
Two-stage RBF network construction based on particle swarm
optimization

Deng, J., Li, K., Irwin, G., & Fei, M. (2011). Two-stage RBF network construction based on particle swarm
optimization. Transactions of the Institute of Measurement and Control, 33, 0-0. DOI:
10.1177/0142331211403795

Published in:
Transactions of the Institute of Measurement and Control

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

http://pure.qub.ac.uk/portal/en/publications/twostage-rbf-network-construction-based-on-particle-swarm-optimization(649da0d6-591c-4b09-9ee8-83282ed5e4f3).html

Article

Two-stage RBF network construction
based on particle swarm optimization

Jing Deng1, Kang Li1, George W Irwin1 and Minrui Fei2

Abstract

The conventional radial basis function (RBF) network optimization methods, such as orthogonal least squares or the two-stage selection, can produce a

sparse network with satisfactory generalization capability. However, the RBF width, as a nonlinear parameter in the network, is not easy to determine.

In the aforementioned methods, the width is always pre-determined, either by trial-and-error, or generated randomly. Furthermore, all hidden nodes

share the same RBF width. This will inevitably reduce the network performance, and more RBF centres may then be needed to meet a desired

modelling specification. In this paper we investigate a new two-stage construction algorithm for RBF networks. It utilizes the particle swarm optimi-

zation method to search for the optimal RBF centres and their associated widths. Although the new method needs more computation than conven-

tional approaches, it can greatly reduce the model size and improve model generalization performance. The effectiveness of the proposed technique is

confirmed by two numerical simulation examples.

Keywords

Nonlinear modelling, particle swarm optimization, radial basis function, two-stage selection

Introduction

Owing to the simple topological structure and universal
approximation ability, the radial basis function (RBF) net-
work has been widely used in data mining, pattern recogni-

tion, signal processing, system modelling and control (Chen
and Billings, 1992). The main issues involved in constructing
RBF networks are the optimization of basis functions and the

estimation of output layer weights.
The conventional strategy is to handle these issues sepa-

rately by selecting the RBF centres using unsupervised clus-

tering (Sutanto et al., 1997), optimizing the basis function
parameters by gradient-based searches, and estimating the
output weights using a least-squares method (Elanayar and
Shin, 1994). However, the network parameters are interde-

pendent, and a better strategy is to optimize them simulta-
neously (McLoone et al., 1998; Li et al., 2006).

For a single hidden layer RBF neural network, it is possi-

ble to formulate its weight estimation as linear in the param-
eters (LITP). A forward selection technique, such as
orthogonal least squares (OLS) (Chen et al., 1991; Hong

et al., 2008), and the fast recursive algorithm (FRA)
(Li et al., 2005), can then be applied to produce a sparse
network with satisfactory accuracy. To further improve the
generalization capability and prevent over-fitting with noisy

data, leave-one-out (LOO) cross-validation and a Bayesian
learning framework have also been introduced to these algo-
rithms (Chen et al., 2004; Chen, 2006; Deng et al., 2010b).

Although a forward construction scheme can efficiently
build a sparse model from a large candidate term pool, the
final model is not optimal (Sherstinsky and Picard, 1996),

since the calculation of the contribution of any RBF centre

depends on previously selected ones (Li et al., 2006). To

reduce this constraint, genetic search has been suggested to
refine the model structure (Mao and Billings, 1997), but at the
expense of a very high computational complexity. Li et al.

(2006) recently proposed a two-stage stepwise construction
method which combined both forward and backward con-
struction. This retains the computational efficiency of the

FRA while improving the model compactness.
In the two-stage construction algorithm of Li et al. (2006),

an initial network is first constructed by the FRA where the

contribution of a particular centre of interest is measured by
its reduction in an appropriate cost function. The significance
of each selected centre is then reviewed at a second network
refinement stage, and insignificant centres are replaced.

Specifically, if the contribution of a previously selected
centre is less than any from the candidate pool, it will be
replaced with this one. In this way, the cost function can be

further reduced without increasing the network size. This
check process is repeated until no insignificant hidden nodes

1School of Electronics, Electrical Engineering and Computer Science,

Queen’s University Belfast, Belfast, UK
2Shanghai Key Laboratory of Power Station Automation Technology,

School of Mechatronical Engineering and Automation, Shanghai

University, China

Corresponding author:

Kang Li, School of Electronics, Electrical Engineering and Computer

Science, Queen’s University Belfast, Belfast BT9 5AH, UK

Email: k.li@qub.ac.uk

Transactions of the Institute of

Measurement and Control

0(0) 1–9

! The Author(s) 2011

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0142331211403795

tim.sagepub.com

remain in the trained network, resulting in an optimized net-
work structure with improved performance.

