytical method are confirmed by
the results of Monte Carlo simulation. The example shows
that though the system is stable deterministically, there exists
the certain probability that the system can lose stability due
to the stochastic fluctuations caused by wind generation.
With increasing level of wind penetration, the probability
of instability could grow accordingly, threatening the stable
operation of the power system.

APPENDIX A
THE nth ORDER MOMENT DERIVATION OF ∆Pwi

α
(n)
∆Pwi

=

∫ Pri−Pw0i

−Pw0i

xndFpi(x) =

∫ Pri−Pw0i

−Pw0i

xnfpi(x)dx

=

∫ −Pw0i

−Pw0i

xn[1− (Fsi(vfi)− Fsi(vci))]δ(x+ Pw0i)dx

+

∫ Pri−Pw0i

−Pw0i

xn
bi
di

(
x− hi + Pw0i

di
)bi−1e

[
−(

x−hi+Pw0i
di

)bi
]
dx

+

∫ Pri−Pw0i

Pri−Pw0i

xn[Fsi(vfi)− Fsi(vri)]δ
[
x− (Pri − Pw0i)

]
dx

=
[
1− (Fsi(vfi)− Fsi(vci))

]
(−Pw0i)

n

+
[
Fsi(vfi)− Fsi(vri)

]
(Pri − Pw0i)

n

+

∫ Pri−Pw0i

−Pw0i

xn
bi
di

(
x− hi + Pw0i

di
)bi−1e

[
−(

x−hi+Pw0i
di

)bi
]
dx

By performing the variable transformation twice, i.e., t =
x− hi + Pw0i and τ = ( tdi )

bi , the above equation becomes

α
(n)
∆Pwi

=
[
1− (Fsi(vfi)− Fsi(vci))

]
(−Pw0i)

n

+
[
Fsi(vfi)− Fsi(vri)

]
(Pri − Pw0i)

n

+

∫ (
Pri−hi
di

)bi

(−hidi )bi

[
diτ

1
bi + (hi − Pw0i)

]n
e−τdτ

=
[
1− (Fsi(vfi)− Fsi(vci))

]
(−Pw0i)

n

+
[
Fsi(vfi)− Fsi(vri)

]
(Pri − Pw0i)

n

+

n∑
k=0

Ckn(di)
k(hi − Pw0i)

n−k
∫ (

Pri−hi
di

)bi

(−hidi )bi
τ
k
bi e−τdτ

(26)

APPENDIX B
WIND POWER GENERATOR MODEL AND DISTRIBUTION

PARAMETERS

A 70MW DFIG model in [34] is used for all three wind
farms and the parameters in p.u. are

H = 1.7s, D = 0.0, Xs = 2.9, Xr = 2.9, Xm = 2.6, Rs = 0.0,

Rr = 0.0013, Pw0 = 0.3333(Case A and C), 0.7000(Case B)

The DFIG rotor-side converter controller model used in the
example system is shown by Fig. 6, where KP = 30,KQ =
30.

Fig. 6. The DFIG rotor-side converter control model.

The parameters of the wind speed distribution are [25]

vc = 4m/s, vr = 10m/s, vf = 22m/s, Pr = 1.0p.u.,
µ = 6m/s(Case A and C), 8.2m/s(Case B), σ = 2.5

APPENDIX C
EXCITATION SYSTEM MODEL OF SYNCHRONOUS

GENERATORS AND ITS PARAMETERS

Fig. 7. The excitation system model of synchronous generators.
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KA = 7.4, TA = 0.1s, Vmax = 10.0, Vmin = −10.0
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