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Abstract

The potential to reduce cardiovascular morbidity through dietary modification remains an area of intense clinical and scientific interest.

Any putatively beneficial intervention should be tested within a randomised controlled trial which records appropriate endpoints, ideally

incident CVD and death. However, the large sample sizes required for these endpoints and associated high costs mean that the majority

of dietary intervention research is conducted over short periods among either healthy volunteers or those at only slightly increased risk,

with investigators using a diverse range of surrogate measures to estimate arterial health in these studies. The present review identifies

commonly employed techniques, discusses the relative merits of each and highlights emerging approaches.
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Observational evidence linking particular dietary factors with

a reduced incidence of cardiovascular morbidity and mortality

has been used extensively to support various public health

promotion strategies(1,2). Increasingly, however, investigators

are designing randomised controlled trials to confirm whether

those diets or food groups may offer vascular protection.

While hard clinical endpoints such as myocardial infarction,

stroke and death are the ideal in such work, their use would

necessitate prohibitively large, prolonged studies. The Dietary

Approaches to Stop Hypertension (DASH) trial typifies

much of the research in this field in that it recruited mildly

hypertensive, but otherwise healthy, volunteers to an 8-week

intervention(3). While DASH was large enough to successfully

employ a clinically relevant endpoint (brachial blood pressure),

most dietary intervention studies rely on surrogate measures

that will sensitively detect much earlier changes in arterial

physiology. To underline this point, a recent meta-analysis con-

sidered randomised controlled trials which examined the link

between flavonoids/flavonoid-rich foods and cardiovascular

risk(4). Of the 133 studies included, none had cardiovascular

morbidity or mortality as endpoints.

A range of vascular function methodologies is available

to clinical researchers, and the choice for any one study is

usually governed by local expertise and experience. However,

it is vital that nutrition researchers have a clear understanding

of the metric which their chosen technique will generate, and

how applicable this is to their overall research question.

Here we consider endothelial vasodilator function, pulse

wave mechanic analysis and biomarker measurement in the

evaluation of arterial health during nutrition intervention

studies conducted among human volunteers.

Endothelial dysfunction

All blood vessels are lined by an active cellular monolayer,

known as the endothelium, which is responsible for many

vital aspects of vascular homeostasis(5). Endothelial cells

produce a wide range of paracrine mediators, with multiple

beneficial actions including anti-thrombotic, anti-platelet,
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anti-inflammatory and vasodilatory effects(6). Established

cardiovascular risk factors are known to encourage the evol-

ution of an atherosclerotic plaque by unfavourably altering

endothelial cell physiology(7). Thus, assessing the status of

endothelial cells in vivo through their ability to produce

NO, and thus mediate arterial dilatation, is common in cardio-

vascular research(8). Provocation of NO production can be

either mechanical (flow-mediated) or pharmacological.

Flow-mediated dilatation

Flow-mediated dilatation (FMD) describes arterial dilatation in

response to increased intra-luminal shear stress. In humans,

this phenomenon has been described using a forearm tech-

nique, in which reactive hyperaemia following release of an

arm cuff at suprasystolic pressures mediates increased brachial

artery diameter(9). The vasodilatation can be quantified using

B-mode ultrasound, and agreed protocols have been pub-

lished to guide investigators using this procedure(10,11). Since

the technique does not involve needles, it has proven popular

with researchers and less daunting for potential volunteers.

A growing body of research has not only demonstrated

impaired brachial artery FMD among patients with recognised

cardiovascular risk factors(12–14), but also suggests that the

measure may serve as an independent prognostic indicator

in both high-risk populations(15–17) and healthy volunteers(18).

Brachial FMD has been employed by several groups as an

endpoint during diet-related intervention trials. The effect of

n-3 fatty acids on endothelial function has recently been

reviewed(19), as has the effect of fruit polyphenols(20), berries(21)

and green tea(22,23) on vascular health, and these reviews

include studies using FMD endpoints. In Table 1 (24–34), the

intervention studies that have examined the effect of chocolate

or cocoa on FMD are shown. Consumption of dark chocolate

has been shown to improve brachial FMD, both acutely (six

out of seven studies), and chronically (five out of six studies).

While it provides a minimally invasive option for vascular

function assessment, the measurement of brachial FMD does

rely on considerable skill in ultrasound image acquisition and

concerns about this technique’s reproducibility have been

expressed(35). De Roos et al. report substantial within-subject

variability for FMD among healthy volunteers, with a CV

estimated at approximately 50 %(36). Although much better CV

figures (7–10 %) have been published by Deanfield’s

group(37,38), there remains a concern that, when employed in

smaller, less experienced centres, the technique’s inherent

variability precludes adequate study power. In addition, the

NO dependency of FMD has been questioned(39), such that

this response is better considered a consequence of interplay

between competing dilator and constrictor influences(40).

