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Abstract

Universities aim for good “Space Management” so as to use the
teaching space efficiently. Part of this task is to assign rooms and
time-slots to teaching activities with limited numbers and capacities
of lecture theaters, seminar rooms, etc. It is also common that some
teaching activities require splitting into multiple events. For example,
lectures can be too large to fit in one room or good teaching practice re-
quires that seminars/tutorials are taught in small groups. Then, space
management involves decisions on splitting as well as the assignments
to rooms and time-slots. These decisions must be made whilst satis-
fying the pedagogic requirements of the institution and constraints on
space resources.

The efficiency of such management can be measured by the “utili-
sation”: the percentage of available seat-hours actually used. In many
institutions, the observed utilisation is unacceptably low, and this pro-
vides our underlying motivation: to study the factors that affect teach-
ing space utilisation, with the goal of improving it.

We give a brief introduction to our work in this area, and then
introduce a specific model for splitting. We present experimental re-
sults that show threshold phenomena and associated easy-hard-easy
patterns of computational difficulty. We discuss why such behaviour
is of importance for space management.

∗Contact Author.
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1 Introduction

Decisions regarding the provision of teaching space in universities are com-
plex and difficult, yet have a direct impact on the costs and quality of service
for students and staff. For example, over-provision of space leads to higher
capital and running costs. Conversely, under-provision will lead to poorer
service with events being unable to find space or being forced into inappro-
priate timeslots or locations.

Furthermore, there is evidence that the current system is deficient. A
simple metric, used by the “Higher Education Funding Council for England
(HEFCE),” to measure the efficiency of teaching space usage is “Utilisation”
which gives an indication of the percentage of “seat-hours” being actually
used. There are reports suggesting that levels of teaching space utilisation
in UK universities is rather low (around 20-30%) [19, 20]. Paradoxically,
though anecdotally, there is often a perception that there is lack of teaching
space because it can be difficult to find appropriate rooms and timeslots
when organising teaching events. However, acquiring extra space for aca-
demic activities is generally met with reluctance on the basis that space is
only lacking because of poor space management.

Hence, an overall aim of universities is to improve the utilisation. How-
ever, of course, there must be limits on what is possible within the context of
practical objectives for timetabling besides space issues. In a naive approach
to space planning, one might think that if the overall seats-supply matches
closely the overall seats-demand, it should be possible to allocate teaching
space with high (close to 100%) utilisation levels. However in practice this
will not be achievable. Instead, some lower utilisation might be expected;
but precisely how low? This paper is part of an ongoing project [5, 6, 4] to
illuminate the issue of what utilisations universities might be expected to
reliably achieve, and how to achieve them.

Before proceeding further, it is important to give the context for the
work, and in particular to emphasise the differences from course or cur-
riculum timetabling [28, 24, 10]. As usual, for capacity planning problems,
there are multiple time-scales and rolling time horizons involved. At a high
level, we may think of the following rough division into time phases. (We
emphasise that the division is likely to be approximate; phases might well
overlap, planning and management are likely to be repeated, etc.)

• Space planning: “Long term.” Campus or new building design, with
a time horizon of around 5-50 years.

• Space management: “Short term.” Remodelling of existing space,
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with a time horizon of around 1-5 years.

• Course timetabling: “Immediate.” Allocate events to times and
rooms for next term or semester. The time horizon is “immediate”
because it needs to be done for the next teaching session.

Studies of space planning and management interact with course time-
tabling but there is a crucial difference. In instances of course timetabling
we are given a set of events and a set of rooms. From the definitions ([6] and
Section 2), it will be clear that utilisation is obtained by simple counting of
seat demand and availability, and so is fixed from the outset. In some re-
spects, we might even say that as far as utilisation is concerned, by the time
we get to the course timetabling stage then ‘the damage has already been
done’ and there is little that better timetabling can do to fix poor utilisation.
In standard course timetabling, the aim is to optimise other objectives (such
as student preferences) but our focus must be on the stages before this and
their interaction with course timetabling. If we are to study the factors that
can change utilisation then it must be allowed to take many different values
and cannot be predetermined. Hence, we must do at least one of (i) vary
total demand, or (ii) vary total capacity. In this paper, we follow the same
approach as [6, 4] in that we vary the total demand by varying the set of
events whilst keeping the set of rooms fixed.

In [5, 6], we found out that there is a threshold for “Is it possible to
allocate all events into the available space and achieve a target utilisation
UR?”. We identified “critical values” of target utilisation UC , if UR < UC the
answer is “almost always yes” but if UR > UC the answer is “almost always
no”. The threshold is pertinent because it gives a method to determine levels
of utilisation that can be achieved reliably, and so support decisions as to
how much teaching space to provide. Such thresholds have been extensively
studied within Graph Theory and later within Artificial Intelligence (AI),
however, we expect that they are not so well-known within the Operational
Research (OR) community and so briefly review them here.

1.1 Thresholds: A Brief Review

In the area of graph theory, the study of thresholds has focused on random
graphs [7]. A standard model for random graphs is denoted Gn,p where n
is the number of nodes, and p the probability of an edge between any two
nodes. The probability, Pr(P ), of a random graph having some boolean
property, P , such as ‘has a large cluster’ or ‘is fully connected’, is studied
as a function of n and p. It turns out that the (n, p) parameter space
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is typically divided into regions in which the probability is asymptotically
close to one, Pr(P ) = 1 − o(n), stated as instances “almost always” have
P , and other regions in which Pr(P ) = o(n), that is, instances “almost
never” have property P , and with a sharp demarcation line between these
regions. Often, these regions are called phases, and the demarcation line
a phase transition, to follow the similar phenomena in physical systems;
for example, ice, water, and steam are phases of H2O with sharp phase
transitions at temperatures 273K and 373K (at atmospheric pressure).

It is important to emphasise that such thresholds are not rare. As soon
as one looks at large instances arising with some random component, but
from some similar source, then thresholds become a common occurrence.
There is even a remarkable “zero one law” within random graphs that any
suitable property (non-trivial and monotonic under the addition of edges to
a graph) will exhibit a threshold [33].