The main outstanding issues with both the forward and

two-stage methods is that the width of the RBF needs to be
pre-determined, and the placement of the RBF centres is also
limited to the data samples. Further, the distance between
input data and the hidden nodes is normalized by the same

RBF width. As a result, the network model obtained is not
optimal, and more RBF nodes are often needed to achieve a
satisfactory accuracy. To overcome these problems, gradient-

based methods have been introduced into sub-set selection
(Peng et al., 2006; Li et al., 2009). These hybrid methods
can reduce the network size and improve the network perfor-

mance, but the computation complexity is inevitably
increased simultaneously.

Recently swarm intelligence has been proposed as a robust

and efficient technique for solving nonlinear optimization
problems (Blum and Merkle, 2008). Unlike conventional cal-
culus-based methods, swarm intelligence introduces a large
number of unsophisticated entities that cooperate to exhibit

a global behaviour. The inspiration for this comes from the
observations of social insects such as ants, bees and birds.
This shows that although a single member of these societies

may be an unsophisticated individual, collectively they are
able to achieve complex tasks by working in cooperation.
Particle swarm optimization (PSO) is a popular version of

swarm intelligence that was originally proposed in 1995
(Kennedy and Eberhart, 1995; Eberhart and Shi, 2000). It
has been widely applied to optimization problems ranging
from scheduling, neural network training and task assign-

ment, to highly specialized applications (Blum and Merkle,
2008). The popular OLS technique has also been revised to
utilize PSO to optimize the nonlinear parameters (Chen et al.,

2009, 2010).
In this paper, the PSO is effectively integrated with our two-

stage selection (TSS) algorithm, leading to a new construction

scheme for RBF networks. The method involves continuous
optimization of both RBF centres and widths, and a discrete
optimization of the network structure. Unlike the original TSS

technique which selects the centres from a candidate pool, the
new algorithm randomly generates some initial points (parti-
cles in the swarm) from the training data as the starting point.
PSO is then adopted to optimize these parameters according to

their contributions to the cost function. The best global solu-
tion found by the entire swarm becomes the new RBF centre
and is added to the network. This procedure continues until a

satisfactory network has been constructed. Then a second
refinement stage is implemented to remove any constraint
due to the order in which the centres were selected at the pre-

vious stage. The introduction of a residual matrix through the
FRA helps to greatly reduce the calculation involved. The
results from two simulation experiments are included to con-
firm the superiority of the approach.

This paper is organized as follows. Section 2 contains the
problem formulation for both the RBF network construction
and the PSO updating strategy. The new two-stage construc-

tion algorithm is introduced in Section 3. Section 4 provides
two examples to illustrate the effectiveness of the proposed
method, while Section 5 concludes this paper with some dis-

cussions on the limitations.

Preliminaries

Radial basis function neural networks

Consider a general RBF neural network with m inputs, n
hidden nodes and a scalar output that can be expressed by
the LITP model:

yðtÞ ¼
Xn
k¼1

�k’kðxðtÞ; ck;DkÞ þ "ðtÞ, ð1Þ

where y(t) is the actual output at sample time t, x(t)2Rm is
the input vector, uk(x(t); ck; Dk) denotes the RBF (e.g. a

Gaussian basis function), ck2Rm is the centre vector and
Dk is a diagonal matrix known as the norm matrix, which
has the form

Dk ¼

1=�2k1 0 0 0
0 1=�2k2 0 0

..

. ..
. . .

. ..
.

0 0 0 1=�2km

2
6664

3
7775: ð2Þ

Finally, �k represents the output layer weight for each RBF
node, and e(t) is the network error at sample time t.

If a set of N data samples fxðtÞ,yðtÞgNt¼1 is used for network

training, Equation (1) can be written in matrix form as

y ¼ (hþ e, ð3Þ

where (¼ [f1,. . ., fn]2RN�n is known as the regression
matrix with column vectors fi¼ [ui(x(1)),. . ., ui(x(N))]T,
i¼ 1,. . ., n, y¼ [y(1),. . ., y(N)]T2RN is the actual output

vector, h¼ [y1,. . .,yn]
T
2Rn and e¼ [e(1),. . ., e(N)]T2RN

denotes the network residual vector.
The network training aims to build a parsimonious rep-

resentation based on optimized RBF centres, width parame-
ters and output layer weights h with respect to some
appropriate cost function, e.g. sum-squared error (SSE).