Another potential concern is that not all prospective studies

have identified brachial FMD as an independent predictor of

cardiovascular morbidity. Fathi et al. report no relationship

between FMD and the risk of death, acute coronary syndrome

or stroke among patients with established risk factors(41).

Austrian investigators note similar findings among patients

undergoing coronary angiography(42) while in almost 3000

older adults, brachial artery diameter and FMD proved equally

effective predictors of vascular outcome(18). However,

although not always shown to be an independent predictor

of cardiovascular events, this does not preclude its use as an

endpoint in dietary intervention studies, as long as interpret-

ation of the result is appropriate.

Despite these reservations, brachial FMD is widely regarded

as the ‘gold standard’ technique by which to assess conduit

vessel function in cardiovascular research(43). However,

before adopting FMD as the endpoint of choice, trial investi-

gators should consider whether conduit vessel function is the

best metric with which to detect any intervention-related

effect. The response quantified in standard FMD protocols

depends upon forearm ischaemia-induced hyperaemic flow,

which is itself a function of reduced vascular resistance. The

latter is determined largely by endothelium-dependent micro-

vascular tone and thus measures of reactive hyperaemia have

been suggested as novel arterial descriptors(44). Analysis of

brachial ultrasound recordings from over 2000 Framingham vol-

unteers showed that Doppler-derived indices of hyperaemic

shear stress correlated better with established cardiovascular

risk factors than did FMD(45). Huang et al. have shown that

lower hyperaemic flow velocities in the brachial artery

following a standard period of forearm ischaemia indepen-

dently predicted postoperative morbidity and mortality

among patients with peripheral arterial disease undergoing

elective vascular surgery(46).

It has been speculated that the microvascular dysfunction

implied by reduced hyperaemic flow responses may be

more sensitive to early atherosclerotic change than are disturb-

ances in conduit artery vasomotion as quantified by FMD(47).

This has particular relevance for the design of dietary interven-

tion trials which often seek to detect subtle changes in healthy

volunteers. It would therefore be considered best practice to

record FMD and reactive hyperaemia concurrently, as reactive

hyperaemia can be measured simultaneously with FMD, using

the same equipment.

Pharmacological provocation of endothelium-dependent
vasomotion

Where FMD uses mechanical shear stress to provoke

arterial endothelial vasodilator production, the local infusion

of appropriate agonists can produce a similar effect. While

based on well-established physiological and pharmacological

principles, this approach does rely on successful arterial

puncture.

Furchgott & Zawadzki’s description of acetylcholine-

mediated endothelium-dependent vasodilatation using isolated

arterial segments in vitro was soon extended to in vivo human

work(48). Within the coronary circulation, direct intra-arterial

injection of acetylcholine mediated vasoconstriction among

patients with significant atherosclerotic lesions but dilated

angiographically normal vessels(49). Several prospective studies

among patients with clinical indications for cardiac cathe-

terisation have established an abnormal coronary response to

endothelium-dependent agonists as a powerful independent

predictor of cardiovascular morbidity(50–53). The potential

risks associated with invasive cardiac assessment limit this

D. O. McCall et al.982
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Table 1. Effect of cocoa or chocolate interventions on flow-mediated dilatation (FMD): evidence from randomised controlled trials

Study and year Population Intervention Duration Effect on FMD? Effect size

Balzer et al. (2008)(24) Diabetic patients Acute (cocoa containing 371
or 963mg flavanols)

Acute and chronic (30 d) Acute "

(at both doses)
Acute þ1·8%

(at 2 h; 963mg flavanols)
Chronic (cocoa 963mg flavanols/d) Chronic " Chronic þ1·0%

Berry et al. (2010)(25) Overweight or obese men and
postmenopausal women

Cocoa containing 701mg flavanols Acute " 6·1% (at 2 h). No baseline
measure taken. Significantly
different from low-flavanol group

Davison et al. (2008)(26) Overweight and obese adults High-flavanol cocoa
(902mg flavanols/d)

Acute and chronic
(12 weeks)

Acute " Acute þ2·4% (at 2 h)

Chronic " Chronic þ1·6%
Engler et al. (2004)(27) Healthy adults High-flavonoid dark chocolate bar

(213mg procyanidins, 46mg
epicatechin)

2 weeks " þ1·3%

Faridi et al. (2008)(28) Healthy adults Dark chocolate (22 g cocoa powder) Acute Dark chocolate " Dark chocolate 4·3% (at 2 h)
Sugar-free cocoa (22 g cocoa powder) Sugar-free cocoa " Sugar-free cocoa 5·7% (at 2 h)