Thresholds in graph theory have also been applied within percolation
theory [34]. An archetypal application would be the study of the feasibil-
ity of extraction of petroleum from oil-bearing rocks. Roughly speaking,
the oil resides in pores in the rock which are considered as the nodes of
a graph, and there is some probability of neighbouring pores being con-
nected by a small channel along which oil may flow. In an associated graph
model, nodes are arranged on some form of grid, and edges added between
neighbours with some probability p. The property of interest is the number
of nodes reachable, on average, from a given node, or the average size of
connected clusters. For small p the clusters are small, but as p increases
they increase in size, until at some critical value of p enough small clusters
connect together such that very large clusters appear; corresponding, it is
hoped, to being able to extract a large amount of oil from a single bore-
hole. The point being that difficult-to-measure large-scale properties can be
statistically predictable based on simple-to-measure local properties.

The work within graph theory focused on whether or not graphs had
some property, P , however, it did not ask about the computational difficulty
of solving the associated decision problem. In contrast, the work within
Artificial Intelligence (AI) has focused on the computational hardness of the
decision problems. The interest of AI arose from a paradox arising in early
studies of propositional satisfiability (SAT). (AI tends to focus on logical
decision problems such as SAT, in contrast to the OR focus on optimisation
problems such as the travelling salesman problem, TSP.) In order to develop
better SAT solvers, AI practitioners wanted to have a large suite of test
instances. However, initial studies on randomly generated instances found,
that average solution times scaled polynomially with the problem size. This
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was somewhat paradoxical, as SAT is NP-complete, and so of course worst
case solution times are expected to be exponential, and so hard instances
must exist. The seminal work “Where the Really Hard Problems Are”
[11] answered that they are associated with thresholds, and provided the
foundations for over a decade of active study within AI.

An intensively-studied example is that of “Random 3-SAT” [30]; with n
boolean variables c non-trivial clauses are generated (uniformly at random)
from all possible clauses. There is a phase transition at c/n ≈ 4.2. Instances
with c < 4.2n are almost always satisfiable, and those with c > 4.2n always
unsatisfiable. Furthermore, the computational time needed to decide satisfi-
ability exhibits what is generally referred to as an “easy-hard-easy” pattern:

“Easy”: “under-constrained region”, with c < 4.2n and outside of
the phase transition, instances are always satisfiable and, on average,
it is easy to find a solution to demonstrate this.

“Hard”: “critically constrained region”, with c ≈ 4.2n we are in the
phase transition meaning there is a mix of satisfiable and unsatisfiable
instances. Furthermore, it is hard to solve the instances, even for
the best heuristic (local search) solvers it appears that runtimes scale
exponentially with problem size [14, 23].

“Easy”: “over-constrained region”, with c > 4.2n and outside the
phase transition region, then instances are unsatisfiable, and as c in-
creases they become ever easier to prove unsatisfiable with systematic
complete solvers. With more constraints branches of the search tree
are more likely to be pruned earlier, and so the search tree size is
greatly reduced.

When the property P is NP-hard then the easy-hard-easy pattern is
common. However, it should be emphasised that even when P is NP-hard
it can be that the threshold is still relatively easy. An example, is that of
random graphs with P being whether or not the graph has a Hamiltonian
cycle. There is a threshold that was initially thought to be hard but was
later found to be relatively easy for improved algorithms [36]. Generally, the
work in AI has focused on empirical studies of problems with strong hardness
peaks. In contrast, historically, the work on random graphs was mostly
mathematical, and for problems with “poly-time” decidable properties (such
as connectivity); these seem to often be amenable to exact mathematical
analysis. Generally the hard thresholds are much more recalcitrant and
so far can only be partially mathematically analysed [1], though with the
notable exception of number partitioning [21, 8].
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From the OR perspective this sort of pattern might seem familiar from
optimisation problems. Suppose, for concreteness, we are studying some
instance of the TSP and using a systematic branch-and-bound or integer
programming method. We can think in terms of a decision problem working
with a varying bound B on the length of a tour; if the (unknown) optimal
is d then there is again a pattern:

“Easy”: B > d meta-heuristics easily find solutions

“Hard”: B ≈ d meta-heuristics fail to find solutions, and branch and
bound suffers from large search trees

“Easy”: B < d lower bound techniques might well render it easy to
prove infeasibility

These “AI easy-hard-easy” and “OR easy-hard-easy” are related; but
there is a vital difference. In the “AI case” we are discussing collections
(“ensembles”) of instances – the easiness or hardness is an average over a
collection of instances drawn from a statistical distribution and varying a
parameter used to generate them. In contrast, in the “OR case”, we are
thinking of a single instance and varying a parameter used to control the
solution quality.1

It is this switch to ‘decision problem for each of an ensemble of instances’,
as opposed to ‘optimisation of a single instance’, that distinguishes threshold
studies from the familiar hardness of approaching optimal values. Such a
distinction is critical for this paper. We will be generating many thousands
of instances according to various control patterns, and then solve a decision
problem for each one. We do not focus on working with a few instances
and then heavily optimising each one. But then why are we interested in
thresholds and easy-hard-easy patterns at all? After all, such patterns are
now ubiquitous and so simple presentation of “yet another hard threshold”
would neither be particularly informative or surprising. What distinguishes
our work is the usage and implications we draw from the hard thresholds.
In AI work, hard thresholds were studied for their own intrinsic interest,
however, their actual usage was almost exclusively2 indirect, and limited to
being a source of many hard and suitably-sized problems for driving forward
the development of solution algorithms. For example, they were heavily

1Such different views can be connected by viewing instances as not being selected, but
rather as “evolving” as we vary the parameter, and then they all become hard “at the
same time”, but such a link is not needed here.

2A possible exception is the uses of thresholds as attempts to exploit and predict the
hardness of instances with the view to improving solvers (e.g. [26])
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used for SAT solvers, however as solvers improved they become more able
to exploit structures within real instances and so benchmarks moved away
from the previously used thresholds.

