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Thyroid hormones (THs) (thyroxine, T4; and 3,5,3′-triiodothy-
ronine, T3) act on nearly every cell in the body. They modulate, 
among other effects, basal metabolic rate, protein synthesis, 
bone growth, brain development and maturation, lipid and 
carbohydrate metabolisms.

THs act in the nucleus via specific TH receptors (TRs). TRs 
are members of the nuclear receptor family. These receptors 

regulate target gene transcription by binding to specific DNA 
sequences (TH response elements) in the promoter region. 
TRs constitutively bind to thyroid hormone response elements 
as homodimers or, more commonly, as heterodimers with the 
retinoid X receptor (see ref. 1 for review). For positively regu-
lated target genes, the TRs actively repress transcription in 
the absence of T3. Ligand binding induces structural changes, 
the exchange of bound cofactors and, ultimately, target gene 
expression. The opposite situation is true for thyroid-stimulat-
ing hormone and thyrotropin-releasing hormone, the expres-
sion of which is strongly repressed by T3.1 TRs are encoded 
by the THRA (for TR-α) and THRB (for TR-β) genes, located 
respectively on chromosomes 17 and 3.2 The expression of 
TRs is tissue-dependent and developmentally regulated.2 In 
humans, alternative splicing of the primary transcripts gives 
rise to several TR isoforms. Although TR-α and TR-β are 
expressed ubiquitously, TR-β1 is more abundant in the liver, 
kidney, and thyroid. Expression of TR-β2 is limited to the 
pituitary, hypothalamus, retina, and inner ear, whereas TR-α1 
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Background
Thyroid hormones (THs) exert multiple biological roles including 
effects on the cardiovascular system (lipid profile, blood pressure 
(BP) and cardiac output). The lipid-lowering actions of TH are 
mediated by the TH receptor-β whereas the mechanisms explaining 
the BP variations concomitant with the thyroid disorders are less 
understood. As the TH receptor-α (TR-α) has been associated with 
many of TH actions on the cardiovascular system in mice models, we 
hypothesized that it could be involved in the latter. We thus tested 
whether polymorphisms in TR-α (THRA gene) could be associated 
with BP level variation. Secondarily, we tested for association with 
coronary heart disease (CHD) risk.

Methods
We analyzed the associations between five THRA polymorphisms and 
(i) BP level in two population-based studies (MONICA Lille n = 1,155; 
MONICA Toulouse n = 1,170) and (ii) the risk of CHD in two case–
control studies (Lille CHD n = 558 cases/568 controls; PRIME n = 527 
cases/584 controls).

Results
Individuals carrying the rs939348 T allele had higher systolic BP 
(~+1.3 mm Hg) than CC individuals in both the MONICA Lille (P = 0.02) 
and Toulouse (P = 0.03) studies. The odds ratio (OR) for hypertension 
was 1.25 (P = 0.02) in the combined sample. Concerning the CHD risk, 
no significant association could be detected.

Conclusions
For the first time, our study showed associations between the THRA 
rs939348 polymorphism and systolic BP and the risk of hypertension 
but not with CHD, although we admit that the statistical power 
available to study any relationship with CHD was very limited. Further 
larger association studies are needed to confirm our findings.
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is expressed predominantly in the heart, bone, intestine, and 
brain.

Observational studies have suggested that hypothyroid 
patients have accelerated coronary atherosclerosis.3 In the 
Rotterdam study, elderly women with subclinical hypothy-
roidism had a higher prevalence of myocardial infarction, 
compared with euthyroid women.4 Although these results 
suggest that THs have anti-atherosclerotic effects, other stud-
ies do not, however, support the existence of a strong asso-
ciation between thyroid hormone levels and coronary heart 
disease (CHD).5,6 Recent meta-analyses tended to suggest 
that subclinical hypothyroidism is associated with a greater 
susceptibility to CHD.7,8 However, a large study assessing 
the effect of hormone replacement therapy on the CHD out-
come in hypothyroid patients is currently lacking. A few stud-
ies on small numbers of patients suggest that the treatment 
of hypothyroidism could slow down atherogenesis9 and even 
reverse the increased intima-media thickness.10