Farouque et al. (2006)(29) CAD patients Flavanol-rich chocolate bar and cocoa
beverage (total flavanols 444mg/d)

Acute and chronic (6 weeks) Acute $ Acute –

Chronic $ Chronic –
Grassi et al. (2005)(30) Essential hypertension patients 100 g dark chocolate/d

(containing 88mg flavanols)
15 d " þ1·5%

Heiss et al. (2003)(31) Out-patients with at least one
cardiovascular risk factor

Cocoa drink containing
176mg flavan-3-ols

Acute and after 2 d
supplementation

Single dose " Single dose þ2·7% (at 2 h)

After 2 d " After 2 d þ 2·9%
Heiss et al. (2007)(32) Healthy male smokers Flavanol-rich cocoa drink (918mg/d) Acute and chronic (7 d) Acute " Acute þ2·4%; dose-dependent

magnitude of 2 h response
also demonstrated

Chronic " Chronic þ2·9%
Heiss et al. (2010)(33) CAD patients High-flavanol cocoa drink

containing 750mg/d
30 d " þ3·8%

Hermann et al. (2006)(34) Male smokers 40 g dark chocolate Acute " þ2·6%

" , Significant increase; CAD, coronary artery disease; $ , no significant change.
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technique’s applicability to trials conducted in healthy volun-

teers. However, the forearm is an accessible and relatively

safe vascular bed, in which pharmacological challenges analo-

gous to those described for epicardial vessels can be performed.

While coronary procedures have relied upon quantitative

angiography, forearm studies mainly employ venous occlu-

sion plethysmography to measure the efficacy of intra-brachial

vasodilators. Concordant, proportionate responses to acetyl-

choline have been described in synchronously infused coron-

ary and brachial arteries(54,55). Poor forearm dilator responses

to acetylcholine have been shown to predict increased rates of

cardiovascular morbidity among hypertensive volunteers(56)

and patients with coronary artery disease(57,58).

It is important to appreciate that, when infused into the bra-

chial artery, vasoactive agents exert their influence on forearm

blood flow by modulating small vessel tone and this technique

is thus an assessment of microvascular function(59).

Forearm blood flow response to locally infused endothelium-

dependent vasodilators has been used as an endpoint in several

dietary intervention trials. Healthy adults who consumed a

Mediterranean-style diet for 6 weeks showed significant

improvements in endothelium-dependent forearm hyperae-

mia(60,61); however, Ambring et al. subsequently reported

negative findings for a similar 4-week intervention conducted

among younger volunteers using the same endpoint(61). Inves-

tigators have also employed this technique to document

the deleterious effects of increasing salt consumption. It was

shown that 5 d of salt loading significantly reduced forearm

blood flow responses to intra-brachial acetylcholine(62).

Our group recently reported a significant dose-dependent

relationship between increased dietary fruit and vegetable

consumption and improved microvascular endothelial

function, as quantified using this method(63).

However, the applicability of forearm blood flow manipu-

lation through local vasodilator infusion to large, multi-centre

clinical trials is limited by its reliance on arterial puncture, and

the prospect of needle insertion is likely to prove inherently

unattractive to many.

The most serious risks of brachial artery cannulation include

occlusion of the artery leading to limb ischaemia, and median

nerve damage due to direct trauma or compression by haema-

toma or infection. In reality, complications are rare, and

usually involve minor bruising or local discomfort that resolve

quickly, without intervention. It is, however, essential that this

procedure is performed by an experienced researcher (with a

background in vascular access and aseptic techniques) such as

an intensivist, cardiologist or surgeon. This therefore restricts

the use of this methodology to research centres with access

to the aforementioned skilled operators, and also limits its

use to smaller studies. The requirement for needle insertion

may also deter participants, and those on oral anticoagulation

or with significantly increased BMI must be excluded(59,64,65).

An alternative, less invasive, approach to pharmacological

manipulation of the microvascular endothelium involves

transdermal drug delivery by iontophoresis(66). A small electri-

cal current is applied to the forearm and mediates movement

of polar drugs such as acetylcholine into cutaneous vessels.

Changes in skin blood flow are then quantified using laser

Doppler flowmetry(67). In a recent study, a strong correlation

between this measure of skin microvasculature and FMD of

the brachial artery was reported(68). Therefore, this may offer

an alternative endpoint for future intervention trials, although

the clinical relevance is, as yet, less established than for other

methods.

