
Performance models of storage contention in cloud
environments

Kraft, S., Casale, G., Krishnamurthy, D., Greer, D., & Kilpatrick, P. (2013). Performance models of storage
contention in cloud environments. Software and Systems Modeling, 12(4), 681-704. DOI: 10.1007/s10270-012-
0227-2

Published in:
Software and Systems Modeling

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-012-0227-2

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/10070151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/performance-models-of-storage-contention-in-cloud-environments(1fba984a-e525-420f-8511-6f6a1648e1a4).html

Noname manuscript No.
(will be inserted by the editor)

Performance Models of Storage Contention in Cloud
Environments

Stephan Kraft · Giuliano Casale · Diwakar Krishnamurthy · Des Greer ·

Peter Kilpatrick

Received: date / Revised version: date

Abstract We propose simple models to predict the

performance degradation of disk requests due to stor-

age device contention in consolidated virtualized en-

vironments. Model parameters can be deduced from
measurements obtained inside Virtual Machines (VMs)

from a system where a single VM accesses a remote

storage server. The parameterized model can then be
used to predict the effect of storage contention when

multiple VMs are consolidated on the same server. We

first propose a trace-driven approach that evaluates a
queueing network with fair share scheduling using sim-

ulation. The model parameters consider Virtual Ma-

chine Monitor (VMM) level disk access optimizations

and rely on a calibration technique. We further present
a measurement-based approach that allows a distinct

characterization of read/write performance attributes.

In particular, we define simple linear prediction models
for I/O request mean response times, throughputs and

read/write mixes, as well as a simulation model for pre-

dicting response time distributions. We found our mod-
els to be effective in predicting such quantities across a

range of synthetic and emulated application workloads.

Stephan Kraft
SAP Research, Belfast, UK, E-mail: stephan.kraft@sap.com

Giuliano Casale
Imperial College London, Dept. of Computing, London, UK,
E-mail: g.casale@imperial.ac.uk

Diwakar Krishnamurthy
University of Calgary, Dept. of ECE, Calgary, AB, Canada,
E-mail: dkrishna@ucalgary.ca

Des Greer
Queen’s University Belfast, School of EEECS, Belfast, UK,
E-mail: des.greer@qub.ac.uk

Peter Kilpatrick
Queen’s University Belfast, School of EEECS, Belfast, UK,
E-mail: p.kilpatrick@qub.ac.uk

Keywords Performance Modeling · Virtualization ·

Storage

1 Introduction

The performance of I/O-bound applications is domi-

nated by the time required by the operating system

to schedule read and write operations and by the re-
sponse times of the storage devices in completing such

requests. Since changes in the workload, as well as in

the software and hardware environments, can affect the
latency of disk I/O requests, it is often useful to de-

fine performance models to anticipate the effects of a

change. This is especially important in Cloud environ-
ments that employ virtualization technologies. In virtu-

alized data centers the concurrent shared use of a stor-

age device by several Virtual Machines (VMs) managed

by a Virtual Machine Monitor (VMM) can lead to sig-
nificant performance degradation [34]. In such systems

estimates of I/O contention for a given VM placement

configuration can support management and consolida-
tion decisions.

However, modeling the performance of disk requests

is very challenging due to the joint interaction of I/O

flows issued by several VMs and because of the com-
plexity of caching mechanisms, scheduling algorithms,

device drivers, and communication protocols employed

by both the VMs and the VMM. Read and write re-
quests may affect system performance in very different

ways. Ganger and Patt [27] introduce three classes of re-

quests based on how individual request response times

influence system performance. An I/O request is consid-
ered time-critical if the generating thread blocks until

the request is completed, e.g. a process is halted until

a synchronous read request has been completed. Time-

2 Stephan Kraft et al.

limited requests must be completed within a given a-

mount of time otherwise they will become time-critical,
for example file system read-aheads. Requests that do

not require waiting times of the submitting process are

classified as time-noncritical. Such disk I/O requests
must be completed to maintain stable copies of non-

volatile storage, for example background flushes of a-

synchronous writes. Time-noncritical requests can in-
directly impact performance when interfering with the

completion of more critical requests, thus model defi-

nition is complicated by the interaction between these

different workload behaviors.

In this paper we tackle this complexity by intro-
ducing simple models for I/O performance prediction

in consolidated environments where multiple VMs can

share access to a remote storage server. Our method-
ology, summarized in Figure 1, requires first to study

VMs when they run in isolation on a virtualized server.

Based on collected measurements we propose two types
of models to forecast the impact of consolidation on I/O

performance.

Specifically, for each VM of interest we collect traces

of arrival times, estimated service times, and arrival

queue lengths for I/O requests. We develop two model-
ing techniques that embody this approach. We start by

developing what we denote as the Homogeneous model

to handle scenarios where multiple VMs running the
same type of workload are consolidated. We then ex-

tend this technique by developing what we denote as the

Decomposition model. In addition to handling scenarios

where consolidated VMs run heterogeneous workloads,
this technique supports distinction between read and

write requests.

We first consider the Homogeneous model. This mod-

el is based on a trace-driven simulation that uses start-
time fair queueing (SFQ), a popular implementation of

fair share scheduling which is adopted in VMMs. Mo-

tivated by the fact that a trace-driven simulation in
such a blackbox view of the system typically fails in

predicting accurately I/O request response times under

consolidation, we define an iterative algorithm for opti-

mal parameterization of the simulation model. Specifi-
cally, the algorithm estimates the performance impact

of VMM level I/O optimizations such as the splitting

of requests and offers a search technique for model cal-
ibration.

The decomposition approach distinguishes between

read and write requests and models each request type

separately. In addition to mean I/O request response

times the linear predictor formulas also forecast through-
puts and read/write request mixes in consolidation. Fi-

nally, this approach is also complemented with a simu-

lation model to predict latency distributions.

Fig. 1 Problem Approach.

Extensive experimentation on test workloads gener-

ated with the Postmark (PM), FFSB, and Filebench
disk benchmarks reveals that our methodologies can

forecast successfully consolidation effects on I/O per-

formance. Summarizing, the main contributions of this
paper in predicting consolidated workload performance

are threefold.

1. Our methodology allows us to parameterize mod-

els based on data obtained inside VMs in isolation

experiments. It requires very little information from
the VMM thereby effectively treating the VMM as a

blackbox. It also obviates the need to collect model

training data for different VM consolidation scenar-
ios.

2. The trace-driven simulation model is enhanced with

an iterative calibration technique that approximates

parameterization inaccuracies in the absence of de-
tailed VMM level measurements.

3. The measurement-based decomposition model de-

fines a set of simple analytical estimators to ap-
proximate performance of read/write disk requests

separately.

The remainder of the paper is organized as follows.

Section 2 motivates the use of prediction tools to quan-
tify performance degradation of disk requests in shared

environments and Section 3 introduces the reference

system for our study. The proposed Homogeneous mod-

eling methodology is presented in Section 4 and its val-
idation results are shown in Section 5. A refined model

using the decomposition approach is illustrated in Sec-

tion 6, while Section 7 presents the corresponding val-
idation results. Section 8 gives an overview of related

work. Section 9 offers summary and conclusions.

2 Motivational Example

In consolidation scenarios where more than a single VM

submits large numbers of I/O requests, competition for

the disk drive can lead to significant increases in la-

tencies, i.e. response times. To illustrate the problem
Figure 2 compares the mean response times in three ex-

periments conducted on our reference system, which is

introduced in Section 3.1. In the first two experiments,

Performance Models of Storage Contention in Cloud Environments 3

Isolation Isolation Consolidation
0

5

10

15

20

25

30

35
M

ea
n

R
es

po
ns

e
T

im
e

(m
s)

Web Server
Mail Server

Fig. 2 Effect of VM Consolidation on Disk Request Laten-
cies.

denoted isolation experiments, single VMs run on the

system thus avoiding contention from other VMs. In the
third experiment, denoted consolidation experiment, we

run two VMs on the same virtualized server and find

that their disk requests experience storage contention.
Response times are computed as the time between re-

quest issue and request completion as recorded by the

VM operating system. In consolidation we record large

mean response time increases of roughly 170% and 71%
for web and mail server type disk workloads, respec-

tively. This makes a strong case for the significant per-

formance impact that consolidation can have on end-to-
end response time of I/O requests and motivates the in-

vestigation in this paper. Specifically, the example mo-

tivates the need for accurate models that can capture
and quantify the possible I/O performance degradation

related to consolidation effects.

3 System Characteristics

We begin with a specification of the hardware and soft-
ware environment used in experimentation and advance

to present the tools used to obtain I/O measurements.

Our modeling techniques have been tested only on the
architecture described below, but we believe them to

be representative of virtualized environments adopting

similar technologies.

3.1 Reference System

We conduct our study on an AMD-based enterprise

server with 4 quad-core processors containing a total
of 16 CPU cores each clocked at 2.21GHz. The system

is equipped with 68GB of RAM and is connected to an

OpenFiler [4] storage server via the iSCSI protocol and

1 GBit Ethernet. The storage server comprises 8 Intel
Xeon processors clocked at 2GHz and 15GB of RAM. It

manages a 3ware 9000 series SATA-II hardware RAID

controller with 256MB of RAM. The 15 disc RAID 5

Operating

System

Applications

VM

Device

Emulation

Storage

Driver

VMM

Disk

Driver

HBA

(iSCSI)

LUN

Storage Server

(a) Storage
Subsystem

VM 1 VM 2

CFQ

VMM Kernel

FS

CFQ

Device Driver

Storage Server

LUN

(b) Storage
Queues

Fig. 3 I/O Architecture and Storage Queues of the Reference
System.

array uses a stripe size of 64k and disk write-caching is

turned off.

On the server we host the virtualization platform

VMware ESX Server 3i - 3.5.0 [9], which accesses the

storage device through a software iSCSI host bus adapter
(HBA). We specifically choose VMware, as it is a widely

diffused virtualization technology. The virtualized envi-

ronment consists of multiple Debian 5.0.1, kernel 2.6.26-
2, guest VM systems, each with identical configuration

of 1 virtual CPU, 500MB RAM, and 50GB of “virtual”

hard disk formatted as ext3 file system.

The virtual disks are represented by a large file and

can be thought of as a linear array made up of units of

space, i.e. logical blocks. In the remainder of this paper
the term “block” always refers to logical block units,

rather than the storage device’s physical block units.

The VMM formats and stores virtual disk files in the
Virtual Machine File System (VMFS). The VMFS pro-

vides distributed locking mechanisms facilitating con-

current access to virtual machine disk files from mul-
tiple physical machines. A VMFS volume may also be

extended over multiple LUNs for storage pooling [3].

The storage contention in our reference system is
characterized by a single connection from the ESX soft-

ware iSCSI HBA to a single LUN on the RAID array.

We do not consider scenarios with multiple physical

hosts or VMFS volumes spanning over multiple LUNs.
All virtual machine disk files are hosted on the same

LUN.

Disk I/O requests issued from a VM consist of one

or multiple contiguous blocks for either reads or writes.

Once an application running inside the VM submits

a request, the request first goes to the disk driver of
the VM operating system as shown in Figure 3 (a).

The driver processes the request and forwards it to the

VMM, where it is trapped and may undergo further

4 Stephan Kraft et al.

optimization operations before being issued to the LUN

via the storage driver and the iSCSI HBA [13].

On their way through the previously described lay-
ers of the storage subsystem, requests can be queued

multiple times as illustrated in Figure 3 (b). Hence la-

tencies of requests may be affected by multiple queue-
ing delays. Furthermore, requests may undergo multiple

optimizations such as aggregating and reordering oper-

ations by in-VM schedulers, as well as request splitting
at the VMM level. Such operations are used to opti-

mize disk access patterns, e.g., by aggregating multi-

ple requests for small amounts of contiguous blocks to

fewer requests for large amounts of contiguous blocks.
In virtualized environments these operations can have

a significant impact on disk request performance, as

scheduling policies at VM and VMM level may impair
each other [20].