The link between overt hypothyroidism and atherosclerosis 
has been attributed to main cardiovascular risk factors such as 
hypercholesterolemia, high levels of diastolic (DBP) and systo-
lic blood pressure (SBP) and endothelial dysfunction, all often 
observed in patients with overt hypothyroidism. It has been 
shown that adequate thyroid hormone replacement reduces 
BP and improves endothelial function in these patients.11 
Although it is established that the alterations in cholesterol 
metabolism in overt hypothyroidism are largely due to TR-β 
in liver,12–14 and that heart rate is governed by TR-α,15–17 the 
mechanisms related to changes in BP level are not perfectly 
understood. In fact, BP is altered across the entire spectrum 
of thyroid disorders (see ref. 18 for review). Thyroid hormone 
exerts an acute effect on BP as patients suffering from thyroid-
ectomy have higher DBP and SBP levels.19 Moreover, hyper-
thyroidism is associated with systolic hypertension in some 
patients, especially in the elderly.

We hypothesized that TR-α could be involved in the regu-
lation of BP and we tested the impact of five THRA tagSNPs 
(rs868150, rs7502966, rs1568400, rs939348, and rs3744805) 
on BP level variation in two population-based studies.

Methods
Subjects
The MONICA study: Participants were recruited as part of the 
World Health Organization-MONICA population survey per-
formed from 1995 to 1997 in two different parts of France: the 
Lille Urban Community in northern France (n = 1,155) and 
the Haute-Garonne county in southern France (n  =  1,170). 
Subjects (aged 35–64 years) were randomly selected from 
electoral rolls after stratification by town size, gender, and age 
in order to obtain 200 participants for each gender and each 
10-year age group (World Health Organization-MONICA 
Project protocol).20 Details of the study have been described 
elsewhere.21

After providing written informed consent, participants filled 
out a standard questionnaire and physical measurements were 
taken by a specially trained nurse. The questionnaire covered 

questions on socioeconomic factors, physical activity, alcohol 
consumption, smoking status, personal and family medical 
history, attitudes and knowledge concerning several diseases 
and any current medication use. Physical activity was defined 
as at least a 15-min walk a day, and/or lifting or carrying heavy 
objects at work every day and/or sport or physical exercise for 
more than 2 h a week. In terms of smoking exposure, indi-
viduals were categorized as never smokers, former smokers 
and current smokers (i.e., individuals reporting at least one 
cigarette per day). Alcohol intake was expressed as the total 
number of milliliter of alcohol per week from wine, beer, cider, 
and spirits. Anthropometric measurements including body 
weight were taken on individuals in light clothing without 
shoes. The body mass index was calculated according to the 
Quetelet equation. Blood pressure was measured on the right 
arm, with the subject in a sitting position and after a minimum 
5-min rest, using a standard mercury sphygmomanometer. 
The mean value of two consecutive BP readings was taken into 
account. A 20 ml blood sample was drawn into a disodium 
EDTA tube (after the subjects had fasted for at least 10 h).

The Lille case–control study of CHD: A sample of 585 indi-
viduals with CHD were drawn from the EUROASPIRE study 
(European Action on Secondary Prevention by Intervention 
to Reduce Events), which has been described elsewhere.22 The 
present report focuses on patients enrolled by hospitals in the 
Lille Urban Area during the first and the second EUROASPIRE 
surveys (performed in 1995–1996 and 1999–2000, respectively). 
Consecutive patients with confirmed CHD were retrospectively 
enrolled from hospital admission lists, with the following diag-
nosis: acute myocardial infarction, acute myocardial ischemia 
or CHD treatment with coronary bypass grafting or percuta-
neous transluminal coronary angioplasty. The selected patients 
were interviewed and examined at least 6 months after their ini-
tial admission. The major cardiovascular risk factors and treat-
ments were collected from hospital records. The control group 
was composed of part of individuals from the population-based 
MONICA Lille study described above. We selected 582 individ-
uals with no personal history of CHD and then matched them 
(by 5-year age-class and by gender) with the CHD cases.