A small number of trials have already used this endpoint,

including a trial of fruit and vegetable purée-based drinks (a

trend towards an effect shown on this endpoint in both acute

and chronic settings)(69), a trial of a green tea polyphenol extract

(no effect in the tested chronic setting)(70), a study of acute fish

oil consumption (effect on endpoint demonstrated)(71) and a

chronic study of weight reduction and exercise (no effect

demonstrated)(72). A recent study of orange juice demonstrated

an acute postprandial effect of orange juice or hesperidin con-

sumption on microvascular reactivity, but no effect on fasting

reactivity after 4 weeks of consumption(73).

Non-invasive assessment using pulse wave mechanics
and pulse contour analysis

A range of commercially available devices offers clinical inves-

tigators the opportunity to rapidly acquire arterial descriptors,

usually by non-invasively recording pulse pressure tracings

through a device, which then computes one or more output

variables. While user friendly and therefore popular, these

techniques rely on important biomechanical assumptions

which often complicate their applicability and interpretation.

Translating intermittent ejection of blood from the heart to

smooth end-organ perfusion is a complex biomechanical pro-

cess that relies on optimal ventricular–vascular coupling.

A variety of mechanical arterial descriptors has been used to

quantify unfavourable disease-related changes in this inter-

action(74). Since these parameters are derived largely from

non-invasive techniques, they have proved popular surrogate

endpoints during intervention trials in cardiovascular medi-

cine(43). Popular methods include measuring pressure pulse

wave velocity (PWV) across a particular arterial segment and

calculating indices of vascular compliance by mathematical

pulse contour analysis. The effects of dietary and nutrient

interventions on these endpoints have recently been systema-

tically reviewed(75).

Pulse wave velocity

The velocity with which pressure pulse waves travel along an

arterial segment can be mathematically related to that vessel’s

mechanical properties, by either the Moens–Kortweg or

Bramwell–Hill equations(76). These formulae predict that

pressure pulse waves will travel faster in less distensible

arteries and thus PWV is a commonly cited descriptor of ‘arter-

ial stiffness’(77). A pressure transducer or tonometer is used to

detect passage of the pulse wave between two anatomical

locations. This can be done sequentially(78) or simul-

taneously(79), with gating to a contemporaneously recorded

electrocardiogram. The carotid and femoral arteries are com-

monly chosen tonometry sites, as this allows estimation of

aortic PWV.

D. O. McCall et al.984
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Prospective data are now available to suggest that

carotid-femoral PWV (CFPWV) is an independent predictor

of cardiovascular morbidity among healthy individuals(80,81).

While tonometry at the radial site is much more convenient

for both volunteer and investigator, carotid-radial PWV did

not predict coronary events or strokes among a group of

patients with end-stage renal failure in whom CFPWV did

have independent prognostic value(82). This finding reflects

structural distinctions between muscular forearm arteries and

larger elastic vessels such as the aorta where medial cells

have ectodermal rather than mesodermal origins(83).

As the intra-luminal pressure within an artery increases, pro-

gressively more collagen fibres are recruited and thus its mech-

anical characteristics change(84). An intervention which reduces

blood pressure is, therefore, also likely to reduce PWV indepen-

dent of any pleiotropic effect on the arterial wall(85). This is an

important caveat to the interpretation of any trial which

employs PWV as an endpoint. Several recent trials have

reported significant reductions in CFPWV following interven-

tions including weight reduction(86), DASH(87), low carbo-

hydrate(88) and low-glycaemic index(89) diets. However, in

each case, significant blood pressure reductions are also

recorded. Similarly, in a Na-loading study among hypertensive

volunteers, changes in CFPWV were positively correlated with

changes in brachial blood pressure(90), whilst 6 months’ sup-

plementation with conjugated linoleic acid(91) or 2 weeks of

dietary salt restriction(92) failed to alter either blood pressure

or CFPWV. However, an isoflavone intervention over 6 weeks

did mediate significantly slower CFPWV in healthy volunteers

without 24 h ambulatory blood pressure reduction(93).

In summary, if an intervention mediates a significant effect on

arterial blood pressure, a concordant effect on PWV will be

observed. This does not imply an alteration of vascular structure

or function and can be predicted from arterial physiology.

Before choosing it as endpoint, investigators should postu-

late a mechanism by which their proposed intervention could

change CFPWV. Through an in vitro model, impairment of

local endothelial NO production has been shown to increase

PWV across predefined arterial segments(94,95). Furthermore,

brachial artery FMD has been independently associated with

CFPWV in cross-sectional technique comparison studies

among healthy volunteers(96) and patients with isolated systo-

lic hypertension(97). A significant, positive correlation between

carotid-radial PWV and microvascular function in the forearm

has also been described(98).