In our environment the Debian guest VMs are con-

figured to use the completely fair queueing (CFQ) [14]

scheduler, which has per default 64 internal queues to

maintain and keep disk I/O requests [6]. The in-VM
scheduler optimizes disk access for the ext3 file system,

which is configured at the default block size of 4kB. Hid-

den from the operating system of the VM, the VMM
conceptually comprises two sets of queues, namely the

VMM kernel queues and the device driver queue. The

VMM kernel maintains a queue of pending requests per
VM for each target SCSI device [30], controlled with a

fair-share (FS) [25] scheduler. This class of algorithms

schedules shared resources among competing flows of

request classes where each request is associated with
a cost [28,29,19]. Resource sharing entails the need to

control how consolidated request classes consume the

resource in order to isolate performance and manage
differentiated resource access. Without such manage-

ment load surges of competing flows may impair each

other unacceptably. FS allocates resource capacities in
proportion to weights that have been assigned to the

competing request classes. See Section 4.1 for more de-

tailed information on the scheduling.

Furthermore, the server maintains a device driver

queue for each LUN, which controls the issue queue
length defined as the number of pending requests the

server can have at the storage device at a time [7]. Vir-

tualized servers typically allow configuration of the is-
sue queue length for each LUN. When multiple host

servers issue requests to the same LUN, this parameter

can be used to control resource utilization and fairness
across hosts.

Summarizing, our reference system comprises a net-
work of interconnected queues with multiple classes of

customers corresponding to the multiple VMs and vari-

ous scheduling disciplines, which need to be represented

in the performance model. In this case the application

of classic solutions for product form queueing networks
[15] is complicated due to complex splitting, aggregat-

ing, and reordering operations on arriving requests that

depend on spatial locality on the storage device. Al-
though forking and joining operations may alleviate

such difficulties, they are hard to parameterize in the

absence of direct measurement of the VMM internal
optimization, which is the typical situation in prac-

tice. Furthermore, the batched submission of requests

can result in extreme behaviour of the arrival patterns

where large amounts of requests are condensed into
large bursts. Bursts have been identified as important

sources of performance degradation [41,22] and we han-

dle them in this work by resorting to trace-driven sim-
ulation.

3.2 Measurement Tool

This section describes the monitoring tools we have

used to collect disk I/O traces in order to quantify the

performance of disk requests. Traces are captured at
two system layers: the virtualization and the storage

server. Our traces comprise a time stamp for each re-

quest issue and completion, a flag that indicates whether
a request was a read or write, the logical block ad-

dress (LBA) pertaining to the request, and the num-

ber of blocks accessed. We note that we calculate per

request response times as the time difference between
completion and issue events in the trace. We are aware

of the timekeeping inaccuracies in virtualized environ-

ments and use the network time protocol (NTP) to syn-
chronize time between VMs. NTP has been reported to

work fairly well on our reference system [10].

Measurements on the virtualized server are obtained

inside VMs with the block layer I/O tracing mecha-

nism blktrace [1]. The tool allows us to record traces of
disk request issue and completion events, as they are

recorded from the VM operating system kernel. In or-

der to monitor the I/O request trace submitted from

the VMM to the storage server, we use the network
protocol analyzer tshark [8] to intercept iSCSI network

packets. The tool is installed at the storage server and

only collects the headers of iSCSI packets, which en-
ables us to extract operational codes and control infor-

mation without handling iSCSI payloads.

4 Homogeneous Model

Our model comprises trace-driven simulations to pre-

dict the performance degradation of VM disk request

Performance Models of Storage Contention in Cloud Environments 5

.
.
.

.
.
.

Request Arrival

Trace
Model Completions

Pre-process: Split Post-process: Join

Merge [ω]

, D(MAP)
Queue

Servers

A(c)
k

i,n
C(c)

k

i,n

Fig. 4 Methodology Overview.

response times due to storage device contention in ho-

mogeneous workload consolidations, i.e. scenarios where

multiple workloads of the same type are submitted from
a single server. The fundamental idea of our approach is

to first record application traces in isolation benchmark

experiments and then utilize these traces to parameter-
ize simulation models of consolidation scenarios. The

challenge is to define realistic models of contention and

of the internal VMM I/O optimizations which affect
the end-to-end delays of read and write operations. Our

methodology considers a heuristic for request splitting

behavior at VMM level and introduces a model calibra-

tion technique to alleviate parameterization inaccura-
cies, e.g. on request service times. Model parameteriza-

tion is solely based on measurements obtained within

the VMs and information that we gathered from avail-
able documentation on VMM operations such as fair-

share scheduling and splitting. As a result, we essen-

tially treat the VMM as a blackbox in this work.

Figure 4 shows an overview of our methodology and

introduces some of the terminology used in the follow-
ing sections. The model allows us to study a specified

consolidation scenario consisting of a set of VMs con-

currently sharing a storage device. Input parameters for
the queueing model are request arrival traces obtained

from in-VM measurements in isolation benchmark ex-

periments for each of the VMs considered in the consol-

idation scenario. Our methodology can account for en-
vironment specific, VMM level request splitting behav-

ior by means of a pre-processing step on arrival traces,

where each ith arriving request of class k, denoted cik,
may be split into n requests. Section 4.2.1 explains in

detail how request arrival times A(cik) are assigned. Re-

quests are also provided with a service time D(cik) sam-
pled from a Markovian Arrival Process (MAP) as de-

scribed in Section 4.2.2. As shown in Figure 4, we use

a simulation model that schedules requests using the

SFQ(D) [32] scheduling policy across a pool of servers,
each representing a parallel connection to the LUN.

This model additionally introduces a calibration tech-

nique by means of a merging heuristic. The merging

Fig. 5 Queueing Model.

bundles a configurable number of ω requests and en-

ables them to share a server. The queueing network
and the scheduling algorithm are presented in 4.1. The

search algorithm we developed to iteratively estimate

the parameter ω is introduced in Section 4.3.2. Finally,
the model outputs requests with a response time esti-

mate C(cik). This involves a post-processing task wherein,

as shown in Figure 4, the requests that have been split
in the pre-processing step are rejoined.

4.1 Simulation Model

We represent the system under study as a multiclass
open queueing model. Requests submitted from individ-

ual VMs are distinguished in separate classes as shown

in Figure 5. As described in Section 3, virtualization en-

vironments typically provide a configurable parameter
which controls the maximum VMM issue queue length

to the LUN. We capture this aspect by modeling the

storage device as a pool of parallel servers. In our refer-
ence system this parameter is maintained at its default

value of 32 and consequently our model comprises of 32

servers.

The model implementation extends JINQS [26], a li-

brary for simulating multiclass queueing networks. Based

on available documentation on the VMM, we imple-
mented a practical SFQ disk scheduling discipline to

schedule requests on to the servers. Fair queueing [25]

algorithms are work-conserving and schedule shared re-
sources between competing requests by allocating re-

source capacity based on proportional weights. Practi-

cal fair queueing algorithms constitute approximations

to generalized processor sharing (GPS) scheduling by
considering requests to be indivisible, rather than fluid

flows.

Conventional SFQ schedulers do not consider con-

current service of requests at a resource. Our simulation

model implements SFQ(D) [32], a special variation of

SFQ [29], which has previously been used in related
work [30] to model our reference system. The depth pa-

rameter D controls the number of concurrent requests

in service and consequently corresponds to the number

6 Stephan Kraft et al.

Table 1 Summary of Input and Output Parameters for the Homogeneous Model.

Input

A(cik) Arrival time trace measured from VMs running in isolation. Traces are further processed to
account for environment specific VMM request size thresholds.

D(cik) Service times sampled from a MAP, fitted from measured traces of VMs running in isolation.

lmax Maximum request size threshold of VMM environment.

D Number of servers based on VMM to LUN issue queue length configuration.

ω Model calibration parameter estimated in iterative search algorithm.

Output C(cik) Predicted request response times in consolidation.

of servers in our model. Upon arrival of request cik, it is

assigned a start tag S(cik) and a finish tag F (cik) by the

scheduler. The tag values represent the times at which
each request should start and complete service accord-

ing to a system notion of virtual time v(t). Tags are

computed as:

S(cik) = max{v(A(cik)), F (ci−1

k)}, i ≥ 1 (1)

F (cik) = S(cik) +
dik
φk

, i ≥ 1 (2)

where A(cik) is the arrival time of request cik, F (c0k) = 0,
v(0) = 0, dik is the service time of the request, and

φk > 0 is the weight or share of class k,
∑K

k=1
φk = 1.

Throughout experiments, we assign equal shares to all

request classes. The scheduling algorithm reserves the

specified minimal share to each class. In cases where a
class has no active requests surplus resources are shared

among active classes according to their relative weights.

The scheduler issues a maximum of D requests to
idle servers in increasing order of start tags. When a re-

quest completes the queued request with min(start tag)

is selected and issued to an available server to maintain
a concurrency level of D. Virtual time advances by as-

signing it the start tag of the last request issued on or

before time t, i.e., the queued request with the lowest

start tag at the time of the last issue. As mentioned
previously, in addition to SFQ(D) scheduling we also

select ω requests, merge them together, and issue the

merged request to the servers. The superposition of this
behaviour with SFQ(D) is described in Section 4.3.2.

4.2 Model Parameterization

This section describes how we obtain the interarrival

and service times of requests. In this step, we account
for the request splitting operations of the VMM which

are triggered when the block sizes of arriving requests

exceed a certain threshold.

4.2.1 Interarrival Times

The simulation model is parameterized with measured
arrival traces, which are recorded in a series of bench-

mark experiments. Benchmark workloads are submit-

ted from within VMs running in isolation, where only
a single VM is running on the server. For each VM we

build a trace repository comprising multiple benchmark

runs. Traces are recorded with the blktrace tool, where
we include every in-VM request issue as an arrival in

the model.

When predicting request response times for consol-

idation scenarios, we randomly choose an arrival trace
for each considered VM from the repository and run

a consolidation simulation. Parameterizing the simu-

lation model with arrival traces measured in isolation
experiments is valid, since our measurements in Section

5.2 show that the interarrival time distribution of disk

requests to the VMM is not significantly impacted by
workload consolidation. This indicates that in the pres-

ence of contention delays disk requests are queued at

the VMM, rather than at the VMs. Queueing requests

at the VMM is preferable, since queue depths should be
larger than at the VMs and the VMM can use system

specific information to optimize disk access of queued

requests. We expect this observation to hold unless the
VMM queues are saturated.

We account for splitting operations of the VMM

by performing additional processing steps on model in-
put parameters and output results. Each arriving re-

quest cik has an arrival time A(cik) and a block size

B(cik). Given the maximum request size threshold lmax,

we pre-process the trace and split all arrivals where
B(cik) > lmax into N separate arrivals, such that:

N i
k =

⌈

B(cik)

lmax

⌉

(3)

A(ci,nk) = A(cik) (4)

B(ci,nk) =

lmax n ∈ {1..N i
k − 1} ∨

B(cik)mod lmax = 0

B(cik)mod lmax n = N i
k ∧

B(cik)mod lmax 6= 0,

(5)

Performance Models of Storage Contention in Cloud Environments 7

where N i
k is the total amount of splitting operations

for arrival cik determined by the ceiling function, mod
finds the remainder of the division, and n ∈ {1..N i

k}.

Since splitting operations are performed by the VMM

and are not visible to the VMs, previously split requests
need to be rejoined once they have completed service.

Our methodology includes a post-processing step on re-

quests that leave the simulation model and as a result
are assigned a response time C(cik). We compute the

response times of joined requests as the mean:

C(cik) =
1

N i
k

Ni
k

∑

n=1

C(ci,nk). (6)

As requests are likely to be served in parallel by the

storage array, computing the mean response time of
split requests can only be an approximation of the real

behaviour at the device. We investigate the effectiveness

of this approximation in Section 5. In our reference sys-
tem the VMM splits arriving requests exceeding a size

of 512kB, corresponding to 128 blocks in an ext3 file

system with 4kB block size. We consider this behavior
in our model and set lmax = 128.

4.2.2 Service Times

Service times are key parameters for specifying queue-
ing models and are typically estimated based on direct

data measurement and statistical inference. A common

approach to characterizing the resource consumption

of requests is to monitor system utilization and use re-
gression techniques based on operational laws [38]. As

our blackbox approach does not involve instrumenta-

tion of the VMM or of the storage server in order to
collect utilization samples, a practice which is anyway

difficult or impossible in many real-world systems, we

approximate the service times of disk requests from re-
sponse time measurements in isolation benchmark ex-

periments. When utilization levels at the VMM are low,

disk requests do not face queueing delays as they get

instantly issued to the storage device. In fact our mea-
surements show that the mean number of requests in

the system during an isolation run does not exceed the

number of available connections from the VMM to the
LUN. Thus measured request response times in isola-

tion should be a reasonable approximation to the actual

service requirement at the disk.
Request service times belonging to a specific VM

collected during isolation experiments are fitted to a

MAP [23], which is then used to randomly sample a

service time for each arrival. The role of MAPs in our
methodology is to generate random traces which follow

the same statistical properties (distribution, autocorre-

lations) observed in the isolation experiments.