The PRIME study: PRIME is a prospective, population-based 
cohort study designed to identify risk factors for CHD. Details 
on recruitment, baseline examination, and follow-up in the 
PRIME study have been described elsewhere.23,24 Briefly, during 
the period 1991–1994, 10,600 European-Caucasian men aged 
50–59 years (living in or around the cities of Lille, Strasbourg 
and Toulouse in France and Belfast in Northern Ireland) were 
recruited by various employment groups, health screening 
centers and general practitioners. Each subsample of ~2,500 
men was built to broadly match the social class structure of the 
underlying population. Approvals from the appropriate local 
ethics committees were obtained and all individuals gave a writ-
ten informed consent. The study entry examination included 
standardized questionnaires relating to medical history, medi-
cation use, the presence of CHD, various habits (including 
tobacco and alcohol consumption), and a clinical examination. 
Of the initial sample of 10,600 men, 9,779 were found free of 
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CHD at the baseline examination. By the end of the 10-year fol-
low-up period, 661 men had experienced at least one coronary 
event. A nested, case–control study within the PRIME study 
was performed with 626 cases and 626 matched controls. The 
age-matched (±5 years) controls were study participants who 
had been recruited by the same center around the same day (±7 
days) as their corresponding case. All were free of CHD on the 
date of the case’s ischemic event. DNA samples were available 
for 539 CHD cases and 607 controls for the present study.

Genotyping. The single-nucleotide polymorphisms (SNPs) 
were genotyped using TaqMan (Applied Biosystems, Foster 
City, CA) or mass spectrometry (Sequenom, San Diego, CA) 
techniques. The genotyping conditions are available on request. 
The genotyping success rates varied between 93% and 99%.

Statistical analysis. Statistical analyses were performed with 
SAS 8.02 software (SAS Institute, Cary, NC). Hardy–Weinberg 
equilibrium was tested using the χ2 test (1 degree of freedom). 
In the population-based studies, intergroup comparisons of 
means for SBP and DBP were performed with a general linear 
model for both recessive and dominant models. The adjust-
ment variables were age, gender, body mass index, smoking 
habit, alcohol consumption, and level of physical activity. We 
calculated the association between the THRA genotypes and 
the odds of hypertension (odds ratio and 95% confidence 
intervals) in the combined MONICA Lille and Toulouse sam-
ple using unconditional logistical regression adjusted for age, 
gender, center, body mass index, smoking habit, alcohol con-
sumption, and level of physical activity.

Haplotype frequencies were estimated using a stochastic 
version of the expectation-maximization algorithm, as imple-
mented in Thesias software.25

In the two CHD case–control studies, the associations 
between the THRA genotypes and the risk of CHD were cal-
culated as the odds ratio (OR) and 95% confidence interval in 
logistic regression analyses. The adjustment variables were age, 
body mass index, smoking status, and history of diabetes, with 
the addition of gender for the Lille CHD case–control study.

Power calculations were performed using Quanto software, 
version 1.1.1.26

Results
We previously described that five tagSNPs (rs868150, 
rs7502966, rs1568400, rs939348, and rs3744805) capture the 
known common genetic variability of the THRA gene.27 The 
population-based MONICA Lille (n  =  1,155) and MONICA 
Toulouse (n  =  1,170) samples were genotyped for these five 
SNPs. The genotype distributions are presented in Table 1 and 
all were conformed to the Hardy–Weinberg equilibrium.

The associations between the five THRA SNPs and SBP 
and DBP were assessed separately for the MONICA Lille and 
Toulouse samples. Only associations that were consistently sig-
nificant at P < 0.05 in the two independent samples were con-
sidered. Using this approach, we did not detect any association 
between rs868150, rs7502966, rs1568400, and rs3744805 and 
BP (Table 2). In contrast, we detected significant associations 
between rs939348 and SBP in the MONICA Lille (P = 0.02) 
and Toulouse (P  =  0.03) studies (Table  2). Indeed, in both 
studies, individuals bearing the minor T allele of rs939348 
had higher SBP (average difference: +1.3 mm Hg) compared 
with CC individuals. It is noteworthy that rs939348 was also 
moderately associated with DBP in the two studies with the 
same direction of effect as that for SBP (P = 0.03 in MONICA 
Lille and P = 0.14 in MONICA Toulouse) (Table 2). To take 
medication into account, we used two different models. First, 

Table 1 | Genotype distribution of THRA polymorphisms in the MONICA Lille and MONICA Toulouse studies

MONICA Lille MONICA Toulouse

N (freq) MAF HWE N (freq) MAF HWE

rs868150 GG 402 (0.36) 0.40 0.48 395 (0.35) 0.42 0.33

GA 551 (0.49) 535 (0.47)

AA 173 (0.15) 204 (0.18)

rs7502966 TT 367 (0.32) 0.43 0.67 341 (0.31) 0.44 0.95

TC 559 (0.50) 543 (0.49)

rs1568400 TT 613 (054) 0.27 0.71 612 (0.54) 0.27 0.26

TC 436 (0.39) 424 (0.38)