In this paper the RBF network is built using stepwise con-
struction such that one RBF centre is optimized and added
to the network each time. Suppose that k (k� n, n�N)
centres have been selected for inclusion in the network

with their corresponding columns in the regression matrix
denoted by p1,. . ., pk. The resultant network can then be rep-
resented as

y ¼ Pkhk þ e ð4Þ

where Pk¼ [p1,. . ., pk].

Outline of particle swarm optimization

In PSO each particle in the swarm represents a possible solu-
tion which moves through the problem search space seeking
an optimal or satisfactory point. The position of each particle

is adjusted according to its velocity and the difference between
its current position, the best one it has found so far, and the
best position to date found by its neighbours (Blum and

Merkle, 2008).

2 Transactions of the Institute of Measurement and Control 0(0)

Suppose that xi denotes the ith particle in the swarm,
vi represents its velocity, ui is its best position to date, while
ug denotes the best position from the entire swarm. In inertia-

weighted PSO (Eberhart and Shi, 2000; Clerc and Kennedy,
2002), vi and xi are updated as

vi wvi þ c1r1ðui � xiÞ þ c2r2ðug � xiÞ, ð5Þ

xi xi þ vi, ð6Þ

where w is the inertia weight used to scale the previous veloc-
ity term, c1 and c2 are acceleration coefficients, and r1 and r2
are two vectors comprising random values uniformly gener-

ated between 0 and 1. As shown in Equation (5), the velocity
of each particle is determined by three parts, the momentum,
the cognitive information and the social information. The

momentum term wvi carries the particle in the direction it
has travelled so far with the inertia weight w being used to
control the influence of the previous velocity value on the new

one. For w> 1, the particles diverge eventually beyond the
boundaries of the search space. For w< 0, the velocity
decreases continuously causing the particles to converge.
The cognitive part c1r1(ui� xi) describes the tendency of the

particle to return to the best position it has visited so far,
while the social part c2r2(ug� xi) denotes its tendency to
move towards the best position from amongst the entire

swarm. The acceleration coefficients c1 and c2 can be fixed
or varied from 0.5 to 2.5 during the iterative procedure
(Rajakarunakaran et al., 2008):

c1 ¼ ð0:5� 2:5Þl=lmax þ 2:5, ð7Þ

c2 ¼ ð2:5� 0:5Þl=lmax þ 0:5, ð8Þ

where l is the iteration index. This improves the updating

quality as a wider search range is set at the beginning to
avoid a local minimum, and quick convergence is guaranteed
towards the end.

In order to ensure that each updated particle is still inside
the search space, it is essential to check both its position and
the velocity before calculating the related cost function.
Suppose that the search space of a particle position is [xmin,

xmax], the appropriate rule is given by

if xið j Þ4xmaxð j Þ, then xið j Þ ¼ xmaxð j Þ, ð9Þ

if xið j Þ5 xminð j Þ, then xið j Þ ¼ xminð j Þ,

for i ¼ 1,. . . , s; and j ¼ 1,. . . , m,
ð10Þ

where i is the particle index and j is the index of an element in
the input vector xi. For velocity, the maximum value is nor-

mally obtained from the solution search space and is given by

vmax ¼
1

2
ðxmax � xminÞ, ð11Þ

where the search space is defined as [�vmax, vmax]. Similarly,
the rule for the velocity is

if við j Þ4 vmaxð j Þ, then við j Þ ¼ vmaxð j Þ ð12Þ

if við j Þ5 � vmaxð j Þ, then við j Þ ¼ �vmaxð j Þ ð13Þ

if við j Þ ! �0, then við j Þ ¼ �cvrvvmaxð j Þ

for i ¼ 1,. . . , s; and j ¼ 1,. . . , m:
ð14Þ

where cv is a small weight normally set to 0.1 and rv is a
random vector uniformly generated from [0, 1]. Although

PSO has been widely used, the analysis of the convergence
behaviour of a swarm of multiple interactive particles is still
problematical (Clerc and Kennedy, 2002; Trelea, 2003).