4.3 Model Calibration Methodology

Our simulation experiments indicate that prediction re-

sults can be significantly improved if the model is cali-
brated with a merging heuristic to account for inaccura-

cies in parameter approximations. Calibration methods

can aid in building simple models of complex systems
[16], e.g., in case studies like ours where detailed doc-

umentation of commercial software internals are not

available. As we mentioned previously, we allow the

scheduler to merge queued requests and use the merg-
ing to compensate for possible deficiencies in the pa-

rameterization of our model. For example, deficiencies

in service times may arise due to the burstiness in-
herent in disk workloads and the resulting impact on

storage system behavior [43]. By enabling the sched-

uler to merge, i.e. aggregate, queued request we effec-
tively model such batching behaviour. Furthermore, our

analysis of storage server monitoring data in Section

6.3.1 shows evidence that, under simplifying assump-

tions, service times at the disk can be load dependent.
For example, service times can decrease at high loads.

Since we approximate service times from low load mea-

surements, the merging of requests may help modeling
of such load dependent behaviour. The merging algo-

rithm is described in Section 4.3.1. The iterative tech-

nique to quantify the amount of scheduler merging op-
erations performed for a given workload configuration

is described in Section 4.3.2.

4.3.1 Request Merging Algorithm

The model merges a configurable number of queued re-

quests in such a way that they still remain separate en-
tities, but share a server, i.e., connection to the LUN.

As shown in Algorithm 1, we pass a merge value pa-

rameter, denoted ω, to the simulator, which serves as a
modeling abstraction in our blackbox model. Merging

values can range in [1,∞], where we consider a merge

value of 1 as a single job being issued per service station,
i.e. no merging, whereas a large ω indicates that several

requests are merged together before issue to the server.

Since requests are indivisible, we implement a function

get int value to obtain from ω the number of merged
requests in each round of calibration. For example, if ω

is configured as 2.5 there is an equal probability that

the maximum amount of merging operations performed
next by the simulator will be either two or three.

The technique maintains the properties of the SFQ

scheduler by merging requests in increasing number of
start tags. Furthermore, only requests of the same class

are merged. As a result, the algorithm aborts in cases

where the queued request with the minimum start tag

8 Stephan Kraft et al.

Algorithm 1 Implementation of Merging
ω ← merge value
merged jobs← struct
while service station idle AND job queued do

x← get int value(ω)
for i = 1 to x do

job← queued job with min start tag
if i == 1 then

merged jobs← merged jobs+ job
else

if class job == class merged jobs then

merged jobs← merged jobs+ job
else

break
end if

end if

end for

schedule merged jobs to idle service station
end while

is of a different class as the already merged requests.

Once a merged job has received service and exits the

model, each of the merged requests counts as a separate
completion. Since each of the requests sharing a service

station has an individual service time, we approximate

the aggregate service requirement of merged requests
with the mean of the individual request service times.

4.3.2 Merge Value Estimation

The challenge is to calibrate our model without de-

tailed knowledge of the VMM internals. To estimate
the extent of model merging operations in this black-

box view of the VMM we have developed an itera-

tive search technique. Our technique controls the mean
number of requests in simulation experiments, i.e. the

mean queue length, through the ω parameter and ter-

minates once the mean queue length seen in simulation
closely matches an inferred expected queue length.

Inference of Mean Expected Queue Length. The first
step of merge value estimation is to infer the expected

mean queue length in the system for the consolidation

scenario under study. We infer the expected mean queue
length for a consolidation scenario with K classes based

on the assumption that the mean number of requests in

the system grows linearly when moving from isolation

to consolidation:

NK
exp =

K
∑

i=1

N iso
meas, (7)

where K is the total number of request classes con-

sidered in the simulation model, NK
exp is the expected

mean queue length in simulation, and N iso
meas is a mea-

surement of the mean queue length obtained in isolation

benchmark experiments. The queue length parameters

Table 2 Measurements and Expected Mean Number of Re-
quests N in the System in Isolation (Iso) and Consolidation
Scenarios with Two VMs (Con 2) and Three VMs (Con 3).

Workload Iso Con 2 Con 3

Niso
meas N2

meas N2

exp N3

meas N3

exp

PM-1 11.9 27.5 23.8 43.7 35.7
PM-2 14.1 30.2 28.2 44.6 42.3
FFSB-1 S 4.6 8.5 9.2 12.8 13.8
FFSB-1 R 4.8 8.5 9.6 13.3 14.4
FFSB-2 S 3.5 6.4 7.0 9.0 10.5
FFSB-2 R 4.0 7.5 8.0 10.0 12.0

we consider include requests that have been issued by

the VM operating system and are either queued at the

VMM or in service, i.e. pending, at the LUN storage
device.

To validate this linear assumption Table 2 shows

measurements of the mean number of requests from
benchmark experiments in our reference system. We

present measurements for a number of workload config-

urations averaged over multiple benchmark runs. For
detailed information on the considered workloads see

Section 5.1. Results indicate that the linear assump-

tion is a good approximation of system behavior. We

expect our assumption to hold as long as the aggregate
mean number of requests outstanding from VMs, i.e.

requests issued and not yet completed, does not exceed

the number of available connections from the VMM to
the LUN.

Iterative Search. The expected queue length approx-

imation is an input parameter for an iterative search
technique, which we propose to estimate the merge value

parameter for the simulation model. As shown in Algo-

rithm 2, the search is further parameterized with a con-
figurable initialization point and a maximum relative

error value, ∆max, that serves as a search termination

condition. Each search iteration begins with a number

of simulator runs that incorporate merging operations
according to the current value of ω. Every simulator run

is parameterized with a random combination of inter-

arrival time traces drawn from a trace repository, de-
pending on the number and type of considered request

classes k. At the end of each search iteration we com-

pute the corrected mean queue length in simulations,
N ′

sim, with

N ′

sim =
Nsim

ω
, ω ≥ 1 (8)

where Nsim is the mean queue length over all simula-

tion runs andN ′

sim represents the effective queue length

after the merging transformation with ω. The effective
queue length in simulation is then used as input param-

eter for the function get merge error, which computes

the relative error ∆ω produced by the current ω esti-

Performance Models of Storage Contention in Cloud Environments 9

Algorithm 2 Iterative Estimation of Merge Value
ω ← merge value initialization point
Nexp ← inferred expected queue length
∆max ← 0.05
flag ← 0
while flag != 1 do

#run configurable amount of simulator iterations
for i = 1 to max simulator iterations do

for k = 1 to K do

draw random arrival trace from repository
end for

simulate(ω)
end for

#search merge value ω
Nsim←mean queue length over simulator iterations
N ′

sim ← (Nsim/ω)
∆ω ← get merge error(N ′

sim)
if ∆ω ≤ ∆max then

flag ← 1
else if N ′

sim < Nexp then

ω ← decrease
else if N ′

sim > Nexp then

ω ← increase
end if

end while

mate according to the error function

∆ω =

∣

∣

∣

∣

∣

N ′

sim −NK
exp

NK
exp

∣

∣

∣

∣

∣

, (9)

where NK
exp is the inferred expected queue length com-

puted according to (7) from isolation experiments. The
search terminates if the corrected queue length is ac-

curate within 5% of NK
exp. In cases where the estima-

tion error is outside this range, we control search direc-

tion and ω values on the basis of a binary search. Let
ω = g(N ′

sim) be the merge value used in simulation to

obtain N ′

sim. If N ′

sim is smaller than NK
exp, we decrease

ω in order to increase the mean number of requests in
simulation. In cases where previous iterations have pro-

duced a N ′

sim,old, such that {N ′

sim,old > NK
exp > N ′

sim}

the merge value for the next iteration is determined by

ω = g(N ′

sim)−
g(Nsim)′ − g(N ′

sim,old)

2
, (10)

which is half the distance between ω values used to ob-

tain N ′

sim and N ′

sim,old. In cases where no such N ′

sim,old

exists, we decrease ω by a configurable step size param-
eter. The inverse of the above applies for the opposite

search direction. Table 1 offers a summary of the input

and output parameters for the Homogeneous model.

Table 3 Workload Configurations.

Parameter Conf-1 Conf-2

PM

Size low bound 500 byte 9.77 kB
Size high bound 9.77 kB 19.53 kB
Size read 512 byte 2 kB
Size write 512 byte 2 kB

FFSB
Size Read 4 kB 32 kB
Size Write 4 kB 32 kB

5 Validation Experiments: Homogeneous Model

5.1 Workload Generation

We consider a number of different workload types, which

are submitted from within VMs running in isolation, as
well as in consolidated scenarios. The workloads con-

sist of varying configurations of two benchmarks with

quite distinct characteristics. The Flexible File System
Benchmark (FFSB) [2] is a multi-threaded benchmark

comprising large file operations. Conversely, Postmark

(PM) [5] is a synthetic single-threaded workload com-

prising small file and metadata-intensive operations de-
signed to emulate I/O patterns of Internet applications

such as e-mail and e-commerce. We specifically choose

these two workload types to validate our model since
the different file size distributions should result in dis-

tinct quantities of VMM I/O request splitting opera-

tions.

In order to obtain a system steady state, bench-

marks for each configuration are submitted over a pe-

riod of 75 minutes in five minute intervals. We have
considered two configurations of a PM workload in our

investigation, denoted PM-1 and PM-2. The workloads

differ in the file sizes of the initial file set, as well as the
sizes of read and write requests (see Table 3). The “size”

parameters specify how much data is read or written to

files at a time.

Similar to PM we have defined two FFSB configura-

tions, but this benchmark additionally supports the ex-

ecution of sequential, as well as randomized reads/writes.
The response times of sequential and random requests

can significantly differ, since sequential requests are most

directly affected by the transfer speed of the disk drive,
while random requests are most directly affected by

disk seek time [6]. Considering the sequential and ran-

domized options essentially leaves us with four distinct

FFSB workloads for our study, denoted as FFSB-1 S,
FFSB-1 R, FFSB-2 S, and FFSB-2 R. More detail on

the considered workloads can be found in previous work

[35].

10 Stephan Kraft et al.

5.2 Workload Characterization

Request Size. The disk I/O scheduler of the VM oper-

ating system aggregates and reorders queued requests.

As a result the total number and sizes of disk requests

issued by the VM operating system to the VMM can
significantly differ from the total number and sizes of

requests submitted by the benchmark application to the

VM operating system. To illustrate how workloads sub-
mitted by the considered application configurations are

translated into logical block requests by the VM oper-

ating system, Figure 6 shows measurements of VM disk
request size distributions of sample benchmark exper-

iments. For ease of presentation we have grouped the

data into bins. The sizes of the bins are chosen on the

basis of a related workload characterization study [12].

As shown in Figure 6 (a) the VM kernel merges
the majority of requests submitted by PM-1 into sizes

larger than four and less or equal to eight blocks. Since

the standard file system block size on our reference sys-
tem is 4kB, a request for eight blocks has a size of 32kB.

Figure 6 (b) reflects the main difference between the two

PM workload configurations. PM-2 submits requests of
larger sizes. This results in a lower frequency of 32kB

(eight blocks) request sizes and additional requests for

block sizes greater than eight. A common attribute of

the two PM workloads is that neither workload causes
the VM scheduler to issue a significant number of re-

quests with blocks sizes greater than 128.

Figures 6 (c) and (d) show request size distributions

of FFSB workloads and reveal that workload charac-
teristics are quite different compared to PM workloads.

Similar to PM the VM scheduler merges a large num-

ber of the FFSB workload to requests of size 32kB (8
blocks). However, the total number of requests is signif-

icantly lower and the proportion of requests with large

sizes is significantly higher than in the case of PM.

Evaluating the main differences between FFSB-1 S and
FFSB-2 S, the increased file sizes and frequency of large

file operations of FFSB-2 S allow the scheduler to trans-

late FFSB-2 S workloads into fewer requests of larger
sizes as seen in Figure 6 (d). For both FFSB workloads

large proportions of requests are merged to block sizes

> 128, which corresponds to request sizes > 512kB.