However, during the relatively brief trials that typify much

human dietary intervention work it is questionable whether

subtle alterations in levels of an endothelium-derived paracrine

mediator could significantly change CFPWV which principally

reflects aortic medial elastin:collagen ratios. Thus, this par-

ameter is not ideal for use in short-term studies which aim to

evaluate the possible endothelial effects of an intervention.

Pulse contour analysis

Palpation and analysis of the radial pulse as a means by

which to assess systemic arterial health is a long-established

practice in cardiovascular medicine(99). Algorithm-based

reconstruction of the aortic pressure pulse from tonometer-

derived radial waveforms has fuelled renewed interest in

this approach(85). A commercially available device has been

widely used in cardiovascular research to estimate the aortic

augmentation index, a measure of arterial wave reflec-

tion(100,101). Since it is non-invasive, requires minimal training

and generates an easily interpretable numeric output, this

technique has proved popular in cardiovascular research.

Among patients undergoing cardiac catheterisation, those in

the highest quartile of augmentation index had significantly

more coronary disease(102). Similarly, patients with end-stage

renal failure who had higher augmentation indices were

more likely to die during an 8-year follow-up period(103).

However, a recent review of arterial stiffness by The Framing-

ham Heart Study found that whilst a higher aortic PWV was

associated with a 48 % increase in cardiovascular events, the

aortic augmentation index, central pulse pressure and pulse

pressure amplification showed no such correlation(104). Like

PWV, the aortic augmentation index is dependent on distend-

ing arterial blood pressure(105,106), but additional variables,

including height(107) and heart rate(108), must be factored in

to its interpretation.

A number of nutrition intervention studies have used pulse

contour analysis as an intermediate measure of vascular func-

tion. In an acute feeding study, food and water, but not water

alone, reduced the aortic augmentation index 2 h after con-

sumption(109). This finding is confounded by concomitant

decreases in arterial blood pressure and could be argued to

reflect mean blood pressure change and therefore altered

vessel haemodynamics, rather than an intrinsic alteration

of vascular function. After 8 weeks, both low-fat and

low-carbohydrate hypoenergetic diets significantly decreased

brachial blood pressure among overweight volunteers, but

only the former mediated a significant reduction in aortic

augmentation(110).

Again, investigators should have a clear hypothesis about the

mechanism through which their intervention is likely to alter

pulse wave morphology before choosing aortic augmentation

as the endpoint. It has been shown that pharmacological

manipulation of systemic endothelial NO production signifi-

cantly changes aortic pressure pulse wave morphology and

thus the augmentation index(96). In a situation analogous

to the intra-brachial infusion of vasodilators and subsequent

forearm blood flow measurement, systemic salbutamol

(endothelium-dependent) and nitroglycerine (endothelium-

independent) are administered with resulting changes in

tonometry-derived aortic augmentation quantified to arrive at

a ‘global endothelial function index’(96). Such an approach

may prove more sensitive to altered vascular health than resting

measurements of aortic augmentation.

Biomarkers of vascular function

Biomarker measurement remains a popular endpoint in clinical

research, as it is minimally invasive and samples can be stored

for future analysis. A wide variety of biochemical species has

been employed to quantify inflammation, oxidative stress,

endothelial activation and arterial injury. Since no single ‘gold

Vascular function assessment 985
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standard’ measure has emerged, it is common practice during

dietary research trials to employ a panel of such markers.

Biochemical measures

Since atherosclerosis is characterised by ongoing vascular

inflammation, the acute-phase reactant C-reactive protein

(CRP) has been proposed as a useful tool for improving dis-

ease prediction models(111). A high-sensitivity assay is used

to accurately measure the lower CRP concentrations encoun-

tered among healthy individuals. Recent data suggest that

statin-mediated reductions in CRP are associated with lower

rates of cardiovascular morbidity(112).

The evidence regarding dietary interventions and CRP is

equivocal. For example, as summarised in Table 2 (113–128),

only five out of sixteen fruit and vegetable randomised con-

trolled trials (including Mediterranean diet and DASH trials,

as fruit and vegetables are key components of these diets)

have demonstrated a lowering in CRP levels. The duration

of these five studies varied from 4 weeks in three studies, to

3 months in one study and 2 years in another. Of the studies,

two were juice-based, one was a carotenoid-rich FV interven-

tion and two were Mediterranean diet interventions. We refer

the reader to a review by Giugliano et al.(129) for a broader dis-

cussion of the association between diet and inflammation.