In contrast, we are proposing a case in which a hard threshold in itself
can have a direct practical impact. We will see that the thresholds also have
a novel and direct relevance in and of themselves; namely, they can have an
impact on the short and medium-term planning process.

1.2 Splitting

Now we return to the topic of “splitting”. In [6], events to be allocated were
atomic in the sense that the total seat-demand for that event should be allo-
cated to a single room and a time-slot and events could not be split. In [4],
we considered the case when classes need to be split into groups (sections).
For example, when a lecture class is too large to be accommodated in any
of the available rooms or when a class has to be subdivided into tutorial
groups. We investigated constraints on numbers and sizes of groups, and
found they can drive down utilisation.

The literature on academic timetabling treats many different systems
and cultures and so not surprisingly there is no single terminology. How-
ever, it is important to appreciate the difference between the following two
approaches to modelling the divisions of events into groups:

splitting: the only decisions are the number and sizes of the groups
[32, 25, 9, 22, 29, 4]. For example, a tutorial of size 100 might be split
into 4 groups of size 25 each, and these groups allocated a room and
time in the standard fashion.

grouping or sectioning: This addresses the assignment of students
(or small student cohorts) themselves to groups (or sections). Section-
ing models applied to real world instances either need to be solved in
stages [18, 16, 2], or require model-specific meta-heuristics [17, 3, 27].

We do not work at the level of students, and so are doing splitting rather
than grouping or sectioning. We focus on the interaction of splitting with
management and planning, and how to achieve higher utilisations.

Generally, previous work has only studied some aspects of the overall
problem, but not their interaction. An early version of course planning by
Longworth-Smith [32] took account of space resources: It looked at effects
of uncertainty in the enrollments into different courses and the resulting
probability that a set of rooms will be sufficient. However, it did not consider
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timetable clashes or other standard timetable issues. Course planning has
also been based on methods to predict enrollments into courses [25], and
used the predictions to plan which courses to offer.

The effects of splitting on the minimal number of timeslots needed for a
legal timetable was considered by Selim [29], and rule-based methods given
to decide which courses ought to be split. It looked at a case where the
number of available timeslots was smaller than the chromatic number of
the conflict graph, and resolved this by splitting some events into multiple
sections. Similarly, Tripathy [35] has discussed how multiple sections are
needed so as to meet limits on group size but can also result in the resolution
of timetable conflicts.

Mathematical models have been given to estimate student enrollments
[9] and used to generate number of sections to be the minimal adequate
number subject to an upper limit on the size of each section. This work
also performed timetabling and assignment of faculty to sections. Splitting
has also been performed “in reverse” [22] by placing students into small
groups based on similarities in their enrolments, and then finding ways to
combine these small groups into sections, that is, allowing different groups of
students to be combined during timetabling so as to share lectures that they
have in common. Integer programming formulations (for example [12]) have
been given for solving complicated timetabling problems in the presence of
multiple sections.

However, in such previous work, although search was used for the time-
tabling, the numbers of sections and their sizes were assumed to be known
prior to the search. For example, the number and sizes of sections were
supplied, or derived using fixed rules provided by the administration. In
contrast, in our previous work [4], and this current work, search is used for
the splitting decisions together with the timetabling itself, allowing the two
to interact. Also, we look at the interaction between splitting and utilisation
in order to develop methods to do space planning in the presence of the need
for splitting and sectioning.

Finally, we emphasize that the point of this paper is to study the com-
bination of all these issues. In particular, to show that the thresholds and
hardness peaks familiar in AI, have implications for space planning.

Overall, our approach is as follows:

1. In the presence of appropriate constraints, identify the “critical points”
of target utilisations UC . That is, we bound the regions for which
utilisations are almost always achievable.

2. Upon identifying critical points, investigate the computational costs
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of achieving different levels of utilisation as we approach the critical
value.

3. Study how the patterns of computational costs will impact on space
management and planning

The outline of this paper is as follows. Section 2 gives a description
and an integer programming formulation of the teaching space allocation
problem with splitting. Section 3 reviews the safety concepts and defines
the approach in finding the critical point. In sections 4 and 5 we present
experimental results on the thresholds. Section 6 gives conclusions and
discusses future work.

2 Description and Formulation

In this section, we present some of the terminology that we use to describe
instances, followed by an integer programming formulation of the constraints
and objectives.

Unfortunately, the terminology associated with course timetabling and
splitting can vary depending on the country, and even the institution. In
this paper, a “course” will typically last for 2-4 years and consist of many
“modules” each of which takes one teaching session (term or semester). For
example, a course in “Computer Science” will likely have modules such as
“Computer Architecture”. Each module can consist of various types of class:
lectures, and potentially tutorials and workshops. Splitting of a class will
result in one or more groups. Classes have an “event-type” and will also
have an associated “spacetype”, i.e. the preferred type of space in which
they are to be taught.

We use the same data-sets, from a University in Australia, as in [6, 4].
The set of event and spacetypes are Lecture (LEC), Tutorial (TUT), and
Workshop (WKSP). We are concerned with splitting driven by small group
teaching requirements, and so will only use the WKSP and TUT data-sets.
Furthermore, we will force the event-type of a class to be the same as that of
the room, and we will treat spacetypes TUT and WKSP entirely separately.
(We are actively investigating the important problem of spacetype mixing
and will report on it soon.) For each spacetype (and associated event-type)
we have sets of classes and rooms. For each class i ∈ {1, . . . , n} we have:

1. size Si: number of students of the class

2. department di: department offering/managing the class
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Similarly, for every room j ∈ {1, . . . , r} we have:

1. capacity Cj : maximum number of students in the room

2. timeslots Tj : the number of timeslots the room is available per week

3. department Dj : the one that owns/administers the room.

For the resulting assignment problem, we always enforce the standard con-
straints that room capacities cannot be exceeded, and that different events
cannot share a room and timeslot. We also need to consider other important
real-world constraints and objectives, notably the utilisation and restrictions
on group sizes.

The utilisation measure [5, 6] is the number of seat-hours used (in a
weekly schedule) as a fraction of all those available.