Interarrival Times. The significantly different char-
acteristics of the considered workload configurations are

also reflected in the interarrival times. Table 4 shows

that mean interarrival times at the VMM are roughly

four times larger in the case of FFSB workloads com-
pared to the PM configurations.

Since our model uses information recorded during

isolation benchmark experiments only, we are especially

interested in quantifying the impact of workload consol-

Table 4 Mean in ms, Standard Deviation (std), and Coeffi-
cient of Variation (cv) Statistics for Request Interarrival and
Service Times.

Workload Interarrival Times Service Times

mean std cv mean std cv

PM-1 0.72 15.4 21.0 8.61 43.4 5.0
PM-2 0.81 13.4 16.4 11.5 58.8 5.1
FFSB-1 S 3.07 28.5 9.2 13.9 46.8 3.4
FFSB-1 R 3.24 29.6 9.1 15.6 49.1 3.1
FFSB-2 S 4.36 43.4 9.9 15.2 52.4 3.4
FFSB-2 R 3.54 38.2 10.8 14.1 50.1 3.6

idation on request interarrival times. Figure 7 shows the

interarrival time distributions of disk requests submit-

ted from VMs when running in isolation (Iso) compared
to consolidation scenarios with additional VMs submit-

ting an identical workload in the background. Interest-

ingly, none of the arrival distributions from the VM to
the VMM displays a large deviation from their corre-

sponding isolation distributions when the workload on

the server is doubled (Con 2) or tripled (Con 3). We

take this as a clear indication that queueing of disk
I/O requests due to resource contention takes place at

the VMM layer, rather than at the VMs themselves.

Service Times. Our methodology approximates the

service requirement of disk requests with measured re-
sponse times in isolation scenarios as described in Sec-

tion 4.2.2. In isolation the utilization levels at the VMM

are likely to be low and thus requests may not incur
queuing. Table 4 shows mean service time statistics for

all workload configurations averaged over all VMs and

benchmark runs. The service requirements for FFSB

workloads are higher than for PM. This is probably
due to the larger request sizes of FFSB which entail

increased lengths of read/write operations at the disk

drive. Interestingly, randomizing workload patterns does
not automatically lead to higher service times. FFSB-

1 R has a larger service time than FFSB-1 S, while it

is the opposite for FFSB-2 R and FFSB-2 S.

5.3 Model Validation

For validation we conduct a series of benchmark ex-

periments on our reference system using the previously
introduced workload configurations. Workloads are sub-

mitted from within VMs. We consider scenarios with up

to three VMs, denoted VM 1, VM 2, and VM 3, where
we consolidate homogeneous workloads, i.e., workloads

of the same type. We specifically choose this number

of VMs as it resembles a realistic situation for the con-

solidation of disk I/O intensive applications and the
storage contention scenario in our reference system [3].

Each benchmark experiment consists of 15 individual

5min runs and results are reported as means over all

Performance Models of Storage Contention in Cloud Environments 11

1 2 4 8 12 16 20 32 64 128 >x
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Number of Blocks

N
um

be
r

of
 R

eq
ue

st
s

32
k

64
k

12
8k

25
6k

51
2k

>
51

2k

(a) PM-1

1 2 4 8 12 16 20 32 64 128 >x
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Number of Blocks
N

um
be

r
of

 R
eq

ue
st

s

32
k

64
k

12
8k

25
6k

51
2k

>
51

2k

(b) PM-2

1 2 4 8 12 16 20 32 64 128 >x
0

1

2

3

4

x 10
4

Number of Blocks

N
um

be
r

of
 R

eq
ue

st
s

32
k

64
k

12
8k

25
6k

51
2k

>
51

2k

(c) FFSB-1 S

1 2 4 8 12 16 20 32 64 128 >x
0

1

2

3

4

x 10
4

Number of Blocks

N
um

be
r

of
 R

eq
ue

st
s

32
k

64
k

12
8k

25
6k

51
2k

>
51

2k

(d) FFSB-2 S

Fig. 6 Measured Distribution of Request Sizes for PM and FFSB Workload Configurations.

10
−5

10
−4

10
−3

10
−20

0.2

0.4

0.6

0.8

1

Interarrival Time (s) − Log Scale

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

PM Conf 1 − Iso
PM Conf 1 − Con 2 VMs
PM Conf 1 − Con 3 VMs

(a) PM-1

10
−4

10
−3

10
−2

10
−1

10
00

0.2

0.4

0.6

0.8

1

Interarrival Time (s) − Log Scale

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

FFSB Conf1 Seq − Iso
FFSB Conf1 Seq − Con 2 VMs
FFSB Conf1 Seq − Con 3 VMs

(b) FFSB-1 S

10
−4

10
−3

10
−2

10
−1

10
00

0.2

0.4

0.6

0.8

1

Interarrival Time (s) − Log Scale

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

FFSB Conf1 Rand − Iso
FFSB Conf1 Rand − Con 2 VMs
FFSB Conf1 Rand − Con 3 VMs

(c) FFSB-1 R

Fig. 7 Impact of Workload Consolidation on Arrival Processes of PM and FFSB Workloads.

runs. We first show measurement results before com-

paring the prediction accuracy of our simulation model

to a product form analytical solution.

5.3.1 Measurement Results

We present measurements that illustrate the impact of

workload consolidation on disk request response times.
Disk response times are an important metric since they

may directly affect the performance of end users of ap-

plications, e.g. in cases where processes block until com-
pletion of a read request. All results are based on in-

VM measurements obtained with the blktrace tool as

described in Section 3.2.

Table 5 shows that workload consolidation leads
to an increase in disk I/O response times across all

workload configurations. The PM workloads suffer a

higher performance degradation than FFSB, with an
increase ranging in approximately [158%; 199%] and

[299%; 468%] in the two and three VM consolidation

scenarios, respectively. In case of the FFSB workloads
this increase is less severe, but still ranges approxi-

mately in [25%; 42%] and [47%; 89%] over all VMs

and configurations. Furthermore, there is no clear trend

showing that response times of random FFSB work-
loads increase to a larger degree than sequential FFSB

workloads when consolidating. Interestingly, VMs seem

to have slightly different I/O characteristics even for

identical workload configurations. For example, in a

three VM consolidation scenario PM-2 requests sub-

mitted from VM 2 have a mean response time of 56ms,
while the mean response time of PM-2 requests sub-

mitted from VM 3 is 43.9ms. Such discrepancies may

be explained due to the spatial locality of VM disk
images on the LUN. We indicate the stability of our

monitoring using a 95% confidence interval and report

the confidence interval width CIiso as the percentage

of the mean measured response time in isolation over
all benchmark runs.

5.3.2 Prediction Accuracy

We validate model predictions of mean disk request re-
sponse times against system measurements. We then

compare the quality of our predictions to an open prod-

uct form solution, which has previously been success-
fully applied in environments with shared resources [18].

Response time estimates for the product form model are

determined analytically as

Cest,k =
Dk

1−
∑K

t=1

λt

n
×Dt

, (11)

where Cest,k is a response time estimate for class k re-
quests, D is the mean service time, λ the mean arrival

rate, K the number of request classes, and {n = 32}

the number of servers in the model. In case the sum in

12 Stephan Kraft et al.

Table 5 Mean Response Time Measurements of Disk I/O Requests in ms for VMs in Isolation (Iso), Confidence Interval
Width of Isolation Measurements (CIiso), and Mean Response Time Measurements of Consolidation Scenarios with Two VMs
(Con 2) and Three VMs (Con 3).

Workload VM 1 VM 2 VM 3

Iso CIiso Con 2 Con 3 Iso CIiso Con 2 Con 3 Iso CIiso Con 3

PM-1 9.45 3.7 28.3 47.7 8.49 3.1 25.4 48.2 7.9 4.5 37.8
PM-2 11.5 5.0 31.1 53.3 11.9 3.9 30.8 56.0 11.0 3.6 43.9
FFSB-1 S 14.8 27.0 18.4 24.9 13.5 6.0 16.8 24.5 13.3 8.3 25.2
FFSB-1 R 16.4 5.6 21.5 29.8 15.2 6.8 20.1 25.6 15.3 6.7 28.2
FFSB-2 S 15.4 5.9 19.9 24.9 15.2 5.9 20.4 22.3 15.1 5.9 23.6
FFSB-2 R 14.6 5.1 19.6 23.5 13.7 5.8 19.4 22.9 13.8 4.8 23.3

Table 6 Confidence Interval Width of Simulation Results
(CIβ) and Mean Relative Errors of Response Time Predic-
tions for Simulation (∆ω) and Product Form (∆p) Model.

Workload Con 2 Con 3

CIβ ∆ω ∆p CIβ ∆ω ∆p

PM-1 11.6 0.13 0.46 17.9 0.09 18.4
PM-2 8.9 0.08 2.26 10.3 0.06 64.9
FFSB-1 S 2.3 0.03 0.12 12.3 0.02 0.06
FFSB-1 R 4.2 0.03 0.09 27.7 0.30 0.03
FFSB-2 S 6.6 0.09 0.03 19.4 0.04 0.05
FFSB-2 R 1.8 0.16 0.03 5.05 0.15 0.04

the denominator equals a result ≥ 1, we set the value of

the summation to 0.99. This term stands for the server
utilization and may be affected by error due to our ap-

proximations on service demand estimates.

Predictions of our simulation model are averaged
over multiple simulation runs, with number of runs≥ 50

and ≥ 100 for PM and FFSB simulations, respectively.

We indicate the reliability of the estimate using a 95%

confidence interval and report the confidence interval
width CIβ as the percentage of the mean, averaged

over all classes. Furthermore, the model incorporates

some specific characteristics of our reference system.
The VMM splits incoming traffic above a size thresh-

old of 512kB (128 blocks), which we consider in the

parameterization of the model as described in Section
4.2.1. The quantity of splitting operations is reported

as

Ψ =
JI
split

JI
, (12)

where JI is the total number of request arrivals before
our splitting step, JI

split the total number of split ar-

rivals, and Ψ the splitting ratio. Prediction accuracy is

evaluated by the error function

∆ =

K
∑

k=1

1

K

∣

∣

∣

∣

Cmeas,k − Cest,k

Cmeas,k

∣

∣

∣

∣

, (13)

which is the mean relative error over all k classes of

the estimated response time Cest,k with respect to the
measured value Cmeas,k.

PM. The simulation model delivers accurate predic-

tion results for PM-1 and PM-2 in both consolidation

Table 7 Comparison of Merging and Splitting Operations
Performed by the Simulation Model.

Workload Con 2 Con 3

Ψ ω ω

PM-1 1.01 2.55 4.7
PM-2 1.02 2.43 4.35
FFSB-1 S 1.56 2.0 2.9
FFSB-1 R 1.54 2.0 3.9
FFSB-2 S 1.83 2.2 3.075
FFSB-2 R 1.64 1.9 2.575

scenarios, as shown in Table 6. In light of the extent

to which response times of these workloads increase in

consolidation, the quality of results is highly satisfac-
tory. Conversely, the product form model delivers larger

errors and is not competitive except for the case of

PM-1 in Con 2. This result illustrates the effectiveness
of the model calibration technique, as Table 7 conveys

our methodology estimates merging values ω of approx-

imately 2.5 and 4.5 for Con 2 and Con 3, respectively.

Larger ω’s for Con 3 are reasonable, since more requests
get queued at higher utilization levels resulting in more

merging opportunities by the simulation model.

As we have shown in Figures 6 (a) and (b) the

numbers of requests larger than 512kB are very small

for PM workloads, thus splitting operations are negli-
gible. Figures 8 (a) and (b) show that predictions of

the simulation model underestimate the measured re-

sponse times for Con 2. We reason this might be due to
the necessary approximation of service times for merged

requests, where we estimate the aggregate service re-

quirement with the mean. Even though the storage de-
vice likely serves merged requests asynchronously, this

might be an optimistic approximation. Figures 9 (a)

and (b) also show optimistic predictions for Con 3, with

only a single exception for PM-2 submitted by VM 3.
Conversely, the reference product form model grossly

overestimates response times across all VMs and con-

solidation scenarios.