In mediating leucocytic infiltration of the arterial intima,

glycoprotein membrane components such as intercellular

adhesion molecule-1 (ICAM-1) and vascular cell adhesion mol-

ecule-1 (VCAM-1) promote oxidative stress and ongoing arterial

inflammation(130). Activated endothelial cells are thought to

shed these molecules into the circulation, allowing levels of

their soluble form to be quantified as an estimate of ongoing

arterial injury(131). Adipocytes also express ICAM-1, and the

soluble form of ICAM-1 is elevated in obese patients, being

expressed in the stromal-vascular fraction of adipose

tissue(132). This is likely to contribute to the link between obesity

and inflammatory complications such as atherosclerosis.

Supplementation with isoflavones for 6 weeks has been

reported to significantly reduce serum levels of VCAM-1 in

healthy subjects(93), while additional dietary a-linolenic acid

had a similar effect among dyslipidaemic male patients(133).

Over a 24-month period, daily consumption of the phyto-

oestrogen genistein significantly reduced circulating levels

of both ICAM-1 and VCAM-1(134). While additional cherry

consumption for 4 weeks lowered CRP levels among healthy

volunteers, it had no effect on ICAM-1 concentrations(135)

and similar negative results have been noted for brief fruit

and vegetable interventions(125).

Oxidation both contributes to and follows on from the con-

tinuous cycle of low-grade vascular inflammation which

characterises atherosclerotic arterial degeneration(136). Markers

of systemic oxidative stress in biological fluids have long

been suggested as surrogates for vascular injury, and the

isoprostanes, derived from non-enzymic arachidonic acid

peroxidation, are commonly measured(137). A dietary inter-

vention study has reported that urinary levels of 8-iso-PGF2a

were significantly reduced among healthy women consuming

nine or ten portions of fruit and vegetables daily for

8 weeks(138). However, investigators have largely reported

negative findings when this endpoint has been employed to

study the effects of black tea(139), a Mediterranean diet(61),

five or six portions of fruit and vegetables daily(98,138) and

pure dietary flavonoids(140).

Other potential biomarkers of the atherosclerotic process

include the enzyme lipoprotein-associated phospholipase

A2
(141,142), tissue plasminogen activator(143,144) and plasmino-

gen activator inhibitor-1(145).

Novel biochemical approaches

The array of biomarkers available and lack of an agreed ‘gold

standard’ often prohibits rational study design. To quantify the

biological effects of an ‘anti-inflammatory mix’ dietary sup-

plement among obese volunteers, Bakker et al. employed a

novel ‘nutrigenomics’ approach(146). This involved measure-

ment and integrated analysis of 120 plasma proteins, 274

plasma metabolites and peripheral blood cell transcriptomes.

While such a comprehensive approach is labour intensive

and statistically complex, it may represent a valuable means

by which to define more subtle intervention-related changes.

More recently, circulating endothelial microparticles (EMP),

endothelial progenitor cells and endothelial cells have also

been used as indices of vascular health.

Endothelial microparticles. The endothelium is respon-

sible for a diverse range of functions, including regulation of

vascular vasomotor activity, coagulation activity, anti-inflam-

matory status, and therefore a comprehensive assessment of

endothelial function or dysfunction is difficult, with available

methods usually only providing information on one separate

aspect of endothelial function. It has been proposed recently

that EMP may fulfil the role of a more universal marker of vas-

cular health(147). EMP are small non-nucleated phospholipid

vesicles shed from injured endothelial cells in response to

pro-inflammatory stimuli and vascular injury. They affect

endothelial NO synthesis(148,149), diminishing acetylcholine-

induced vasorelaxation and NO production by endothelial

cells in vitro (150), correlate with markers of inflammation(147),

and have pro-coagulant potential(147,151–153).

A number of studies have examined EMP in relation to vas-

cular damage and CVD risk. A significant increase in EMP has

been shown in patients with CHD, the metabolic syndrome,

diabetes and heart failure(154–158). A recent study by Wang

et al. has shown that EMP count is associated with systolic

blood pressure, being elevated even in patients with

mild hypertension, and was also associated with arterial

stiffness(159). Wang et al. suggest that EMP may be a useful

parameter for monitoring the process of vascular repair in

hypertensive subjects, whilst the accompanying Editorial

calls for further studies to determine whether EMP quantifi-

cation might be a useful marker of endothelial dysfunc-

tion(147). Their use in dietary intervention research has been

limited to date, but circulating microparticle concentrations

are known to increase after ingestion of a fatty meal(160),

whilst a recent paper has shown that following a Mediterra-

nean diet for 4 weeks in older subjects significantly decreased

total microparticle, EMP and apoptotic EMP concentrations
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Table 2. Effect of fruit and vegetable (FV) interventions on C-reactive protein (CRP): evidence from randomised controlled trials