U :=
seat-hours used

total capacity for seat-hours
(1)

Usually we refer to U as a percentage: so U = 100% if and only if every seat is
filled at every available timeslot. As discussed earlier, in course timetabling
problem the utilisation is fixed by the instance and not the details of the
solution (as long as one exists). Accordingly, directly optimising utilisation
in itself is not meaningful. Instead, following [6], we use two separate modes:

Fixed Choice. The solver is not given the freedom of choosing which
module to allocate to rooms. Instead, the question that generally
arises in that case is “Can we fully allocate all the modules to the
rooms?”

Free Choice. The solver selects which subset of the modules to allo-
cate so as to maximise utilisation.

The free choice mode allows the solver to choose classes that better fits
in available roomslots. In this mode we also always impose “No Partial
Allocation” (NPA): even if a class is split, either all the resulting groups
are allocated, or none at all. (NPA is automatically satisfied in fixed choice
mode.) The roles played by fixed and free choice will, we hope, become
clearer in section 3.

Besides utilisation, we also take account of the penalties on locations
and group sizes and numbers.

We use a location penalty, to model the desire to minimise physical travel
distances [6]. If a group of a class i has a different department than the room
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j to which it is assigned, then it will be given a penalty Lij (which we take
to be a fixed matrix that depends only on the department, di, offering the
class i, and the department, Dj owning the room j). The total Location
penalty, L, is the sum of this penalty over all assignments.

Administrators are likely to want to restrict the number of students in
groups, and so we will have “Groups Size (GZ)” penalties and constraints.
As mentioned in [4], reducing the number of groups directly reduces teacher
hours needed, hence, the “Group Number (GN)” penalty will be propor-
tional to the total number of allocated groups. Note that we are not includ-
ing conflict constraints between groups. In [4] we discussed the issue of the
“partial inheritance” of conflicts: that is, the extent to which a group inher-
its the conflicts of its parent class. In this paper, we follow the general belief
that the partial inheritance is effectively zero, that is, if two classs conflict
then with good assignment of students to groups (sectioning) the conflicts
can be removed. Accordingly, in this paper, we do not include timetabling
conflicts. (In ongoing work, we are using a model that explicitly includes
studies in order to investigate under which circumstances the partial inher-
itance is not zero. Also, teachers can generate conflicts, and for these the
sectioning will not necessarily reduce conflicts in the same way as for the
students. Future work will include such effects into the study of utilisation.)

2.1 Integer Programming Formulation

The following parameters and variables are used for modeling the problem as
an Integer Program. Let’s call a (room, timeslot) pair a room-slot. Room-
slots are the available space to which classes/groups are allocated. So having
r rooms and p timeslots per room, the number of roomslots will be m = r×p.
Other sets used are:

N : set of all classes, with total number of classes, n = |N |
P : set of all timeslots, with total number of timeslots, p = |P |
R : set of all rooms, with total number of rooms, r = |R|
M : set of all roomslots, with total number of roomslots, m = |M | = rp

Further parameters needed for each spacetype are:
Si : number of students enrolled in class i
Cj : capacity of room (or roomslot) j
Lij : location matrix between classes i and room (or roomslot) j
Gt

i: target group size for class i
Glow

i : lower limit on group size for class i
Gup

i : upper limit on group size for class i
Gnb

i : upper limit on number of groups of class i
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Ol : minimum fraction (occupancy) of seats filled in used rooms
Notice that we will abuse notation slightly and use index “j” for both room
and roomslot, for example the location matrix Lij is defined over rooms, but
trivially extended to also apply to roomslots; and similarly for the capacity
Cj . The difference should be clear from the context.
Finally, we also have parameters to impose non-negative upper limits on the
penalties:

Bup
L : upper limits on the location penalty (L)

Bup
GZ : upper limit on group size (GZ) penalty

For example, Bup
L = ∞ will correspond to no limit on locations, whereas

Bup
L = 0 will force that all locations are perfect matches.

Decision variables: We use the following integer non-negative decision
variables:

vij = number of students of class i allocated to roomslot j

yij =

{
1 if one group of class i is allocated to roomslot j.
0 otherwise

xi =

{
1 if class i is allocated
0 otherwise

Constraints: We have the following constraints.

m∑

j=1

vij = Sixi ∀i (2)

vij ≤ Cjyij , ∀i ∈ N, j ∈ M ; (3)
n∑

i=1

yij ≤ 1, ∀j ∈ M (4)

n∑

i=1

m∑

j=1

Lijyij ≤ Bup
L (5)

n∑

i=1

m∑

j=1

∣∣∣vij −Gt
iyij

∣∣∣ ≤ Bup
GZ (6)

vij ≥ OlCjyij , ∀i ∈ N, j ∈ M (7)
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The No-Partial allocation, NPA, constraint is forced by (2). Room capac-
ities are enforced by (3), which also links the v and y decision variables.
Equation (4) limits solutions to at most one group per roomslot. Equa-
tions (5) and (6) place upper bounds on the location (L) and group size
(GZ) penalties. (Only occupied roomslots will contribute to GZ, and the
intent is to drive group sizes to the target size. When Bup

GZ is 0, all groups
must have a size equal to τi). If a roomslot is used then the given fraction Ol

of room seats needs to be filled due to (7). In this paper, we use Ol = 0.3,
though other values gave very similar results to those presented here. In
some cases, we also used some or all of the following:

vij ≤ Gup
i yij ∀i ∈ N, j ∈ M (8)

vij ≥ Glow
i yij ∀i ∈ N, j ∈ M (9)

m∑

j=1

yij ≤ Gnb
i , ∀i ∈ N (10)

Which impose upper and lower limits on the group sizes using (8) and (9).
Constraint (10) imposes upper limits on the number of groups per class.
Note that if Gnb

i = 1, the problem becomes pure teaching space allocation
without splitting [6].