CC 82 (0.07) 87 (0.08)

rs939348 CC 593 (0.53) 0.27 0.97 604 (0.53) 0.27 0.38

CT 437 (0.40) 461 (0.40)

TT 81 (0.07) 77 (0.07)

rs3744805 CC 865 (0.77) 0.12 0.87 1,034 (0.89) 0.06 0.08

CT 237 (0.21) 119 (0.10)

TT 17 (0.02) 7 (0.01)

HWE, P value for Hardy–Weinberg equilibrium test; MAF, minor allele frequency. THRA, thyroid hormone receptor-α.
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we excluded individuals on antihypertensive medication 
(n = 200 and n = 150 excluded individuals in MONICA Lille 
and MONICA Toulouse, respectively) and we observed that 
the association between rs939348 and SBP persisted (P = 0.05 
and P  =  0.02 in MONICA Lille and Toulouse, respectively) 
(data not shown). Second, in individuals taking antihyper-
tensive therapies, BP was imputed by adding 15 mm Hg and 
10 mm Hg to SBP and DBP, respectively, as found in previous 
studies28,29 and the association between rs939348 and SBP was 
still detected (P = 0.03 for both studies).

We then examined the association with hypertension (SBP 
≥140 mm Hg or DBP ≥90 mm Hg or antihypertensive medica-
tion use) compared to normotension (SBP<140 mm Hg and 
DBP<90 mm Hg and no antihypertensive medication use) in 
the combined sample to increase statistical power (N  =  890 
hypertensive/1,362 normotensive individuals). The minor 
allele of rs939348 was associated with higher odds of hyper-
tension, consistent with the continuous trait effect (Table 3). 

The adjusted OR (95% confidence interval) for hypertension 
was 1.25 (1.03–1.51), P = 0.02.

Haplotype analyses performed with the five SNPs did not 
add any further information (data not shown).

We then searched for possible associations between the five 
THRA SNPs and the risk of CHD. To this end and by adopt-
ing the same strategy as above, we used two independent CHD 
case–control studies: the PRIME nested case–control study 
(584 controls/527 cases) and the Lille CHD case–control study 
(568 controls/558 cases). The genotype distributions of the five 
SNPs in the control groups respected the Hardy–Weinberg 
equilibrium. Controls and CHD cases were compared in terms 
of distributions of the five THRA SNP genotypes (Table 4); no 
significant difference was observed (P ≥ 0.12). Consequently, 
the ORs for CHD did not vary according to the THRA geno-
type (P ≥ 0.08) (Table 4). Even when combining the two stud-
ies, no significant association could be detected (data not 
shown).

Discussion
Here, we report on the detection of significant and con-
sistent associations between the minor allele of the THRA 
rs939348 SNP and elevated SBP in two population-based stud-
ies. The same direction of effect was also observed for DBP. 
Consequently, this allele was also associated with a 25% higher 
risk of hypertension.

We are the first to report an association between THRA SNPs 
and BP. These results are in accordance with the known links 
between thyroid dysfunction and BP. However, the underlying 
mechanisms are unclear. Atrial and brain natriuretic peptides 
seem to be directly regulated by THs and may play an impor-
tant role in this process (see ref. 30 for review). Blood pressure 

Table 3 | Association of rs939348 with hypertension in the 
combined MONICA Lille and Toulouse studies.

rs939348 Normortensive Hypertensive

Genotype N (freq) N (freq) Pa ORb (95% CI) Pb

CC 738 (0.54) 459 (0.52) reference

CT 529 (0.39) 368 (0.41) 0.46
1.25 (1.03–1.15) 0.02

TT 95 (0.07) 63 (0.07)

1,362 890

CI, confidence interval; OR, odds ratio.
aP value for a global test of significance. bOR and P value (dominant model) are adjusted 
for age, gender, center, body mass index, smoking habit, alcohol consumption, and level 
of physical activity.