Study and year Population Intervention Duration Effect on CRP

Berry et al. (2010)(113) Pre-hypertension Cross-over: control level FV containing 15mmol K per d
or an additional 20 or 40mmol K per d provided as FV
or 40mmol K per d as potassium citrate capsules

6 weeks (5-week washout) $

Blum et al. (2007)(114) Healthy adults 300 g tomatoes v. usual diet with tomatoes prohibited 4 weeks $

Dalgard et al. (2009)(115) Peripheral arterial disease Cross-over: orange and blackcurrant juice (500ml per d)
and vitamin E (15mg); juice þ placebo; sugar
drink þ vitamin E; sugar drink þ placebo

4 weeks (4-week washout) # *

Erlinger et al. (2003)(116) Hypertension Control v. DASH diet (rich in FV, about nine servings per d) 12 weeks $

Esposito et al. (2004)(117) Metabolic syndrome Mediterranean diet v. prudent diet 2 years #

Freese et al. (2004)(118) Healthy adults 810 g VBA þ rich linoleic acid; 196 g VBA þ rich linoleic acid;
810 g VBA þ rich oleic acid; 196 g VBA þ rich oleic acid

6 weeks $

Jin et al. (2010)(119) Healthy adults Placebo; FV juice powder concentrate; FV powder concentrate
with added berry powders

60 d $

Karlsen et al. (2010)(120) $ One risk factor for CVD Bilberry juice v. water 4 weeks #

Lehtonen et al. (2010)(121) Healthy adults (female) Lifestyle intervention v. lifestyle intervention with berry products
(equalling 1138 g berries per week þ3·5 g berry oils per week)

20 weeks $

McCall et al. (2010)(122) Hypertension Dose–response: 1 v. 3 v. 6 portions FV per d 8 weeks $

Mena et al. (2009)(123) High-risk CVD Low-fat diet v. Mediterranean diet with olive oil v. Mediterranean
diet with nuts

3 months # †

Michalsen et al. (2006)(124) CAD Mediterranean diet v. written advice-only group 1 year $

Paterson et al. (2006)(125) Healthy adults Cross-over: carotenoid-rich or control vegetable soups and beverages 4 weeks (10-week washout) $

Rallidis et al. (2009)(126) Abdominal obesity Mediterranean diet v. Mediterranean diet with dietetic supervision 2 months $

Stull et al. (2010)(127) Obese, non-diabetic Smoothie containing 22·5 g blueberry bioactives twice daily v. smoothie
of equal nutritional value without added blueberry actives

6 weeks $

Watzl et al. (2005)(128) Non-smoking men Dose–response: 2 v. 5 v. 8 servings per d carotenoid-rich FV 4 weeks #

$ , No significant change; # , significant decrease; DASH, Dietary Approaches to Stop Hypertension; VBA, vegetables, berries and apples; CAD, coronary artery disease.
*Orange and blackcurrant juice reduced CRP relative to sugar drink.
†CRP decreased only after Mediterranean diet with olive oil.

V
ascu

lar
fu

n
ctio

n
asse

ssm
e
n
t

9
8
7

British Journal of Nutrition



when compared with a SFA-rich diet or a low-fat, high-carbo-

hydrate diet(161). They therefore potentially offer a novel and

informative endpoint.

Endothelial progenitor cells. Asahara et al. isolated and

characterised a circulating angioblast which had the potential

to form endothelial cells in vitro, thus allowing subsequent

quantitative flow cytometry in samples of peripheral

blood(162). Endothelial progenitor cells (EPC) have a constitu-

tive vasoreparative function, but after acute vascular damage,

such as stroke or myocardial infarction, these cells are mobilised

into peripheral blood where they participate in endothelial

repair, regenerative processes and neovascularisation(163,164).

It has been proposed that assessment of endothelial progenitor

cells offers a dynamic, integrated index of systemic vascular

damage and, as such, will offer more insight than any currently

available biochemical markers(165). While a wide range of EPC

subsets have been identified, most clinical studies have concen-

trated on CD34þ populations isolated from peripheral blood.

An inverse relationship between circulating CD34þ EPC and

cardiovascular risk factors has been demonstrated in both

healthy subjects and patients with CVD(166,167), whilst circulat-

ing EPC count may also act as a prognostic biomarker, being

associated with worse outcome in patients with suspected or

confirmed coronary artery disease(168). A recent study has

shown that circulating CD34þ cells are inversely associated

with obesity, and that weight loss results in an increase in circu-

lating progenitor cells, including EPC(169).