The following constraint simply expresses that the total number of as-
signments is no greater than the number of total roomslots, m = rp. It is
entailed by the other constraints, but is added as it can lead to a considerable
reduction in computation times.

n∑

i=1

m∑

j=1

yij ≤ m (11)

Objectives: In free choice mode the objective is to maximise the overall
seat-hours used

Obj∗ =
( n∑

i=1

m∑

j=1

vij

)
(12)

However, for fixed choice mode we enforce ∀i. xi = 1 giving
m∑

j=1

vij = Si ∀i (13)

In this case, the value of the objective Obj∗, and so the utilisation, is fixed,
and the problem is simply that of feasibility. We note that it is straightfor-
ward to show that the resulting splitting problem is NP-hard by reduction
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from subset sum. This NP-hardness underlies the hardness of the problem.
However, more intuitively, notice that the number of choices for splitting can
be large when the initial class size is large. The primary decision variable,
vij , is integer and not just a 0-1 variable, and so can have a large range of
potential values. Also, each splitting choice interacts with whether or not a
room assignment can be found, contributing further to the hardness of the
problem.

Finally, the solver we use is OPL with CPLEX 10.0 from ILOG3.

3 Achievement Curves

[Figure 1 about here.]

In this section, we look at achievement curves and thresholds [5, 6] for
the case of the splitting problem. Given a fixed set of rooms and a set of
classes N of a given spacetype, and hence a corresponding demand SHe for
seat-hours, one can ask the following:

Given a demand, SHe, (for total “seat hours”), and taking ac-
count of the constraints, is there a splitting and allocation that
allows full satisfaction of the demand?

Our key tool, “Achievement Curves”, study how the probability of the an-
swer being “Yes, all are allocatable” varies with the demand.

In our data-sets, the total seat-hours in the set of classes is significantly
larger than in seat-hours available in the rooms. Hence, we can answer this
by generating random instances by taking subsets of the classes using the
following procedure:

Proc: subset-scan
1 Given a set N of classes of a given spacetype
2 For ν= 1 to 3000 (or similar large number)
3 For s= 1 to n
4 Randomly select a subset of N containing s different classes from set N
5 Run the solver in free choice mode on the subset to obtain UA

That is, we generate many random subsets of the classes. For each
subset we compute the utilisation if all were to be events allocated; we call

3http://www.ilog.fr/
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this the “requested” utilisation UR. Running the solver in free choice mode
optimises the set of allocated classes and gives the “Achieved” utilisation
UA. If all classes can be allocated then UA = UR, however, in general UA

can be lower. Hence, each randomly generated subset generates a point,
with coordinates (UR, UA). An example is given in figure 1(a), in which we
give the achievement curves with two different upper limits on the location
penalty, Bup

L = 800, 1200, with resulting critical utilisations UC ≈ 0.5 and
UC ≈ 0.6.

Alternatively, it can be clearer to present the “fractional achievement”,
or “fill factor”

Kf =
UA

UR
(14)

against UR. An example is given in figure 1(b). In this case, we are will be
interested in the quantity

Pr(Kf = 1): probability of achieving full allocation, Kf = 1, on
random choice of classes with given UR

and in particular how it varies with the requested utilisation UR.
The results were obtained using CPLEX as the solver. CPLEX is given a

“MIP gap” of 1% meaning it only stops when it proves the current solution
is within 1% of optimal. Hence we can be sure that the fall-off in achieved
utilisation is not a result of any deficiency in the solver.

As observed in [6] the main features of these curves are their statistical
predictability and the threshold behaviour. At a given value of UR the
achieved values do not vary widely but are rather closely clustered and
so one can say that the expected UA is fairly predictable. The threshold
behaviour is the observation that the achievement curve exhibit a critical
utilisation UC that separates the under constrained region UR < UC and
over-constrained region UR > UC .

In terms of space management we might regard the “under-constrained”
region UR < Uc as the “safe” region because the requests are very likely
to be satisfied. In contrast, the critical and over-constrained regions, UR ≥
UC , are considered “unsafe”. The intended usage of such results is that
administrators should aim to be in the safe region so as to be confident
to satisfy demand, but as close as possible to the critical region so as to
maximise utilisation.

4 Computational Hardness

[Figure 2 about here.]
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As discussed earlier, sharp thresholds (or phase transitions) as seen in the
previous section, are common in physical and combinatorial systems and are
often associated with a peak in the computational difficulty of solving each
instance [11, 13, 15, 26, 31]. In general, we should expect an “easy-hard-
easy” pattern, corresponding to the under-, critical-, and over-constrained
regions. In this section, we present results investigating the hardness of our
integer programming formulation of splitting problems.

The experimental methodology is straightforward; for each instance, we
simply record the time taken when the instances is solved: classifying it as
satisfiable, “sat”, or unsatisfiable, “unsat”. The one catch is that sometimes
the CPLEX solver times out and leaves the instances undetermined “undet”.
Having obtained runtimes for each instances we produce histograms based on
collecting instances together into bins according to their requested utilisation
UR, and also according to their status of sat, unsat, or undet.

This data is then used to produce plots such as Figure 2(a). Plots similar
or equivalent to this are used in the artificial intelligence literature on phase
transitions, but are perhaps unfamiliar in an operational research context,
so we will now explain how to read and interpret them. For the purposes
of clarity we will focus on figure 2(a), as later plots are similar. As for
the achievement curves of figure 1, the x-axis is the requested utilisation,
UR, which is the utilisation that would be achieved if all classes can be
successfully assigned to a roomslot.

Figure 2(a) then combines two sets of data measuring, as a function of
UR, firstly, the likelihood that all classes can be assigned, and secondly the
runtime needed to solve the assignment problem. There are two correspond-
ing sets of y-axes. The left-hand y axis is associated with the points in the
lower half of the figure, and gives the probability, Pr(Kf = 1), that a feasible
solution exists with every class allocated a room and time. The right-hand
y axis is associated with the points in the upper half of the figure, and gives
the runtimes needed by the solver; notice that this axis is on a logarithmic
scale because the runtimes can vary so over a wide range. More specifically,
the figure is actually a fine-grained histogram with respect to UR. Each
point is the aggregation of results from a sample of many instances (each
instance being a set of classes) from a small region around that value of UR.
The given probability is the fraction of such instances that were satisfiable.
The points for the runtimes are the (arithmetic) mean runtime within the
sample, along with the quartiles given as “error-bars” and intended to show
the variation of runtimes between different instances.