New two-stage RBF network
construction approach

The two-stage network construction scheme includes a for-
ward centre selection stage and a second network refinement
stage. The significance of a RBF centre is measured based on

its contribution to the cost function given by

Jðc,�,hkÞ ¼ ðy� PkĥkÞ
T
ðy� PkĥkÞ: ð15Þ

Here it is proposed that the nonlinear parameters c and s are
optimized by PSO, while the output layer weights hk are esti-
mated using least squares as

ĥk ¼ ðP
T
kPkÞ

�1PT
ky, ð16Þ

where ĥk are the estimated output layer weights. Equation
(16) is not normally used in practice because the noise on

the data usually causes the matrix Pk to be ill-conditioned,
and the estimated ĥk from (16) can be inaccurate. The TSS
method has proved to be an effective and efficient method for

overcoming this problem.

First stage: PSO-assisted forward selection

This stage is similar to the FRA. A recursive matrix Mk and a

residual matrix Rk are defined to simplify the computation.
They are given as

Mk¼
4
PT
kPk, k ¼ 1,. . . ,n, ð17Þ

Rk¼
4
I� PkM

�1
k PT

k , R0¼
4
I, ð18Þ

where Pk 2 <
N�k contains the first k columns of the regres-

sion matrix P in (4). According to Li et al. (2005, 2006), the
matrix terms Rk, k¼ 0,. . ., n�1 have the following attractive
properties:

Rkþ1 ¼ Rk �
Rkpkþ1p

T
kþ1R

T
k

pTkþ1Rkpkþ1
, k ¼ 0,1,. . . ,n� 1, ð19Þ

RT
k ¼ Rk; ðRkÞ

2
¼ Rk, k ¼ 0,1,. . . ,n, ð20Þ

RiRj ¼ RjRi ¼ Ri, i � j; i,j ¼ 0,1,. . . ,n, ð21Þ

Deng et al. 3

Rkf ¼
0, rankð½Pk,fj �Þ ¼ k

fðkÞj 6¼ 0, rankð½Pk,fj �Þ ¼ kþ 1

(
, j ¼ 0,1,. . . ,n,

ð22Þ

R1,...,p,...,q,...,k ¼ R1,...,q,...,p,...,k, p,q � k: ð23Þ

Equation (23) means that any change in the selection order of
the regressor terms p1,. . ., pk does not change the residual
matrices Rk. This property will help to reduce the computa-

tion effort in the second stage. The cost function in (15) can
now be rewritten as

JðPkÞ ¼ yTRky: ð24Þ

In this forward stage, the RBF centres are optimized one at a

time, and given by the global best position obtained from
entire swarm. Suppose at the kth step, one more centre pkþ1
is to be added. The net contribution of pkþ1 to the cost func-
tion can then be calculated as:

�Jkþ1ðPk,pkþ1Þ ¼ yTðRk � Rkþ1Þy

¼
yTRkpkþ1p

T
kþ1Rky

pTkþ1Rkpkþ1

¼
ðyTp

ðkÞ
kþ1Þ

2

pTkþ1p
ðkÞ
kþ1

, ð25Þ

where p
ðkÞ
kþ1¼

4
Rkpkþ1. According to Equation (19), this net

contribution can be further simplified by defining an auxiliary
matrix A2Rn�n and a vector b2Rn�1 with elements given by

ai,j¼
4
ðp
ði�1Þ
i Þ

Tpj, 1 � i � j, ð26Þ

bj¼
4
ðp
ð j�1Þ
j Þ

Ty, 1 � j � n, ð27Þ

where ðpð0Þj ¼ pjÞ. The efficiency of the FRA then follows from

updating these terms recursively as

ai, j ¼ pTi pj �
Xi�1
l¼1

al,ial,j=al,l, ð28Þ

bj ¼ pTj y�
Xj�1
l¼1

ðal,jbl Þ=al,l: ð29Þ

Now, substituting (26) and (27) into (25), the net contribution

of a new RBF centre pkþ1 to the cost function can then be
expressed as

�Jkþ1ðpkþ1Þ ¼
b2kþ1

akþ1,kþ1
: ð30Þ

This provides a formula for selecting the best particle in the

swarm at each iteration. When a pre-set number of updating
cycles is reached, the best solution from the entire swarm will
be added to the network. This continues until some termina-

tion criterion is met (e.g. Akaike’s information criterion [AIC]

(Nelles, 2001)) or until a maximum number of centres have
been added. The initial particle values at each stage can be
chosen from the data points rather than randomly generated

in an attempt to improve convergence.