FFSB. Both approaches deliver good response time

predictions for Con 2, where the simulation model per-
forms especially well for the cases of FFSB-1 S/R. In-

terestingly, the product form model works significantly

better than for the PM workloads. Our technique per-

Performance Models of Storage Contention in Cloud Environments 13

VM 1 VM 2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Virtual Machine

R
es

po
ns

e
T

im
e

(s
)

Meas
Sim
Prod

(a) PM-1

VM 1 VM 2
0

0.01

0.02

0.03

0.04
>0.09 >0.09

Virtual Machine
R

es
po

ns
e

T
im

e
(s

)

(b) PM-2

VM 1 VM 2
0

0.005

0.01

0.015

0.02

Virtual Machine

R
es

po
ns

e
T

im
e

(s
)

(c) FFSB-2 Seq

VM 1 VM 2
0

0.005

0.01

0.015

0.02

Virtual Machine

R
es

po
ns

e
T

im
e

(s
)

(d) FFSB-2 Rand

Fig. 8 Comparison of Response Times from Measurement (Meas), Simulation (Sim), and Product-Form (Prod) Model for
Two VMs Consolidation Scenarios With Largest Prediction Errors. Legend Shown in Figure (a) is Identical for Figures (b),
(c), and (d).

VM 1 VM 2 VM 3
0

0.01

0.02

0.03

0.04

0.05

0.06 >0.7 >0.7 >0.7

Virtual Machine

R
es

po
ns

e
T

im
e

(s
)

(a) PM-1

VM 1 VM 2 VM 3
0

0.01

0.02

0.03

0.04

0.05

0.06 >1 >1 >1

Virtual Machine

R
es

po
ns

e
T

im
e

(s
)

(b) PM-2

VM 1 VM 2 VM 3
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Virtual Machine

R
es

po
ns

e
T

im
e

(s
)

(c) FFSB-1 Rand

VM 1 VM 2 VM 3
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Virtual Machine

R
es

po
ns

e
T

im
e

(s
)

Meas
Sim
Prod

(d) FFSB-2 Rand

Fig. 9 Comparison of Response Times from Measurement (Meas), Simulation (Sim), and Product-Form (Prod) Model for
Three VMs Consolidation Scenarios With Largest Prediction Errors. Legend Shown in Figure (d) is Identical for Figures (a),
(b) and (c).

forms VMM level splitting operations on the arrival
trace, as well as merging, as shown Table 7. In par-

ticular we have found the splitting behavior difficult to

model, as it needs to maintain temporal dependence in

the measured arrival trace. Furthermore, one needs to
rejoin split requests and make additional approxima-

tions on the aggregate response time. For the case of

Con 2 splitting and merging operations in our model
almost compensate each other. Figures 8 (c) and (d)

show response time values for the largest prediction er-

rors and further illustrate that our model is optimistic.
In Con 3 the simulation model performs extremely well

for FFSB-1 S and FFSB-2 S. The product form solu-

tion delivers better results when workloads have ran-

dom access patterns. Predictions are especially difficult
for the simulation model in the case of FFSB-1 R. Here,

Figure 9 (c) indicates that predictions atypically are

overestimating system measurements. While still being
competitive, errors are also larger for FFSB-2 R. Figure

9 (d) confirms the earlier observation that our modeling

assumptions lead to optimistic predictions.

Summary.Our findings indicate that prediction qual-

ity of disk request response times in homogeneous con-

solidation scenarios can be increased with enhanced

models, which can account for splitting operations of
the VMM disk scheduler and are heuristically calibrated.

However, the range of application for such models sig-

nificantly widens if they are also able to accurately pre-

dict response times in heterogeneous consolidation sce-
narios. Model calibration with multiple workload types

is more difficult since each type requires individual ω

merge values and thus complicates the merge value es-

timation step. We leverage our findings from modeling
homogeneous workload consolidations and tackle this

additional complexity with a model refinement as de-

scribed in Section 6.

6 Decomposition Model

In this section we advance our modeling effort and pro-

pose models for predicting heterogeneous workload con-
solidations. Such models are more powerful as homoge-

neous ones, because they enable system administrators

to find the workload mixes with the least interference
effects. Specifically, we propose linear estimation for-

mulas to forecast mean read/write mixes, throughputs,

and response times in consolidation. Additionally, we

introduce a simulation model for predicting response
time distributions. Such a capability is particularly use-

ful for cloud operators interested in providing Service

Level Agreements (SLAs) to customers.

The refined models specifically distinguish between

read and write request types. Such distinction is advan-
tageous, as the performance of synchronous disk I/O

read requests may directly affect application perfor-

mance in cases where processes block until completion

14 Stephan Kraft et al.

of a previously submitted request. Write requests can

usually be served asynchronously and do not require the
submitting process to block. The differentiation accord-

ing to request type allows us to decompose the workload

and model read and write requests separately.

6.1 Static Analysis of Arrival Queue Lengths

The I/O workload of the storage device consists of a
mixture of read and write requests. Due to the mixed

nature of consolidated workloads, ideally the system

must minimize situations where time-noncritical write
requests may interfere with time-critical reads. We use

the tshark tool to observe how the arrival queue length

at the storage server is partitioned between read and
write requests in one of our consolidation experiments,

in order to study how our reference system submits

requests of different types. Figure 10 (a) shows that

a majority of arriving read requests only find reads
ahead of them. This suggests that the VMM assigns

a form of priority shares for read requests, e.g. similar

to original UNIX systems (System 7) that used a disk
request scheduler giving read requests non-preemptive

priority. Mostly the utilization of the storage server is

low, since only a small fraction of the 32 available con-
nections from the VMM to the storage server are being

used. However, there is a significant number of instances

where the maximum amount of available connections

are in use indicating high utilization periods. Interest-
ingly, we also see a noticeable number of cases where

the arrival queue contained 16 writes.

Figure 10 (b) shows more variability in the arrival

queue lengths for write requests. On most occasions ar-

riving write requests find a small number of reads, as
well as other write requests roughly ranging in [1; 16].

These observations suggest that a maximum of 16 write

requests are batched from the VMM to the storage
device. However, there also are noticeable frequencies

where arriving write requests see large queues of read

requests. These cases could indicate situations where

batches of write and read requests are submitted within
a short time interval. We refer to previous work [21] for

analysis of the dynamic behavior of arrival queues and

a graphical illustration of I/O request batching.

6.2 Linear Predictor Formulas

Our performance prediction methodology considers the
following performance metrics. We include definitions

for two VM consolidation scenarios. The generalization

is obvious and not given due to space limitations:

– TR
i : mean throughput of VM i’s read requests in

isolation
– TR

i,j : mean throughput of VM i’s read requests in

consolidation with VM j

– XR
i,j : throughput of read requests, originating from

any VM, in the consolidation of VMs i and j

A similar notation TW
i , TW

i,j , and XW
i,j is used for write

requests. We also introduce the following derived quan-

tities:

– Ti = TR
i + TW

i : mean throughput of VM i in isola-
tion

– Ti,j = TR
i,j + TW

i,j : mean throughput of VM i in con-

solidation with VM j
– αR

i = TR
i /Ti: relative throughput fraction of read

requests for VM i in isolation

– αR
i,j = TR

i,j/Ti,j : relative throughput fraction of VM

i’s read requests in consolidation with VM j
– βR

i,j = (TR
i,j+TR

j,i)/(Ti,j+Tj,i): mix of read requests,

originating from any VM, in the consolidation of

VMs i and j

Similar quantities αW
i , αW

i,j , and βW
i,j are defined for

write requests. In addition, for response times we de-

fine indexes CR
i , CR

i,j with similar meaning of the cor-
responding indexes for throughputs. We now propose

three classes of linear estimators for request read/write

mixes, throughputs, and response times in consolida-
tion.

6.2.1 Approximation of Consolidation Read/Write

Mixes

Let us first introduce the following linear predictor for
the consolidation read/write mixes βR

i,j and βW
i,j .

βR
i,j ≈ αR

i

(

Ti

Ti + Tj

)

+ αR
j

(

Tj

Ti + Tj

)

(14)

βW
i,j ≈ αW

i

(

Ti

Ti + Tj

)

+ αW
j

(

Tj

Ti + Tj

)

(15)

A mathematical justification of the above approxima-

tion is given in Appendix A.

6.2.2 Approximation of Consolidation Throughputs

Using a similar justification as the one for read/write

mixes, we define the following heuristic for estimating

the total throughputs of read and write requests in con-
solidation

XR
i,j ≈ TR

i

(

Ti

Ti + Tj

)

+ TR
j

(

Tj

Ti + Tj

)

XW
i,j ≈ TW

i

(

Ti

Ti + Tj

)

+ TW
j

(

Tj

Ti + Tj

) (16)

Performance Models of Storage Contention in Cloud Environments 15

Table 8 Summary of Input and Output Parameters for the Decomposition Model Linear Estimators When Predicting Read
Requests in Two VM Consolidation Scenarios. The Notation for Write Requests is Similar.

Input

Ti, Tj Mean throughput of VM i (resp. VM j) in isolation.

TR
i , TR

j Mean throughput of VM i (resp. VM j) read requests in isolation.

αR
i , αR

j Relative throughput fraction of read requests for VM i (resp. VM j) in isolation.

CR
i , CR

j Mean response time of VM i (resp. VM j) read requests in isolation.

AR
i , AR

j Mean arrival queue lengths of VM i (resp. VM j) read requests in isolation.

Output

βR
i,j Mix of read requests from any VM in consolidation of VMs i, j.

XR
i,j Mean throughput of read requests from any VM in consolidation of VMs i, j.

TR
i,j , T

R
j,i Mean throughput of VM i (resp. VM j) read requests in consolidation with VM j (resp. VM i).

CR
i,j , C

R
j,i Mean response time of VM i (resp. VM j) read requests in consolidation with VM j (resp. VM i).

0
5

10
15

20
25

30

0
5

10
15

20
25

30

0

5000

10000

15000

Arrival Queue READsArrival Queue WRITEs

F
re

qu
en

cy
 A

rr
iv

in
g

R
E

A
D

s

(a) Arrival Queue as Seen by Arriving Reads
(191786 Arrivals)

0
5

10
15

20
25

30

0
5

10
15

20
25

30

0

2000

4000

6000

Arrival Queue READsArrival Queue WRITEs

F
re

qu
en

cy
 A

rr
iv

in
g

W
R

IT
E

s

(b) Arrival Queue as Seen by Arriving Writes
(152899 Arrivals)

Fig. 10 Arrival Queue Lengths From a Two VM Consolidation Experiment (Web+Mail).

6.2.3 Approximation of Consolidation Response Times

The approximation we propose involves using the re-

sponse times and arrival queue-lengths collected with
the blktrace and tshark tools in isolation experiments

to estimate the expected response times in consolida-

tion. Let SR
i and SW

i be the estimated service times
of read and write requests in isolation. Assuming first-

come first-served as an approximation of the scheduling

policy at the disk, we use the following expression:

SR
i ≈ CR

i /(1 +AR
i), (17)

where 1 +AR
i is the queue-length seen upon arrival by

a read request at ESX including the arriving job itself

[36]. Equivalently, the arrival queue-length can be con-

sidered at the storage server if ESX data is not directly
available, since we found that in isolation the differ-

ence between the two measurements is often negligible.

Then we estimate the expected response time for a read

request in consolidation as

CR
i,j ≈ CR

i + SR
j AR

j (18)

This approximation assumes that the overheads for reads

in consolidation for VM i are only due to the interfer-

ence with reads issued by the other VM j; write requests

do not interfere with the response times of reads for VM
i. Figure 10(a) supports this assumption, as the large

majority of read arrivals only find requests of the same

type in the system.

For write requests the non-interference property is

not as evident, see Figure 10(b) where some reads can
be found in the system by an arriving write. However,

it is interesting to observe that such reads rarely exceed

5-10 in number, except for a few rare events, depicted
in the middle of Figure 10(b), where tens of both reads

and writes are found on arrival to the system. Our ap-

proximation ignores such rare events and we leave this

extension of our estimator for future work. Based on
this approximation approach, we define the mean re-

sponse time of write requests in consolidation as

CW
i,j ≈ CW

i + SW
j AW

j (19)

Finally, similar expressions are defined for the response
times of VM j, i.e., CR

j,i and CW
j,i . We refer to Table 8 for

a summary of parameters and estimators of the linear

predictor formulas.