The first feature to extract from such figures is the position of the tran-
sition region; the region of UR at which the probability drops from one to
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zero. The second feature to extract is the behaviour of the runtime as one
approaches and passes through the transition. That is, to look at the upper
runtime curves in relation to the lower probability curve (which is why it is
useful to combine them into a single figure). For this interpretation of the
runtimes it is the general trend of the runtimes that is important, and not
details of individual points in the figures.

The results for runtimes as a function of UR are given in Figure 2(a)
for the WKSP data set and without imposing any limits on the location
and group size penalties. As explained above, we also give experimental
results for the probability of full allocation, Pr(Kf = 1), and show a sharp
threshold at UC ≈ 92%. Note again that the run-time axis is logarithmic:
instances at UR = 90% take 10-100 times as long as those at UR = 80%.
The pattern is:

Easy: UR < UC , there are many different ways to fully allocate groups
and so it is easy to find a solution

Hard: UR ≈ UC , There might be few solutions, and they are hard to
find. Alternatively, the problem is unsatisfiable but there is no simple
reason for this.

Easy: UR > UC , full allocation is impossible and it can be straight-
forward prove this (e.g. from the linear relaxation)

Below the threshold, within any instance there are many solutions and
so it is easy to find one. For U ≥ 100% the linear relaxation will detect
infeasibility and so the runtime will be small as branch-and-bound search is
not needed. Around the threshold, there are few if any solutions, and so the
search will pursue many failed branches and take a correspondingly longer
time on average for each instance.

Figure 2(b) gives the results of a similar investigation of the TUT dataset.
The outcome is similar to the Workshop case of figure 2, but the threshold
is closer to 100%. We believe this is because the smaller rooms help achieve
near optimal allocations compared to the larger rooms in the WKSP dataset.
However both databases exhibit the same behaviour in terms of time require-
ments.

[Figure 3 about here.]

In the same fashion as figure 2, in figure 3 we show the effects of imposing
an upper limit on the location penalty, Bup

L = 800. For both the WKSP
and TUT datasets we see that there is still a clear threshold, however it
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is now at a significantly smaller critical utilisation: reduced to about 45%
for WKSP, and 60% for TUT. These are consistent with the results in [6]
that the need to reduce location penalties has the potential to significantly
drive down utilisations. The computational hardness, and easy-hard-easy
pattern, are similar to before.

[Figure 4 about here.]

For tutorials, it is usual that they are intended to be taught in small
groups. We now look at the effects on the thresholds of two different ways
to enforce the small group requirement.

In Figure 4 we see the effects of imposing for each group that the
size must lie within the range 12,. . .,16. (That is, we use Glow = 12 and
Gup = 16). Again there is a threshold, and the group size constraints have
substantially reduced the achievable utilisation. However, it is also apparent
that the hardness peak has essentially disappeared. We remark that is well-
known that whilst thresholds are often associated with hardness peaks, it is
not the case all thresholds automatically have a hardness peak [36]. These
results suggest that enforcing small group sizes can easily lead to a large loss
of utilisation. Presumably, any remedy to this will involve modifying the
room sizes so as to be a better match. (Studies of such room sizes profiles
are part of our ongoing research, and will be reported elsewhere.)

5 Runtimes for a stochastic solver

[Figure 5 about here.]

So far we have only considered a single (and exact) solution method,
namely our integer encoding together with CPLEX, but hardness peaks
at thresholds generally affect many algorithms (and maybe all). Hence,
we also studied the ‘Simulated Annealing for Splitting’, SAS, algorithm of
[4]. Figure 5(a) plots the run-times required by CPLEX and SAS on the
pure splitting case, that is, without any limits on the location or group size
penalties. (For clarity, the “errors bars” for quartiles are omitted in this
case.) Overall, the SAS runtimes show the expected rapid increase as we
approach the threshold. However, the pattern is significantly different from
that of CPLEX. In the under-constrained region the SAS beats CPLEX,
though at the cost of a much greater variability in runtimes.

Close to the threshold, the SAS performs much worse than CPLEX,
and generally fails. This relative performance of systematic and stochastic
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search is fairly typical of thresholds. This is reinforced in Figure 5(b) which
shows that after UR ≈ 80%, SAS almost always fails. This means that the
simulated annealing exhibits a “False Threshold” which is clearly at a lower
utilisation than the true threshold, which is revealed by the CPLEX results
in Figure 5(b) to be around UR ≈ 92%. Better versions of local search are
likely to improve this, however, it is quite possible that they will still suffer
from thresholds below the true threshold (e.g. see [23]). The impact of such
false thresholds is that they could mislead space planners into settling for
lower levels of utilisation than are potentially possible with a better solver.

[Figure 6 about here.]

Figure 6(b) plots the runtimes required by CPLEX and SAS in the pres-
ence of the location penalty for the WKSP dataset. Again, the SAS solver
solves some instances quicker then CPLEX, but closer to the threshold it
does worse.

The implication for space planning is that whilst false thresholds can
occur, it can also happen that they do not occur (or do occur but do not
have a significant impact). Hence, it would be good to know when they are,
or are not, likely to occur.

6 Conclusions and Future Work

The problem of space planning and management in the context of require-
ments such as splitting classess into groups in the ‘Teaching Space Allocation
Problem’ is of considerable importance for various academic institutions. In
previous work [5, 6, 4], we introduced the notion of achievement curves as
a tool to study the levels of utilisation that can be reliably achieved. These
curves then revealed the underlying threshold phenomena. For example, in
[4], we studied the thresholds in the presence of splitting, and found that
different penalties and constraints have significant effects on the utilisation
that can safely be achieved.