Table 2 | Association between THRA SNPs and blood pressure level in the MONICA Lille and MONICA Toulouse studies

MONICA Lille MONICA Toulouse

rs868150 (N) GG (402) GA (551) AA (173) P P1 P2 GG (395) GA (535) AA (204) P P1 P2

 S BP (mm Hg) 134.1 ± 20.2 133.3 ± 19.0 133.7 ± 19.3 0.79 0.73 0.65 130.7 ± 17.5 131.0 ± 17.5 133.0 ± 19.6 0.11 0.33 0.03

  DBP (mm Hg) 83.3 ± 11.8 82.7 ± 11.23 82.7 ± 11.7 0.97 0.89 0.89 79.5 ± 10.4 79.5 ± 10.4 80.1 ± 11.1 0.56 0.82 0.27

rs7502966 (N) TT (367) TC (559) CC (202) P P1 P2 TT (341) TC (543) CC (218) P P1 P2

 S BP (mm Hg) 134.1 ± 18.8 132.9 ± 19.0 135.1 ± 21.7 0.73 0.71 0.43 131.0 ± 17.9 130.8 ± 17.9 130.8 ± 17.2 0.93 0.65 0.61

  DBP (mm Hg) 83.2 ± 11.3 82.2 ± 11.3 84.5 ± 12.4 0.23 0.90 0.12 78.9 ± 10.5 79.8 ± 10.5 79.7 ± 10.4 0.46 0.30 1.00

rs1568400 (N) TT (613) TC (436) CC (82) P P1 P2 TT (612) TC (424) CC (87) P P1 P2

 S BP (mm Hg) 133.5 ± 19.3 133.4 ± 19.5 135.6 ± 20.4 0.91 0.99 0.68 131.5 ± 18.3 131.1 ± 17.8 130.9 ± 17.4 0.62 0.30 0.61

  DBP (mm Hg) 82.7 ± 11.4 82.9 ± 11.7 84.7 ± 11.7 0.42 0.88 0.20 79.8 ± 10.47 79.2 ± 10.8 79.7 ± 10.2 0.50 0.24 0.99

rs939348 (N) CC (593) CT (437) TT (81) P P1 P2 CC (604) CT (461) TT (77) P P1 P2

 S BP (mm Hg) 132.9 ± 18.9 134.5 ± 20.6 134.4 ± 17.9 0.07 0.02 0.78 130.6 ± 17.2 132.0 ± 18.5 131.8 ± 19.9 0.07 0.03 0.85

  DBP (mm Hg) 82.5 ± 11.4 83.4 ± 11.8 83.9 ± 10.8 0.08 0.03 0.29 79.4 ± 10.1 80.0 ± 10.6 79.6 ± 13.3 0.31 0.14 0.85

rs3744805 (N) CC (865) CT (237) TT (17) P P1 P2 CC (1034) CT (119) TT (7) P P1 P2

 S BP (mm Hg) 133.2 ± 19.4 135.0 ± 19.8 135.3 ± 16.5 0.15 0.11 0.50 131.6 ± 18.2 129.0 ± 15.8 121.6 ± 11.3 0.76 0.76 0.46

  DBP (mm Hg) 82.5 ± 11.4 83.9 ± 11.6 87.1 ± 11.0 0.05 0.02 0.31 79.9 ± 10.6 77.4 ± 9.4 71.7 ± 9.2 0.08 0.06 0.08

Data are expressed as means ± s.d. P values for the 3 group model (P), the dominant model (P1) or the recessive model (P2) were adjusted for age, gender, body mass index, smoking 
habit, alcohol consumption and level of physical activity. Significant P values are indicated in bold.
DBP, diastolic blood pressure; SBP, systolic blood pressure; SNP, single-nucleotide polymorphism; THRA, thyroid hormone receptor-α.



AMERICAN JOURNAL OF HYPERTENSION | VOLUME 24 NUMBER 9 | september 2011		   1031

original contributionsTR-α polymorphism and blood pressure

is also controlled by the autonomic nervous system, provid-
ing an alternate possible mechanism based on a central action 
of T3. Catecholamine secretion is normal or even reduced 
in hyperthyroidism,31,32 while in hypothyroidism, plasma 
noradrenaline concentrations are increased.33,34 Thyroid hor-
mone deficiency is associated with an increased sympathetic 
influence on the autonomic cardiovascular system.35 Finally, 
recent studies in transgenic mice also suggest that TR-α1 func-
tions to activate parasympathetic signaling.36

Identification of common genetic variants influencing BP 
has proven to be challenging. Recently, a genome-wide associ-
ation study including ~35,000 individuals identified eight loci 
associated with SBP or DBP.29 The THRA locus was not one of 
these top hits. However, due to the very low P value threshold 
required in a genome-wide association study (P < 5 × 10−8), 
nominal associations with THRA SNPs may have gone unre-
ported. Thus, a candidate gene approach, as in the present 
study, may still help to detect associations between SNPs and 
disorders. Our findings, however, must be interpreted with 
caution and replications in other population samples are nec-
essary before a link between THRA gene variability and BP can 
definitely be established.