Second stage: backward network refinement

This stage involves the elimination of insignificant centres
due to the constraint introduced in forward construction.
Noting that the last selected centre in forward construction

has always been maximally optimized for the whole network
through PSO, the backward model refinement can be
divided into two main parts: first, a selected centre pk,

k¼ 1,. . ., n� 1 is shifted to the nth position as it was the
last optimized one; then a new swarm is generated and its
local best and global best positions are updated based on the

re-ordered n� 1 centres. When the maximum number of
iterations is reached, the contribution of the best global
position in the swarm is compared with the centre at nth
position. If the shifted centre is less significant than the new

generated position from the swarm it will be replaced, lead-
ing to the required improvement in model generalization
capability. This review is repeated until a pre-defined

number of check loops is reached. This differs from the
original TSS method where the second stage is terminated
as all of the selected centres are more significant than those

remaining in the candidate pool. By contrast, the PSO-
assisted refinement process proposed here generates a new
solution that is compared with the existing centres, and a
better solution can always be found using a check loop due

to the stochastic nature of PSO.

Re-ordering of selected centres. Suppose that a selected

centre pk is to be moved to the nth position in the regression
matrix Pn. This can be achieved by repeatedly interchanging
two adjacent centres so that

p	q ¼ pqþ1, p	qþ1 ¼ pq, q ¼ k,. . . ,n� 1, ð31Þ

where the * is used to indicate the updated value. By
noting the property in (23), it is clear that only Rq in the
residual matrix series is changed at each step. This is updated

using

R	q ¼ Rq�1 �
Rq�1p

	
qðp
	
qÞ

TRT
q�1

ðp	qÞ
TRq�1p	q

: ð32Þ

Meanwhile, the following terms also need to be updated:

. In matrix A, only the upper triangular elements ai,j, i� j

are used for hidden node selection. The qth and the
(qþ 1)th columns with elements from row 1 to q� 1
need to be modified according to

a	i,q ¼ ðp
ði�1Þ
i Þ

Tpqþ1 ¼ ai,qþ1

a	i,qþ1 ¼ ðp
ði�1Þ
i Þ

Tpq ¼ ai,q

(
, i ¼ 1,. . . ,q� 1: ð33Þ

4 Transactions of the Institute of Measurement and Control 0(0)

The qth row with elements from column q to column n
are also changed using

a	q,j ¼

aqþ1,qþ1 þ a2q,qþ1=aq,q j ¼ q

aq,qþ1 j ¼ qþ 1

aqþ1,j þ aq,qþ1aq,j=aq,q j � qþ 2

8><
>: ð34Þ

and the (qþ 1)th row aqþ1,j for j¼ qþ 1,. . ., n is also
changed to

a	qþ1,j ¼
aq,q � a2q,qþ1=a

	
q,q j ¼ qþ 1,

aq,j � aq,qþ1a
	
q,j=a

	
q,q j � qþ 2:

(
ð35Þ

. For the vector b, only the qth and the (qþ 1)th elements
are changed. Thus,

b	q ¼ bqþ1 þ aq,qþ1bq=aq,q, ð36Þ

b	qþ1 ¼ bq � aq,qþ1b
	
q=a
	
q,q: ð37Þ

This procedure continues until the kth centre is shifted to the
nth position, the new regression matrix and residue matrices
series then becoming

P	n ¼ ½p1,. . .,pk�1,pkþ1,. . . ,pn,pk�, ð38Þ

R	k ¼ ½R1,. . . ,Rk�1,R
	
k,. . . ,R	n�: ð39Þ

Comparison of net contributions. As the centre pk of inter-

est has been moved to the nth position in the full regression
matrix Pn, its contribution to the cost function now needs to
be reviewed. In order to remove the constraint introduced to

this centre, a new swarm is generated, in which the contribu-
tion of each particle to the cost function is calculated based
on the re-ordered centres pj (j¼ 1,. . ., n� 1).

According to Equation (30), the calculation of the net

contribution to the cost function only involves the associated
elements in matrix A and vector b. Thus, the computation can
be greatly reduced for each particle in the swarm due to the

recursive updating of A and b given in Equations (28) and
(29). When the maximum value of the particle updating cycle
is reached, the best solution will be given by the global opti-

mal point in the swarm. If this solution is more significant
than the shifted centre pn in the regression matrix Pn, it will
replace pn, and matrix A and vector b will be updated as well.