However, practically, it is also important to know the computational ef-
fort (i.e. runtimes of solvers) that are needed in order to reach the target
utilisations. Accordingly, we extended the previous work by investigating
the runtimes needed to solve the problems arising. Here, we have shown that
there is a standard easy-hard-easy pattern in the hardness, with the prob-
lems near the threshold being much harder. The results are exemplified by
Figure 2(a). Whilst some utilisation levels are easily achievable, some levels
require high computational resources. For example, a 5% improvement of
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utilisation might well require a hundred-fold increase in computational time.
The dramatic increase in runtimes at the threshold implies that better solu-
tion methods will be required if we are to approach the threshold on larger
data sets. Also, a particular concern for space planners is that “false thresh-
olds” can arise. If only incomplete solvers are studied then (by definition)
instances cannot be proven unsatisfiable, and so no non-trivial upper limit
can be obtained on the position of the threshold. The resulting apparent
limit can then be substantially below the true threshold. (Though, arguably,
even if some level of utilisation is achievable with a very good splitting and
allocation, it is not of much use if the solver is incapable of finding it.)

We conclude that there is a close link between improving utilisation
and improving solver technologies. This paper has shown, that attempts,
in space management, to achieve acceptable utilisation figures beyond the
normal standard ones seen in academic establishments might well require
improvements in solvers. Note that the hardness peak occurred for two
different algorithms giving strength to believing that the hardness peaks are
real. It can be that a specialised algorithm can make hard peaks disappear
(as happened in [36]), but even if these were to be the case here the results
are still important because the administrator or planner needs to be aware
of effects of the choice of solver on the achievable utilisation.

This paper also provides a novel role for the easy-hard-easy patterns that
have been so extensively studied with Artificial Intelligence. Not only do
they provide a source of challenging instances for algorithm development,
but they can also have a direct interaction with practical issues in space
planning and management.

There are many directions for future work. For example, in the real
world, there is often “spacetype mixing”: events are have a primary space-
type, but can be allocated to a secondary spacetype when needed. In this
paper, we have investigated spacetypes independently, but an important di-
rection for future study is to also allow spacetype mixing. For example to
allow tutorials to use a lecture room when necessary. Such spacetype mix-
ing is likely to significantly affect utilisation. We are actively studuing this
issue on the basis of extensions to the models and methods presented in this
paper, and we intend to report on it soon.

Acknowledgments: Andrew Parkes has been supported by the UK En-
gineering and Physical Sciences Research Council (EPSRC) under grant
GR/T26115/01.

20



References

[1] D. Achlioptas. A survey of lower bounds for random 3-SAT via dif-
ferential equations. Theoretical Computer Science, 265(1–2):159–185,
2001.

[2] S. M. Al-Yakoob and H. D. Sherali. A mixed-integer programming
approach to a class timetabling problem: A case study with gender
policies and traffic considerations. European Journal of Operations Re-
search (EJOR), 180:1028–1044, 2007.

[3] R. Alvarez-Valdes, E. Crespo, and J. M. Tamarit. Assigning students
to course sections using tabu search. Annals of Operations Research,
96:1–16, 2000.

[4] C. Beyrouthy, E. K. Burke, D. Landa-Silva, B. McCollum, P. McMul-
lan, and A. J. Parkes. The teaching space allocation problem with
splitting. In E. K. Burke and H. Rudova, editors, Practice and The-
ory of Automated Timetabling VI: Revised Selected papers from the 6th
international conference, PATAT, Aug 30-Sep 1, 2006, volume 3867 of
Lecture Notes in Computer Science, pages 228–247. Springer-Verlag,
Brno, Czech Republic, 2007.

[5] C. Beyrouthy, E. K. Burke, J. D. Landa-Silva, B. McCollum, P. Mc-
Mullan, and A. J. Parkes. Understanding the role of UFOs within space
exploitation. In Proceedings of the 2006 International Conference on the
Practice and Theory of Automated Timetabling (PATAT 2006), pages
359–362, Brno, Czech Republic, 2006.

[6] C. Beyrouthy, E. K. Burke, J. D. Landa-Silva, B. McCollum,
P. McMullan, and A. J. Parkes. Towards improving the util-
isation of university teaching space. Journal of the Opera-
tional Research Society (JORS), Nov. 2007. Online version:
http://dx.doi.org/10.1057/palgrave.jors.2602523.

[7] B. Bollobas. Random Graphs. Academic Press, London, England, 1985.
[8] C. Borgs, J. Chayes, and B. Pittel. Phase transition and finite-size

scaling for the integer partitioning problem. Random Structures and
Algorithms, 19(3-4):247–288, 2001.

[9] J. Boronico. Quantitative modeling and technology driven departmen-
tal course scheduling. Omega, 28(3):327–346, June 2000.

[10] E. Burke and S. Petrovic. Recent research directions in automated
timetabling. European Journal of Operational Research (EJOR),
140(2):266–280, 2002.

[11] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the Really Hard
Problems Are. In Proceedings of the Twelfth International Joint Con-

21



ference on Artificial Intelligence, IJCAI-91, Sydney, Australia, pages
331–337, 1991.

[12] S. Daskalaki, T. Birbas, and E. Housos. Efficient solutions for a uni-
versity timetabling problem through integer programming. Eur. J. Op.
Res., 160:106–120, 2005.

[13] W. Erben. A grouping genetic algorithm for graph colouring and exam
timetabling. In Selected papers from the Third International Confer-
ence on Practice and Theory of Automated Timetabling (PATAT 2000),
pages 132–158, London, UK, 2001. Springer-Verlag.

[14] I. P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The scaling of
search cost. In Proceedings of the Fourteenth National Conference on
Artificial Intelligence (AAAI-97), pages 315–320. American Association
for Artificial Intelligence, 1997.

[15] I. P. Gent and T. Walsh. Phase transitions and annealed theories: Num-
ber partitioning as a case study. In European Conference on Artificial
Intelligence, pages 170–174, 1996.

[16] A. Hertz. Tabu search for large scale timetabling problems. European
Journal of Operational Research (EJOR), 54(1):39–47, Sept. 1991.

[17] A. Hertz. Finding a feasible course schedule using tabu search. Discrete
Applied Mathematics, 35(3):255–270, 1992.

[18] G. Laporte and S. Desroches. The problem of assigning students to
course sections in a large engineering school. Computers & Operations
Research, 13(4):387–394, 1986.