16 Stephan Kraft et al.

BatchForkStation

BatchJoinStation

Population: bc

Merge [ω]

Z(bc)R,i
k

A(bc)R,i
k A(c)R,i,n

k

B k,n Ak

E(c)
k

FCFS

R RR

R,i,n

Fig. 11 Customized Closed Queueing Model.

6.3 Simulation Model

We complement the decomposed modeling methodol-

ogy with a simulation model that not only facilitates

prediction of mean response times in consolidation, but
additionally allows us to approximate the response time

distribution. In some situations prediction of response

time distributions might be preferable to mean values,
e.g. in cases where certain percentiles specified in Ser-

vice Level Agreements (SLAs) need to be satisfied.

Our model follows the concepts of the linear esti-
mators introduced in Section 6.2 and focuses on the

mostly synchronous and performance critical read re-

quests [44]. To capture the feedback effects between

read request completions and arrivals we resort to a
multiclass closed queueing model as sketched in Figure

11. Requests submitted from individual VMs are dis-

tinguished in K separate classes. Based on the assump-
tions and approximations in Section 6.2.3 the simula-

tion model uses a single server with FCFS scheduling.

To maintain the burstiness in the arrival process
throughout the simulation run the model population

consists of BatchCustomers, denoted bcR and bcW , that

are forked and joined in custom model elements. Be-

fore arriving at the queue each BatchCustomer enters
a BatchForkStation, where it is forked into a batch, such

that:

(n ∈ N, 1 ≤ n ≤ bR) : A(cR,i,n
k) = A(bcR,i

k), (20)

where bR is a read request batch size sampled from
a probability distribution, cR,i,n

k is a forked read re-

quest of class k, A(cR,i,n
k) is the arrival time of a forked

request, and A(bcR,i
k) is the arrival time of a Batch-

Customer. After leaving the service station all elements

of the previously forked BatchCustomer are re-joined

in the BatchJoinStation model element. We compute
per request response times for each cR,i,n

k as the time

difference between request completion E(cR,i,n
k) and ar-

rival A(cR,i,n
k). A similar notation bW , cW,i,n

k , A(cW,i,n
k),

A(bcW,i
k), E(cW,i,n

k) is used for write requests.

Algorithm 3 Parameterization of Simulation Model
#step 1: parameters from isolation measurements

Pr[|BR
k,n| = bR]← measured distribution of batch sizes

Trace[ZR
k,n]← measured trace of batch think times

Exp[D(cRk,ak
)]← exponential service as function of load

#step 2: estimate population parameter

XR,est lin
k ←throughput estimate from linear predictor

XR,est sim
k ← throughput estimate from simulation

NR,bc
k = 1← init model population

while XR,est sim
k < XR,est lin

k do

simulate
increase NR,bc

k

end while

lower = NR,bc
k − 1← lower bound population size

upper = NR,bc
k ← upper bound population size

6.3.1 Model Parameterization

The parameterization process of the simulation model

consists of two steps as outlined in Algorithm 3. First
we use measurements obtained in a single representa-

tive isolation benchmark experiment to determine disk

I/O request batch sizes, batch think times, and ser-
vice times. Secondly, we find an approximation of the

model population by modulating this parameter until

throughputs in simulation match a throughput estimate

computed with the linear predictor formulas. See the
following paragraphs for detailed definition of model

parameters.

Batch Sizes. The batched submission of I/O requests
is an important modeling parameter as bursty arrival

patterns can have a large impact on system perfor-

mance. We have found the batch size parameter to
largely influence the quality of the modeling result and

initially determine this quantity from measured disk

I/O request arrival traces. The elements of a batch are

defined as:

∀cR,i
k ∈ BR

k,n : diff{A(cR,i+1

k), A(cR,i
k)} ≤ t, (21)

where batch BR
k,n holds all read arrivals cR,i

k that have

interarrival times ranging within a timeout constraint

t. We specify t as 2ms, an approximation based on the
analysis of the dynamic arrival queue lengths as de-

scribed in [21]. Similar quantities cW,i
k , BW

k,n, A(c
W,i
k)

are defined for write requests.

Once the batches in the arrival time series are found,

we define the size of a batch BR
k,n as |BR

k,n| and compute

the probability distribution Pr[|BR
k,n| = bR] for each

workload. The distribution of batch sizes constitutes a

parameter of the BatchForkStation model element: A
batch size bR is uniformly sampled for each arrival of a

read request BatchCustomer before it is forked into bR

requests.

Performance Models of Storage Contention in Cloud Environments 17

1 5 9 13 17 21 25 29 33
0

0.005

0.01

0.015

0.02

Arrival Queue Reads

M
ea

n
S

er
vi

ce
 T

im
e

(s
)

File
Mail
Web

Fig. 12 Measured Load Dependent Service Times of Reads
for File, Mail, and Web Server Workloads in Isolation.

Think Times. The model captures think times as
the time between completion of batch n and arrival of

the following batch n+ 1. We compute this parameter

based on the batch population as:

ZR
k,n = diff{min(A(cR,i

k), cR,i
k ∈ BR

k,n+1),

max(E(cR,i
k), cR,i

k ∈ BR
k,n)},

(22)

where the think time ZR
k,n is the difference between

the largest completion time E(cR,i
k) of batch BR

k,n and

the smallest arrival time of any request belonging to
the successive batch BR

k,n+1
. We define similar quanti-

ties ZW
k,n, E(cW,i

k) for write requests. In the simulation
model we use measured think time traces to assign a

think time Z(bcR,i
k) for each BatchCustomer bcR,i

k .

Service Times. We approximate the service require-
ment of requests using the well-known mean value anal-

ysis (MVA) expression introduced in (17). Our work-

load characterization study has shown that, under the
simplifying assumption of FCFS scheduling, service times

during phases of lower loads are larger than during

phases of higher loads. We explain this behavior due
to the disk device’s capabilities to serve large batches

of requests faster than small numbers of individual re-

quests, i.e. the per request service times of a batched

sequential read versus service requirements of multiple
random reads. Figure 12 reveals that read request ser-

vice requirements of all considered workload types are

load dependent. We estimate the mean request service
time as a function of the queue seen on arrival by

D(cRk,ak
) ≈

1

n

n
∑

i=1

C(cR,i
k)/(1+AR

k), ak = (1+AR
k), (23)

whereD(cRk,ak
) is the mean service time of read requests

given the arrival instant queue length ak and measured

response time C(cR,i
k). For write requests we define the

quantity D(cWk,ak
).

Service demands of read requests in the queueing

model are assumed to be exponentially distributed. We
have found this to be a good approximation since our

measurements roughly match the theoretical exponen-

tial of CV = 1: the CV of measured service times
ranges in CV R

ak
= [0.39; 3.13] for all D(cRk,ak

). Dur-

ing simulations of consolidation scenarios each read re-

quest arrival cR,i,n
k observes the arrival queue length of

requests of its own class, AR
k , and samples an expo-

nentially distributed service time with mean D(cRk,ak
),

where ak = 1 +AR
k .

Population. The model is parameterized with a pop-
ulation of BatchCustomers. Before entering the queue-

ing station each BatchCustomer is forked into a num-

ber of individual requests and thus represents a batch
arrival. Determining the population size from measure-

ments, e.g. the number of benchmark application threads,

is difficult, since a batch of requests submitted by in-
VM schedulers might consist of requests originating

from multiple threads. In order to approximate the ap-

propriate population size in consolidation based on iso-

lation measurements only, we leverage results obtained
from the previously introduced linear predictor formu-

las. Specifically, we predict consolidation throughputs

as defined in Section 6.2.2 and then modulate the pop-
ulation size in simulations until simulation throughputs

closely match the analytical prediction.

Since the configurable population size constitutes

batch arrivals rather than individual requests, it might

not always be possible to exactly match analytically

estimated with simulated throughputs. In such cases
we determine upper and lower bounds on population

sizes and record response time predictions via linear

interpolation between these bounds.

6.3.2 Model Calibration Methodology

During benchmark experiments we found that in-VM

throughput measurements can significantly differ from

throughputs measured at the storage server. In the ab-

sence of detailed knowledge of VMM internals we ex-
plain this behavior with optimization operations along

the storage I/O path. Table 10 reveals that file server

throughputs are especially affected by these operations,
where measured read request throughputs at the stor-

age server are reduced to roughly 60% compared to

quantities recorded inside VMs. Throughputs for web
and mail server workloads are monitored at similar quan-

tities across the system stack.

We model this behavior with a heuristic calibration
technique similar to Section 4.3.1. However, instead of

parameterizing the queueing station with a static merge

value ω we estimate this parameter dynamically for

18 Stephan Kraft et al.

Table 9 Summary of Input and Output Parameters for the Decomposition Simulation Model When Predicting Read Requests.
The Notation for Write Requests is Similar.

Input

Pr[|BR
k,n| = bR] Measured distribution of request batch sizes from VM in isolation.

Z(bcR,i
k) Trace of request batch think times measured from VM in isolation.

D(cRk,ak
) Mean service time of requests from measurement given arrival queue ak.

XR,est lin
k Throughput estimate in consolidation from linear predictor formulas.

ω Merge value parameter from measured throughput ratio.

NR,bc
k Population of BatchCustomers derived through calibration.

Output
C(cR,i

k) Predicted request response times in consolidation.

XR,est sim
k Predicted throughput in consolidation.

Table 10 Measured Throughputs (cmd/s) in Isolation at
VM and Storage Server Level.

Workload VM Storage Server Ratio

R W R W R W

File 330 237 198 153 0.60 0.65
Mail 245 370 245 380 1.00 1.03
Web 470 44 462 53 0.98 1.20

each batch arrival. The ω value is based on the through-

put ratios measured in isolation, as well as the size bR

of an arriving batch:

ω = bR (1−
TR
k,san

TR
k,vm

), TR
k,vm ≥ TR

k,san, (24)

where TR
k,vm and TR

k,san are the throughputs measured
at VM and storage server level, respectively. Thus we

merge an equivalent percentage of requests from each

batch arrival as we observe throughput reductions in
our isolation measurements. Table 9 offers a summary

of input and output parameters for the decomposition

simulation model.

7 Validation Experiments: Decomposition

Model

We conduct our heterogeneous workload consolidation

study using emulated disk workloads of file, web, and

mail server type applications. Workloads are generated

with FileBench [11], a framework for measuring and
comparing file system performance. We maintain the

default workload specification and use the recommended

parameters for small configurations (50000 files in the
initial file set). Thus read/write mixes are defined as

[0.59; 0.41], [0.92; 0.08], and [0.39; 0.61] for file, web, and

mail workloads, respectively.
The presented measurements are gathered during a

series of benchmarking experiments, each consisting of

15 runs of 300s length. We report results as the means

over all 15 iterations or based on a representative run.
Experiments are conducted with a single VM running in

isolation and with two or three VMs on the same server

in consolidation. For example, we consolidate one web

and one mail server, denoted Web+Mail, and one web

and two file servers, denoted Web+File+File. Valida-

tion results are reported as absolute relative errors of

predictions compared to measurement.

7.1 Model Validation

7.1.1 Measurement Results

The performance of heterogeneous workloads is espe-
cially difficult to predict, as the joint resource usage

of such workload mixes may result in volatile inter-

ference effects on disk requests. Table 12 reflects this
volatility and shows highly variable measurements of

throughputs in consolidation. In Web+Mail, e.g., the

read throughput of the mail server workload is mon-
itored at 132cmd/s whereas we only record 95cmd/s

throughputs for mail server read requests in File+Mail.

Since the difference in read throughput is only minor

for the web server in both Web+Mail and Web+File
consolidation cases, consolidating web and mail server

workloads appears to be preferable for achieving large

mail server read throughputs.

Response times are equally hard to foresee in con-

solidation: Mail server reads are measured at 45.5ms in
File+Mail and at 39.0ms in the higher utilized scenario

of Mail+Web+Web. We find response times of write re-

quests to be significantly smaller than of read requests.
This could be a result of disk request caching at the

storage server. Consolidation causes latencies of both

read/write request types to increase. The web server
workload displays the highest rate of latency perfor-

mance degradation: Read requests in Web+File+File

are roughly 435% larger compared to the web server

isolation measurements presented in Table 11.

Summarizing, our measurements of heterogeneous

workload consolidations show workload interference ef-
fects that may defy intuition and further motivate the

need for accurate performance predictions that can sup-

port workload placement decisions.