Among healthy volunteers, short-term dietary interventions

with green tea(170), vegetables(171), red wine(172) and the

Mediterranean diet(161) have all been shown to significantly

increase circulating concentrations of endothelial progenitor

cells. Assessing EPC numbers and function may also be infor-

mative, as increasing red wine consumption in healthy volun-

teers has recently been shown to increase endothelial

progenitor cell migration and proliferation and to decrease

the extent of apoptosis(173), whilst a high-flavanol intervention

has been shown to increase EPC number, but had no effect on

their function (measured as ability to survive, differentiate,

proliferate and to migrate)(33).

Circulating endothelial cells. Circulating endothelial cells

are also recognised as markers of endothelial damage, and

have been shown to be increased in acute coronary syn-

dromes, heart failure, stroke and diabetes mellitus(174).

Although no dietary intervention studies have examined

effects on numbers of circulating endothelial cells, they may

be an informative target in future studies.

Considerations when choosing a method

Investigators should first consider the mechanism through

which they propose that the intervention will act, alongside

the locally available resources and skills. A decision tree

outlining the main considerations and choices is shown in

Fig. 1. A panel of approaches, assessing both conduit vessels

and the microvasculature, would be most appropriate where

Conduit vessel/
macrovascular
function? 

Flow mediated
dilatation

Microvascular
dysfunction?

Invasive
technique?

Pharmacological
provocation of
endothelium dependent
vasomotion

Flow mediated
dilatation + reactive
hyperaemia

Vascular inflammation,
oxidative stress, endothelial
activation, or arterial injury?

Biomarkers (panel
recommended)

Yes No

Consider mechanism by which dietary intervention may act

Arterial
mechanics?

Pulse wave
velocity

Vasomotor
tone?

Pulse
contour
analysis

Yes No

Yes

Considerations

Adequate
reproducibility
needs to be
established;
possible in a small
volume of patients;
non-invasive;
skilled operator
required; may be
confounded
by blood pressure
change

Considerations

Reproducibility
good; possible in
a small volume of
patients; invasive;
skilled operator
required; may be
confounded by
blood pressure
change

Considerations

Adequate
reproducibility
needs to be
established;
possible in a small
volume of patients;
non-invasive;
skilled operator
required; may be
confounded by
blood pressure
change

Considerations

Adequate
reproducibility
needs to be
established;
possible in a
medium volume
of patients;
non-invasive;
skilled operator
required; may be
confounded by
blood pressure
change

Considerations

Adequate
reproducibility
needs to be
established;
possible in a
medium volume
of patients;
non-invasive;
skilled operator
required; may be
confounded by
blood pressure
change 

Yes
Yes

Yes

Considerations

Reproducibility
good; possible in
a large volume of
patients;
non-invasive
(except for blood
sample); skilled
laboratory
operator required

Fig. 1. Decision tree when considering method of vascular function assessment.
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possible. Recent studies using different vascular function

methodologies, although also with variation in study designs

and populations, have demonstrated contrasting results, despite

similar interventions(63,113), and such a panel of endpoints

may well have been informative in explaining these differing

results. The choice of method may depend on whether investi-

gators propose and are testing an acute or chronic effect of the

dietary intervention. Investigators should also consider whether

effects of the intervention are likely to be demonstrated in the

fasting or postprandial state, as a recent study of n-3 fatty

acids has demonstrated effects on postprandial macro- and

microvascular function, but no effect on fasting measures(175).

The confounding effects of blood pressure must be con-

sidered when interpreting study results. Changes in blood

pressure, and therefore blood flow, will also cause changes

in the FMD of a conduit artery, and which do not necessarily

reflect a change in the endothelial function of that vessel(10).

Forearm blood flow and PWV will also be affected by changes

in blood pressure. In summary, if an intervention mediates

a significant change in arterial blood pressure, a concordant

effect on other vascular assessments will be observed. This

does not imply an alteration of vascular structure or function

and can be predicted from arterial physiology.

Conclusions

A wide variety of techniques are employed to provide surrogate

vascular endpoints for short-term dietary trials in human

subjects. FMD of the brachial artery and aortic PWV examine

conduit and large elastic vessel properties respectively, and

therefore do not estimate arterial function at a microvascular

level where the bulk of endothelial cells are found.

The mechanism through which an investigator believes

their intervention will act, combined with the resources and

skill set of the investigating team, will most probably influence

the choice of assessment method. At present no single, all-

encompassing vascular function test exists, and perhaps a

more useful approach would be to combine several methods

to comprehensively assess arterial function and mechanics at

multiple sites.

Potentially useful emerging techniques include the analysis

of post-ischaemic arterial waveforms during FMD determi-

nation, quantifying pulse contour changes in response to

vasodilator challenges and measuring circulating endothelial

progenitor cell and microparticle concentrations.
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