[19] B. McCollum and P. McMullan. The cornerstone of effective
management and planning of space. Technical report, Realtime
Solutions Ltd, Belfast, Jan 2004. http://www.realtimesolutions-
uk.com/SpaceManagement.doc.

[20] B. McCollum and T. Roche. Scenarios for allocation of
space. Technical report, Realtime Solutions Ltd, Belfast, 2004.
http://www.realtimesolutions-uk.com/Scenarios.doc.

[21] S. Mertens. Random costs in combinatorial optimization. Phys. Rev.
Lett., 84(6):1347–1350, Feb 2000.

[22] S. K. Mirrazavi, S. J. Mardle, and M. Tamiz. A two-phase multiple
objective approach to university timetabling utilising optimisation and
evolutionary solution methodologies. Journal of the Operational Re-
search Society (JORS), 54(11):1155–1166, 2003.

[23] A. J. Parkes. Easy predictions for the easy-hard-easy transition. In
Eighteenth national conference on Artificial intelligence (AAAI02),
pages 688–694, Menlo Park, CA, USA, 2002. American Association
for Artificial Intelligence.

22



[24] S. Petrovic and E. K. Burke. University timetabling. In J. Leung, editor,
Handbook of Scheduling: Algorithms, Models, and Performance Anal-
ysis, chapter 45, pages 1–23. Chapman Hall/CRC Press, Boca Raton,
FL, 2004.

[25] B. Ram, S. Sarin, and A. Mallik. A methodology for projecting course
demands in academic programs. Computers & Industrial Engineering,
12(2):99–103, 1987.

[26] P. Ross, D. Corne, and H. Terashima-Marin. The phase transition
niche for evolutionary algorithms in timetabling. In E. K. Burke and
M. A. Trick, editors, Selected papers from the First International Con-
ference on the Theory and Practice of Automated Timetabling (PATAT
95), volume 1153, pages 309–324. Lecture Notes in Computer Science,
Springer-Verlag, NY, 1996.

[27] S. E. Sampson, J. R. Freeland, and E. N. Weiss. Class scheduling to
maximize participant satisfaction. Interfaces, 25:30–41, 1995.

[28] A. Schaerf. A survey of automated timetabling. Artif. Intell. Rev.,
13(2):87–127, 1999.

[29] S. M. Selim. Split vertices in vertex colouring and their application in
developing a solution to the faculty timetable problem. The Computer
Journal, 31(1):76–82, 1988.

[30] B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hard satis-
fiability problems. Artificial Intelligence, 81(1-2):17–29, 1996.

[31] B. M. Smith and M. E. Dyer. Locating the phase transition in binary
constraint satisfaction problems. Artificial Intelligence, 81(1-2):155–
181, Mar. 1996.

[32] R. L. Smith. Accommodating student demand for courses by varying
the classroom-size mix. Operations Research, 19:862–874, 1971.

[33] J. Spencer. Survey/expository paper: zero one laws with variable prob-
abilities. Journal of Symbolic Logic, 58:1–14, 1993.

[34] D. Stauffer and A. Aharony. Introduction to Percolation Theory. Taylor
& Francis Ltd, 1994.

[35] A. Tripathy. Computerised decision aid for timetabling: a case analysis.
Discrete Appl. Math., 35(3):313–323, 1992.

[36] B. Vandegriend and J. Culberson. The Gn,m phase transition is not hard
for the Hamiltonian cycle problem. Journal of Artificial Intelligence
Research, 9:219–245, 1998.

23



(a)

 1

 0.8

 0.6

 0.4

 0.2
 0.2  0.4  0.6  0.8  1  1.2  1.4

U
A

UR

Bup
L = 1200

Bup
L = 800 

(b)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

K
f

UR

Bup
L = 1200

Bup
L = 800 

Figure 1: Achievement curves for the WKSP data set with two different
upper limits on the location penalty. (a) requested utilisation (UR) vs.
achieved utilisation (UA) (b) achievement fraction Kf vs. UR.
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Figure 2: The x-axis is the requested utilisation UR. The left-hand “y1-axis”
is the probability of full allocation, Pr(Kf=1). The right-hand “y2-axis” is
the run-time (on a log scale). The average run-times are plotted together
with “error bars” representing the lower and upper quartiles of the run-
time. For the run-times, the instances are separated into: “Sat”, satisfiable;
“Unsat”, unsatisfiable; and “Undet” for undetermined by the solver. The
“Undet” points correspond to the solver reaching the time-limit and so are
all at the cap on runtimes of 1200 seconds. For a full explanation of such
figures see section 4. Results are with no bounds on location and group size,
i.e. Bup

L = Bup
GZ = ∞. Data-sets used are (a) WKSP, and (b) TUT.
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Figure 3: Threshold results, as Figure 2, but with an upper limit on location
penalty, Bup

L = 800. Data-sets: (a) WKSP (b) TUT
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Figure 4: TUT Data-set with Bup
L = 800 and with group size strictly con-

strained in the range 12,. . .,16.
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Figure 5: (a) The average run-times of CPLEX on the integer encoding
compared to runtimes from the local search method, “SAS”. The CPLEX
instances are separated into: “Sat”, satisfiable; “Unsat”, unsatisfiable; and
“Undet” for undetermined by the solver. Whereas, “SAS Sat” refers to
average runtimes for instances with complete solutions from SAS, and “SAS
Undet” for those in which the SAS was unable to find a complete solution
with all events allocated. (b) “Pr(Kf = 1)” gives the fraction of instances
found by the CPLEX to be satisfiable in the sense of having a solution with
all events allocated. Similarly, “Pr(Kf = 1) Unsat” gives the fraction proved
by CPLEX to be unsatisfiable. Then, “SAS Pr(Kf = 1)” gives the fraction
of instances for which SAS was able to fully allocate all events.
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Figure 6: The same as figure 5 except that we impose an upper bound on
the location penalty, Bup

L = 800. (a) gives runtimes for SAS and CPLEX,
and (b) gives the empirical probabilities of full allocations of all events being
found for the instances.
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