Performance Models of Storage Contention in Cloud Environments 19

Table 11 Mean in ms, Standard Deviation (std), and Coefficient of Variation (cv) Statistics for Read Request Service Times,
Batch Sizes, Batch Think Times, Response Times, and Arrival Queue Lengths (Aqueue) as Measured in Isolation with Blktrace.

Workload Service Time Batch Size Batch Think Time Response Time Aqueue

mean std cv mean std cv mean std cv mean std cv mean std cv

File 2.94 4.39 1.50 5.07 4.85 0.96 151 188 1.24 19.9 35.4 1.78 9.57 5.44 0.57
Mail 2.66 2.82 1.06 5.49 5.32 0.97 149 113 0.76 17.3 22.6 1.31 8.12 5.48 0.68
Web 1.58 2.43 1.56 5.79 6.97 1.20 141 88.4 0.63 11.8 22.7 1.92 8.39 6.91 0.82

Table 12 Measurement of Throughputs and Response Times for Consolidated Workloads.

Measured Throughputs (cmd/s) Measured Response Times (ms)
Workload VM1 VM2 VM3 VM1 VM2 VM3

R W R W R W R W R W R W

File+Mail 198 138 95 190 N/A N/A 35.0 6.90 45.5 7.92 N/A N/A
Web+File 225 18 223 158 N/A N/A 40.3 9.45 29.6 7.19 N/A N/A
Web+Mail 250 25 132 256 N/A N/A 33.0 7.97 28.0 7.03 N/A N/A
Mail+Web+Mail 78 155 145 24 77 167 46.8 12.3 55.5 12.0 45.0 13.0
Mail+Web+Web 86 159 175 27 177 22 39.0 13.5 47.3 12.0 48.5 13.3
Web+Web+File 174 16 173 20 148 96 55.2 15.5 54.0 16.1 43.6 16.7
Web+File+File 155 16 125 91 133 88 63.4 19.1 49.8 19.5 51.0 19.0
Mail+Mail+File 81 147 78 153 146 96 54.9 14.6 54.9 15.1 45.4 13.1

Table 13 Accuracy of Read/Write Mix Predictions for Con-
solidated Workloads from Linear Predictors.

Measured Mix Predicted Mix
Workload Total Accuracy

R W ∆R ∆W

File+Mail 0.47 0.53 0.03 0.02
Web+File 0.72 0.28 0.03 0.07
Web+Mail 0.58 0.42 0.09 0.12
Mail+Web+Mail 0.46 0.54 0.20 0.17
Mail+Web+Web 0.68 0.32 0.07 0.16
Web+Web+File 0.79 0.21 0.01 0.04
Web+File+File 0.68 0.32 0.01 0.01
Mail+Mail+File 0.44 0.56 0.05 0.04

7.1.2 Prediction Accuracy of Read/Write Mixes

Table 13 reports approximation errors of read/write

mix predictions for two VM and three VM consoli-

dation scenarios obtained from the linear estimators.

Results are excellent for two VM consolidations with
errors ranging in [0.02, 0.12]. When moving to higher

utilizations where three VMs are consolidated on the

server modeling results slightly worsen, but still remain
in a low range of [0.01, 0.20]. Given the blackbox view

of the system, as well as the simplicity of the modeling

approach the quality of read/write mix predictions is
very good.

7.1.3 Prediction Accuracy of Throughputs

We show validation results for predictions of the to-

tal read/write throughput according to the linear esti-
mator (16), as well as per-VM throughput estimates.

Table 14 illustrates that approximation errors for total

throughputs are equally low as when predicting read/-

write mixes. Here results for two VM and three VM

cases are similar and range in [0.02, 0.13] and [0.02, 0.20]
for throughputs of read and write requests, respectively.

We are especially interested in the accuracy of per-

VM throughput predictions. The decomposed simula-
tion model leverages these estimates to approximate re-

quest class populations and so large errors for per-VM

throughputs may also reflect on response time predic-
tions of the simulation model. Our approach delivers

mostly fair results < 0.30 for reads, with a single out-

lier of 0.39 for File+Mail. Interestingly, our model ap-

pears to capture three VM cases better than scenarios
with two VMs. Approximation errors for writes range in

[0.06, 0.41]. Notice that read requests have errors gener-

ally lower than write requests; this is a positive property
since predicting the performance of read requests, which

are mostly synchronous, is much more relevant than

predicting the performance of write requests, which are
mostly asynchronous and thus do not impact much on

the response times of the applications in the VMs.

7.1.4 Prediction Accuracy of Response Times

Linear Estimators. The results in Table 15 indicate that
our heuristic for response time predictions works well

for read requests, which are the most important to pre-

dict; most of absolute relative errors are in a narrow
interval ranging in [0.01, 0.25], while a few cases show

larger errors ranging in [0.31; 0.35]. In particular, con-

solidation scenarios of web server workloads appear to

be difficult to predict for the linear estimators. How-
ever, in light of the above addressed 435% measured

latency increase for consolidated web server workloads,

such prediction errors may be satisfactory. Results for

20 Stephan Kraft et al.

Table 14 Accuracy of Throughput Predictions for Consolidated Workloads from Linear Predictors.

Predicted Total Predicted per-VM
Workload Total VM1 VM2 VM3

∆R ∆W ∆R ∆W ∆R ∆W ∆R ∆W

File+Mail 0.02 0.02 0.22 0.19 0.39 0.10 N/A N/A
Web+File 0.11 0.16 0.01 0.15 0.21 0.20 N/A N/A
Web+Mail 0.09 0.15 0.16 0.20 0.04 0.34 N/A N/A
Mail+Web+Mail 0.08 0.19 0.07 0.19 0.04 0.37 0.15 0.16
Mail+Web+Web 0.07 0.20 0.03 0.16 0.09 0.41 0.10 0.27
Web+Web+File 0.13 0.14 0.15 0.12 0.04 0.18 0.21 0.13
Web+File+File 0.09 0.08 0.06 0.11 0.08 0.09 0.13 0.06
Mail+Mail+File 0.10 0.15 0.02 0.15 0.11 0.09 0.28 0.22

write request response times contain some larger error

values, but apart from the difficult case of Web+File,
range in [0.002, 0.38]. However, mean relative error val-

ues over all results compare at 0.10 and 0.18 for reads

and writes, respectively.

Simulation Model. Validation of simulation results
focuses on read requests. Table 15 illustrates that ap-

proximation errors of mean response times are in line

with approximation errors of the analytical solution.

We choose an example case for each workload type

to illustrate the potential of our model in fitting simu-
lation results to measured distributions. Figure 13 (a)

shows that predicted response times in File+Mail are

pessimistic across most of the distribution for mail server

requests. The quality of results is equally good for the
web server workload in Figure 13 (b). We record 90th

percentiles of roughly 0.0755s and 0.0726s for measure-

ment and simulation, respectively. In the higher utilized
and more difficult to predict three VM consolidation

scenario illustrated in Figure 13 (c), the response time

distribution of file server requests is also approximated
well.

Response time predictions of write requests are more
difficult due to high variability in service times with

CV W
ak

= [1.03; 13.5] and some cases where read requests

interfere with writes as depicted in Figure 10 (b). Fur-
thermore, the often asynchronous nature of write re-

quests [44] may be more accurately captured with an

open queueing model. Our simulation model assumes
that service demands of write requests follow a Hyper-

exponential distribution and delivers mean relative er-

rors of 0.33 and 0.44 when predicting write request re-

sponse times for two VM and three VM consolidations,
respectively.

Summary. The validation confirms that the pro-

posed approximations could be effective in several cases

of practical interest. Predictions of read/write mixes

and read request throughputs are of high quality. Ap-
proximating read request response times is more dif-

ficult, but again our models deliver fair results. More

work is needed towards investigating the behavior of

write requests, which appear to be the harder to pre-

dict in consolidation.

8 Related Work

A large amount of research literature is concerned with

scheduling algorithms for disk I/O in virtualized envi-

ronments. The main challenges regarding scheduling are
to provide fair access to the shared storage resource for

all in-VM applications, while maintaining performance

isolation, i.e. disk accesses by one application should not
affect the I/O performance of another. This work can

be structured into approaches concerned with schedul-

ing disk access on a single VMM [32] and methods that
coordinate I/O scheduling across multiple independent

virtualized servers sharing a storage device [30].

Performance isolation in the presence of resource
contention is studied in [34]. The authors consolidate

different types of workloads, i.e. CPU bound and disk

bound, and derive mathematical models to predict rel-

ative performance compared to a normalized perfor-
mance score. Degradation of end-to-end application per-

formance due to server consolidation is investigated in

[42]. Closer to our work, [13] derive a mathematical
model to predict disk I/O throughputs when moving

from a native system to an isolated VMware ESX server

environment. [31] measure disk workload characteristics
and performance metrics in a consolidated virtualized

environment. Contrary to us they do not consolidate

by placing multiple workloads on the same LUN, but

consolidate multiple LUNs into a single RAID group.

Queueing models are a popular tool to model the

performance of shared resource environments [18]. One
approach is to use queueing theory in order to pre-

dict performance attributes of applications when mi-

grated from a native to a virtualized environment [17].

A shared server environment is modeled as a time-
domain queueing model with GPS scheduling in [24] in

order to compute and assign resource shares. In [33],

layered queueing networks are used to model multi-

Performance Models of Storage Contention in Cloud Environments 21

Table 15 Accuracy of Response Time Predictions for Consolidated Workloads from Linear Predictors and Simulation.

Predicted with Linear Estimators Predicted in Simulation
Workload VM1 VM2 VM3 VM1 VM2 VM3

∆R ∆W ∆R ∆W ∆R ∆W ∆R ∆R ∆R

File+Mail 0.01 0.10 0.23 0.07 N/A N/A 0.17 0.10 N/A
Web+File 0.25 0.16 0.04 0.50 N/A N/A 0.09 0.25 N/A
Web+Mail 0.19 0.20 0.02 0.30 N/A N/A 0.11 0.49 N/A
Mail+Web+Mail 0.15 0.10 0.30 0.03 0.12 0.14 0.06 0.21 0.04
Mail+Web+Web 0.17 0.07 0.33 0.27 0.35 0.11 0.14 0.26 0.19
Web+Web+File 0.32 0.09 0.31 0.05 0.12 0.002 0.29 0.37 0.21
Web+File+File 0.24 0.21 0.02 0.24 0.04 0.21 0.33 0.25 0.26
Mail+Mail+File 0.08 0.36 0.08 0.38 0.11 0.27 0.12 0.16 0.06

10
−3

10
−2

10
−1

0

0.2

0.4

0.6

0.8

1

Response Time (s) − Log Scale

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

Mail in File+Mail: Meas
Mail in File+Mail: Sim

(a) File+Mail

10
−3

10
−2

10
−1

0

0.2

0.4

0.6

0.8

1

Response Time (s) − Log Scale

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

Web in Web+File: Meas
Web in Web+File: Sim

(b) Web+File

10
−3

10
−2

10
−1

0

0.2

0.4

0.6

0.8

1

Response Time (s) − Log Scale

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

File in Mail+Mail+File: Meas
File in Mail+Mail+File: Sim

(c) Mail+Mail+File

Fig. 13 Distributions of Measured and Simulated Response Times in Consolidation.

tier applications hosted in consolidated server environ-

ments. Recently, [37] propose an iterative model train-

ing technique based on artificial neural networks for
dynamic resource allocation in consolidated virtualized

environments. In [40], autonomic computing techniques

and a global utility function are used to dynamically al-
locate CPU resources in virtualized environments. While

some of the work above captures coarse grained disk re-

quirements in the model in order to predict effects of

resource allocation changes on performance of consoli-
dated applications, none specifically tries to predict fine

grained disk I/O request performance degradation due

to workload consolidation.

Prediction of disk request response time granularity

based on a machine learning technique is presented in

[45]. The approach employs Classification And Regres-

sion Tree (CART) models and treats the storage device
as a blackbox. However, the model requires a training

period and does not consider shared resource access.

9 Conclusions and Future Work

We have presented simple models that can predict re-

sponse times, throughputs, and read/write mixes of disk
I/O requests when consolidating workloads on to a shared

storage device. Our contributions are threefold. Firstly,

we parameterize the model with in-VM measurement

data only instead of instrumenting the VMM. Secondly,

we introduce modeling techniques for homogeneous work-

load consolidations that calibrate a trace-driven simu-
lation model without detailed knowledge of VMM in-

ternal operations. Thirdly, we define simple linear es-

timators and a simulation model that decompose the
workload into read and write requests for prediction of

heterogeneous workload consolidations.