Hypertension, being a known risk factor for cardiovascular 
diseases, the presence of an association between rs939348 and 

higher BP levels in the MONICA studies, encouraged us to inves-
tigate a possible association between the THRA SNPs and the 
risk of CHD in two independent case–control studies. However, 
no significant effect of the THRA SNPs on CHD risk was found. 
It is likely that the SNP effects on BP are not substantial enough 
to modify the CHD risk. Previous genome-wide association 
studies on CHD with ~25,000 individuals did not detect either 
significant associations with THRA, at least at the genome-wide 
significance level,37–40 suggesting that the risk of CHD associ-
ated with THRA polymorphisms is very small, if any.

Our study presents a number of limitations and advantages. 
One strength is that we covered the whole known genetic vari-
ability of the THRA gene by studying the five tagSNPs. Rather 
than performing a potentially over-conservative Bonferroni 
correction, we chose to reduce type I errors by using two inde-
pendent studies for each category of phenotype (two popula-
tion-based studies for BP and two case–control studies for the 
CHD risk. We did not assess the impact of the THRA SNPs 
on BP level in the PRIME nested CHD case–control study as 
individuals are, by definition, selected on their CHD status. At 
baseline, half of the individuals of the study are future CHD 
cases. Therefore, their level of BP is biased and not representa-
tive of that of the population. Similarly, control subjects are 
matched to the cases and therefore not representative of the 

Table 4 | THRA genotype distributions among CHD controls and cases and ORs (95% CI) of CHD in the two studies

Lille CHD study PRIME study

Controls Cases Controls Cases

N (freq) N (freq) Pa OR (95% CI) P N (freq) N (freq) Pa OR (95% CI) P

rs868150 568 558 584 527

  GG 203 (0.36) 207 (0.37) Reference 199 (0.34) 181 (0.34) Reference

  AG 280 (0.49) 246 (0.44) 0.12 0.98 (0.74–1.29) 0.88 271 (0.46) 252 (0.48) 0.76 1.05 (0.78–1.41) 0.74

  AA 85 (0.15) 105 (0.19) 114 (0.20) 94 (0.18)

rs7502966 574 580 607 539

  CC 192 (0.33) 196 (0.34) Reference 212 (0.35) 170 (0.32) Reference

  CT 274 (0.48) 269 (0.46) 0.87 1.00 (0.76–1.31) 0.97 275 (0.45) 259 (0.48) 0.47 1.20 (0.91–1.58) 0.19

 TT  108 (0.19) 115 (0.20) 120 (0.20) 110 (0.20)

rs1568400 573 581 604 538

 TT  305 (0.53) 321 (0.55) Reference 345 (0.57) 288 (0.53) Reference

 T C 231 (0.40) 209 (0.36) 0.16 0.97 (0.75–1.26) 0.83 219 (0.36) 209 (0.39) 0.46 1.25 (0.96–1.62) 0.11

  CC 37 (0.07) 51 (0.09) 40 (0.07) 41 (0.08)

rs939348 559 574 590 526

  CC 306 (0.55) 320 (0.56) Reference 306 (0.52) 281 (0.53) Reference

  CT 220 (0.39) 223 (0.39) 0.91 0.93 (0.71–1.21) 0.59 239 (0.41) 211 (0.40) 0.72 0.89 (0.68–1.16) 0.37

 TT  33 (0.06) 31 (0.05) 45 (0.08) 34 (0.07)

rs3744805 569 581 602 536

  CC 435 (0.76) 459 (0.79) Reference 462 (0.77) 435 (0.81) Reference

  CT 130 (0.23) 115 (0.19) 0.32 0.89 (0.65–1.23) 0.49 132 (0.22) 92 (0.17) 0.12 0.78 (0.56–1.05) 0.10

 TT  4 (0.01) 7 (0.01) 8 (0.01) 9 (0.02)

CHD, coronary heart disease; CI, confidence interval; OR, odds ratio; THRA, thyroid hormone receptor-α.
aP value for a global test of significance. ORs and P values were calculated using a dominant model and were adjusted for age, body mass index, smoking status and history of diabetes 
(with the addition of gender for the Lille CHD study).
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population. We admit that the statistical power available to 
study any relationship with CHD was very limited. Indeed, 
each CHD case–control study was powered (≥80%) to iden-
tify effect sizes larger than 1.47 (for the OR, using a dominant 
model and a minor allele frequency of 0.12), suggesting that 
smaller clinical effects have certainly been missed. As such an 
effect size is high for a multifactorial disease, no reliable con-
clusion on the lack of effect can be drawn. The rs939348 SNP 
is located in the first intron after the translation start site (see 
Supplementary Figure S1 online) and it remains to evaluate 
whether it could modulate the level of expression of one of 
the transcripts encoded by the THRA gene in endothelial or 
smooth muscle cells for example, to explain the present asso-
ciation with BP. In mice, both TR-α1 and TR-α2 are highly 
expressed in the heart with no significant detection of either 
TRΔα1 or TRΔα2.41 No data are available in humans. As 
both hyper- and hypothyroidism have been linked to systolic 
hypertension, variation of the TR-α1 expression is unlikely to 
explain the observed variation in BP. TR-α2 might thus appear 
as a better candidate since its activity is independent of the thy-
roid hormone status and its function has not been established 
yet. However, using Genomatix software, we did not identify 
any relevant transcription factor encompassing rs939348 that 
could generate functional hypotheses. Last, it would have been 
interesting to assess the association between the SNPs and thy-
roid hormone levels but unfortunately, this phenotype was not 
initially measured in any of the sample.

We previously explored the association between THRA 
SNPs and the risk of Alzheimer’s disease in a sample of 5,840 
individuals and we could not entirely exclude a possible role 
for rs939348 in the susceptibility of this disease.27 The fact 
the same SNP in THRA may be associated with BP level and 
Alzheimer’s disease risk are in line with the epidemiological 
data showing that midlife high BP increases the risk of late-life 
Alzheimer’s disease (refs. 42–44,45 for review). These elements 
might provide a clue for later investigations of the mechanisms 
underlying the observed associations.

In conclusion, our study constitutes the first association 
study of THRA gene polymorphisms and BP or CHD risk. We 
observed associations between the minor allele of rs939348 
and higher SBP and higher risk of hypertension. Additional 
larger association studies are needed to confirm our findings.

Appendix 
The PRIME Study Group
The PRIME Study is organized under an agreement between 
INSERM and the Merck Sharp and Dohme-Chibret Laboratory, 
with the following participating laboratories:

•	 The Strasbourg MONICA Project, Laboratoire 
d’Epidémiologie et de Santé Publique, EA3430, Strasbourg, 
F-67085, France; Université Louis Pasteur, Faculté de 
Médecine, Strasbourg, F-67085, France (D.A. and B Haas).

•	 The Toulouse MONICA Project, INSERM U558, 
Departement d’Epidemiologie, Université Paul Sabatier-
Toulouse Purpan, Toulouse, France (J. F. and JB Ruidavets).

•	 The Lille MONICA Project, INSERM U744, Lille, France; 
Institut Pasteur de Lille, Lille, France; Université de Lille 2, 
Lille, France (P.A. and M Montaye).

•	 The Department of Epidemiology and Public Health, 
Queen’s University Belfast, Belfast, Northern Ireland 
(A Evans, J Yarnell and F.K.).

•	 The Department of Atherosclerosis, INSERM U545, Lille, 
France; Institut Pasteur de Lille, Lille, France; Université 
de Lille 2, Lille, France (G Luc and JM Bard).

•	 The Laboratory of Haematology, INSERM U626, Marseille, 
Hôpital La Timone, Marseille, France (I Juhan-Vague and 
P Morange).

•	 The Laboratory of Endocrinology, INSERM U563, 
Toulouse, France (B Perret).

•	 The Vitamin Research Unit, The University of Bern, Bern, 
Switzerland (F Gey).

•	 The Nutrition and Metabolism Group, Centre for Clinical 
and Population Sciences, Queen’s University Belfast, 
Belfast, Northern Ireland (J Woodside and I Young).

•	 The DNA Bank, INSERM U525, Paris, France (F Cambien).
•	 The Coordinating Center, INSERM U780, Villejuif, 

F-94807, France; University Paris-Sud, Faculty of Medicine, 
Villejuif, F-94807, France (P Ducimetiere and A Bingham).

Supplementary material is linked to the online version of the paper at http://
www.nature.com/ajh
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