Proposed methodologies are validated against sys-

tem measurements. The trace-driven simulation model

produces better results than an established product form

solution for response time predictions of certain homo-
geneous workload types. Validation experiments with

emulated application workloads show that the decom-

position model can accurately predict read/write mixes
and throughputs for a variety of heterogeneous consol-

idation scenarios. Response times are more difficult to

predict, but the model delivers fair results for predic-
tions of response time means and distributions.

Our approach is limited to scenarios where fine-
grained monitoring data is available for a VM workload

configuration. In practice such detailed monitoring may

not always be available or might be considered invasive.

While our simple models work well in the presented en-
vironment, specialized layered queueing models may be

beneficial when modeling more complex cloud topolo-

gies [39,33].

22 Stephan Kraft et al.

For future work we plan to validate the proposed

methodologies on other virtualization platforms with
similar system characteristics and explore application

to different storage technologies. It would also be in-

teresting to investigate how our models perform in en-
vironments where storage is federated across multiple

VMMs, i.e. physical hosts. To capture more realistic

disc I/O workloads we plan to move from synthetic and
emulated application workloads to production traces.

In order to predict end-to-end performance degradation

due to storage contention effects, we need to investigate

how disk request performance at the VM operating sys-
tem level correlates to application performance.

Acknowledgement

The work of S. Kraft has been partially funded by the
InvestNI/SAP VIRTEX project. The work of G. Casale

has been supported by the Imperial College Junior Re-

search Fellowship scheme. Thanks to Stephen Dawson
for valuable comments. S. Kraft is also affiliated with

Queen’s University Belfast.

References

1. Blktrace-Linux man page. http://linux.die.net/man/

8/blktrace.
2. FFSB-v6.0-rc2. http://sourceforge.net/projects/

ffsb.
3. iSCSI SAN configuration guide. http://www.vmware.

com/pdf/vi3_35/esx_3/r35u2/vi3_35_25_u2_iscsi_

san_cfg.pdf. Revision: 20090313.
4. Openfiler. http://www.openfiler.com.
5. Postmark-1.51-7. http://packages.debian.org/sid/

postmark.
6. RHEL 5 IO tuning guide. http://www.redhat.com/docs/

wp/performancetuning/iotuning/index.html.
7. Storage queues and performance. http://communities.

vmware.com/docs/DOC-6490.
8. Tshark manpage. http://www.wireshark.org/docs/

man-pages/tshark.html.
9. VMware. http://www.vmware.com.

10. Timekeeping in VMware virtual machines. Technical Re-
port WP-065-PRD-02-01 Rev:20081017, VMware, 2008.

11. Filebench. http://www.solarisinternals.com/wiki/

index.php/FileBench, 2010.
12. I. Ahmad. Easy and efficient disk I/O workload char-

acterization in VMware ESX server. In IISWC, pages
149–158. IEEE, 2007.

13. I. Ahmad, J. M. Anderson, A. M. Holler, R. Kambo, and
V. Makhija. An analysis of disk performance in VMware
ESX server virtual machines. In WWC-6, pages 65–76.
IEEE, 2003.

14. J. Axboe. Linux block IO - present and future. In Linux

Symposium, pages 51–61, 2004.
15. F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Pala-

cios. Open, closed, and mixed networks of queues with
different classes of customers. J. ACM, 22(2):248–260,
1975.

16. T. Begin, A. Brandwajn, B. Baynat, B. E. Wolfinger, and
S. Fdida. High-level approach to modeling of observed
system behavior. Performance Evaluation, 67(5):386 –
405, 2010.

17. F. Benevenuto, C. Fernandes, M. Santos, V. Almeida,
J. Almeida, G. Janakiraman, and J. Santos. Performance
models for virtualized applications. In ISPA, volume 4331
of LNCS, pages 427–439. 2006.

18. M. N. Bennani and D. A. Menascé. Resource allocation
for autonomic data centers using analytic performance
models. In ICAC, pages 229–240. IEEE, 2005.

19. J. C. Bennett and H. Zhang. WF2Q: Worst-case fair
weighted fair queueing. In INFOCOM, volume 1, pages
120–128, 1996.

20. D. Boutcher and A. Chandra. Does virtualization make
disk scheduling passé? SIGOPS OSR, 44(1):20–24, 2010.

21. G. Casale, S. Kraft, and D. Krishnamurthy. A model of
storage I/O performance interference in virtualized sys-
tems. In DCPerf, pages 34–39, June 2011.

22. G. Casale, N. Mi, and E. Smirni. Bound analysis of closed
queueing networks with workload burstiness. In SIG-

METRICS, pages 13–24. ACM, 2008.

23. G. Casale, E. Z. Zhang, and E. Smirni. KPC-toolbox:
Simple yet effective trace fitting using markovian arrival
processes. In QEST, pages 83–92, 2008.

24. A. Chandra, W. Gong, and P. Shenoy. Dynamic resource
allocation for shared data centers using online measure-
ments. In IWQoS, pages 381–398. Springer, 2003.

25. A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In SIGCOMM,
pages 1–12. ACM, 1989.

26. T. Field. JINQS: An extensible library for simulating
multiclass queueing networks, v1.0 user guide. http://

www.doc.ic.ac.uk/~ajf/Research/manual.pdf.

27. G. R. Ganger and Y. N. Patt. The process-flow model:
Examining I/O performance from the system’s point of
view. In SIGMETRICS, pages 86–97. ACM, 1993.

28. S. J. Golestani. A self-clocked fair queueing scheme for
broadband applications. In INFOCOM, pages 636–646,
1994.

29. P. Goyal, H. M. Vin, and H. Chen. Start-time fair
queueing: A scheduling algorithm for integrated services
packet switching networks. In SIGCOMM, pages 157–
168. ACM, 1996.

30. A. Gulati, I. Ahmad, and C. A. Waldspurger. PARDA:
Proportional allocation of resources for distributed stor-
age access. In FAST, pages 85–98. USENIX, 2009.

31. A. Gulati, C. Kumar, and I. Ahmad. Storage workload
characterization and consolidation in virtualized environ-
ments. In VPACT, 2009.

32. W. Jin, J. S. Chase, and J. Kaur. Interposed propor-
tional sharing for a storage service utility. ACM PEVA,
32(1):37–48, 2004.

33. G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting,
and C. Pu. Generating adaptation policies for multi-
tier applications in consolidated server environments. In
ICAC, pages 23–32, 2008.

34. Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen,
and C. Pu. An analysis of performance interference ef-
fects in virtual environments. In ISPASS, pages 200–209.
IEEE, 2007.

35. S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and
P. Kilpatrick. IO performance prediction in consoli-
dated virtualized environments. In ICPE, pages 295–306,
March 2011.

http://linux.die.net/man/8/blktrace
http://linux.die.net/man/8/blktrace
http://sourceforge.net/projects/ffsb
http://sourceforge.net/projects/ffsb
http://www.vmware.com/pdf/vi3_35/esx_3/r35u2/vi3_35_25_u2_iscsi_san_cfg.pdf
http://www.vmware.com/pdf/vi3_35/esx_3/r35u2/vi3_35_25_u2_iscsi_san_cfg.pdf
http://www.vmware.com/pdf/vi3_35/esx_3/r35u2/vi3_35_25_u2_iscsi_san_cfg.pdf
http://www.openfiler.com
http://packages.debian.org/sid/postmark
http://packages.debian.org/sid/postmark
http://www.redhat.com/docs/wp/performancetuning/iotuning/index.html
http://www.redhat.com/docs/wp/performancetuning/iotuning/index.html
http://communities.vmware.com/docs/DOC-6490
http://communities.vmware.com/docs/DOC-6490
http://www.wireshark.org/docs/man-pages/tshark.html
http://www.wireshark.org/docs/man-pages/tshark.html
http://www.vmware.com
http://www.solarisinternals.com/wiki/index.php/FileBench
http://www.solarisinternals.com/wiki/index.php/FileBench
http://www.doc.ic.ac.uk/~ajf/Research/manual.pdf
http://www.doc.ic.ac.uk/~ajf/Research/manual.pdf

Performance Models of Storage Contention in Cloud Environments 23

36. S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Daw-
son. Estimating service resource consumption from re-
sponse time measurements. In VALUETOOLS, pages
1–10. ICST, 2009.

37. S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao. Ap-
plication performance modeling in a virtualized environ-
ment. In HPCA, pages 1–10, 2010.

38. E. D. Lazowska, J. Zahorjan, G. S. Graham, and
K. C. Sevcik. Quantitative System Performance: Com-

puter System Analysis Using Queueing Network Models.
Prentice-Hall, 1984.

39. J. Li, J. Chinneck, M. Woodside, M. Litoiu, and G. Iszlai.
Performance model driven QoS guarantees and optimiza-
tion in clouds. In CLOUD ’09, pages 15–22. IEEE, 2009.

40. D. A. Menascé and M. N. Bennani. Autonomic virtual-
ized environments. In ICAS, page 28, july 2006.

41. N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel. Per-
formance impacts of autocorrelated flows in multi-tiered
systems. Elsevier PEVA, 64(9-12):1082–1101, 2007.

42. P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. G. Shin.
Performance evaluation of virtualization technologies for
server consolidation. Technical Report HPL-2007-59, HP
Laboratories Palo Alto, 2007.

43. A. Riska and E. Riedel. Disk drive level workload char-
acterization. In USENIX, pages 97–102, 2006.

44. C. Ruemmler and J. Wilkes. UNIX disk access patterns.
In USENIX Winter, pages 405–420, 1993.

45. M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Falout-
sos, and G. R. Ganger. Storage device performance pre-
diction with CART models. In MASCOTS, pages 588–
595. IEEE, 2004.

A. Justification of Read/Write Mix Estimator

Let L be the length of the period the system was ob-

served and denote with nR
i (resp. nW

i) the number of

read (resp. write) requests completed by the system in

L. Then by definition TR
i = nR

i /L, T
W
i = nW

i /L, and
thus αR

i = nR
i /(n

R
i + nW

i), αW
i = nW

i /(nR
i + nW

i). Us-

ing a similar notation for consolidation we get αR
ij =

(nR
i,j+nR

j,i)/(ni,j+nj,i), α
W
ij = (nW

i,j+nW
j,i)/(ni,j+nj,i).

Then by definition

βR
i,j =

TR
i,j + TR

j,i

Ti,j + Tj,i

=
nR
i,j + nR

j,i

nR
i,j + nW

i,j + nR
j,i + nW

j,i

=

(

nR
i,j + nW

i,j

nR
i,j + nW

i,j + nR
j,i + nW

j,i

)(

nR
i,j

nR
i,j + nW

i,j

)

+

(

nR
j,i + nW

j,i

nR
i,j + nW

i,j + nR
j,i + nW

j,i

)(

nR
j,i

nR
j,i + nW

j,i

)

where we can identify the terms αR
i,j = nR

i,j/(n
R
j,i + nW

j,i)

and αR
j,i = nR

j,i/(n
R
j,i + nW

j,i). Consider now the approx-

imation αR
i ≈ αR

i,j , which assumes that the relative
throughput fraction of reads incoming from VM i is

the same in isolation and consolidation. This approx-

imation is accurate if the arrival process of VM i is

loosely dependent on the overheads of consolidation.

Using this approximation we get

βR
i,j =

(

ni,j

ni,j + nj,i

)

αR
i +

(

nj,i

ni,j + nj,i

)

αR
j

=

(

Ti,j

Ti,j + Tj,i

)

αR
i +

(

Tj,i

Ti,j + Tj,i

)

αR
j

where the last passage follows by first scaling numerator
and denominators by L. The final formula is obtained

by further approximating the throughput ratios in con-

solidation by the ratios of Ti and Tj in isolation. This

corresponds to the assumption that a common overhead
factor coh exist for the two VMs such that
(

Ti,j

Ti,j + Tj,i

)

=

(

cohTi

cohTi + cohTj

)

=

(

Ti

Ti + Tj

)

The justification for βW
i,j follows in a similar way.

	Introduction
	Motivational Example
	System Characteristics
	Homogeneous Model
	Validation Experiments: Homogeneous Model
	Decomposition Model
	Validation Experiments: Decomposition Model
	Related Work
	Conclusions and Future Work