The moving and comparing procedures described above
are repeated until a pre-set number of check loops is reached.
Finally, after a satisfactory network has been constructed, the
output layer weights are computed recursively using

�̂j ¼ bj �
Xk
i¼jþ1

�̂iaj,i

 !
=aj,j, j ¼ k,k� 1, . . . ,1: ð40Þ

Algorithm

The overall new algorithm for RBF network construction can

now be summarized as follows:

Step 1. Initialization: Set the network size k¼ 0, and assign
initial values for the following terms:

. s: the size of swarm;

. ls: the maximum number of particle updating;

. [xmin, xmax]: the search space of the particles;

. [vmin, vmax]: the speed range of the particles;

. w: the inertia weight in velocity updating.
Step 2. At the kth step:

(a) randomly select s samples from the training data set
as the starting points and randomly generate the
initial velocity v0 inside its range;

(b) compute the RBF output for each particle using a
Gaussian function;

(c) calculate ai,k (1� i� k) and bk for each particle using
Equations (28) and (29);

(d) compute the contribution of each particle to the cost
function using Equation (30), update the best posi-
tion that each particle has visited to date and the

best position from the entire swarm;
(e) update the velocity and position for each particle

using Equations (5) and (6);

(f) check the value of velocity and position for each
particle using Equations (9)–(10) and (12)–(14);

(g) if l< ls, let l¼ lþ 1 and go to step 2(e); otherwise, go
to the next step

(h) update the ai,k in matrix A for 1� i� k, and bk with
the best solution found in the swarm; if the chosen
pre-defined criterion is met, to go step 3; otherwise,

let k¼ kþ 1 and go to step 2(a);
Step 3. Backward network refinement:

(a) Change the position of pk with pkþ1(k¼ n� 1,. . ., 1),

and update the related terms using Equations
(33)–(37).

(b) Continue the above step until the regressor pk has

been moved to the nth position.
(c) Randomly generate a swarm from the data samples,

and update aj,j, bj for each particle using Equations
(26) and (27).

(d) Update the swarm for ls cycles using Equations (5)
and (6).

(e) Compare the net contribution of the shifted centre

and the best one from the swarm. If the new position
from the swarm is more significant than the centre
pn, replace it. Let k¼ k� 1 and go to step 3(a) .

(f) If the pre-set number of check loops is reached, go
to step 4; otherwise, let k¼ n� 1 again and go to
step 3(a) to start a new check loop.

Step 4. Use Equation (40) to calculate the output layer

weights.

Computation complexity analysis

The computation in the proposed algorithm is mainly domi-

nated by the calculation of each particle’s contribution to the

Deng et al. 5

cost function. Owing to the absence of a candidate pool, this
new method needs more computation than our original TSS
algorithm. Specifically, in the previous TSS, the algorithm

updates one row of the matrix A in Equation (26) at each
step, with the contribution of each candidate term being cal-
culated directly from the above row elements at the same
column. (For example, at the kth step, ak,k is calculated

from ai,k (1� i< k); but in the PSO assisted TSS, all of the
elements in the kth column need to be calculated for a new
particle.) Calculation of the RBF output also involves more

computation. Conventionally, the initial candidate centres
are located at data samples and the RBF widths are fixed
leading to a single calculation of the RBF output. However,

here the potential RBF centres are not pre-determined and
have to be optimized. The RBF width parameter also varies
as the particles update. Thus, the output of each hidden node

needs to be calculated at each step during the construction
procedure. Nevertheless, although the new method in this
paper is not as efficient as TSS, the total computation is
still acceptable compared with other alternatives in the

literature.

In order to compare the total computational effort

involved here with other methods, a numerical analysis has
been carried out. Suppose that the swarm has s particles, and
the maximum number of updating cycles is ls. The number of

network inputs is m which is the same as the number of
width parameters D in each node, so that 2m parameters
need to be optimized by the particles at each stage. As N

data samples are used for training, and n RBF centres are
included in the final network, the computational complexity
involved in OLS using standard Gram–Schmidt orthogonal-
ization, PSO-assisted OLS, TSS, and TSS based on PSO are

reviewed.

The basic arithmetic operations involve addition/subtrac-

tion and multiplication/division. For convenience, the power
operation was treated as one multiplication. The computa-
tional complexity is then measured by the total number of

these operations. As mentioned above, the calculation of
the RBF output is not included in the original OLS and
TSS algorithm, so it is analyzed separately. The total compu-

tation in OLS is approximately given by (Li et al., 2005)

COLS
 2NMðn2 þ 2n� 1Þ �
4

3
Nnðn2 � 1Þ þ nðn� 1Þ=2,

ð41Þ

where M is the number of candidate RBF centres. This is

normally equal to Nþ 1 which is the number of data samples
plus an output bias. By contrast, the computation involved in
the PSO-assisted OLS comprises two main parts: the algo-

rithm itself and the RBF output calculation. The latter is
given by

CPSO�RBF ¼ 4Nnmsls: ð42Þ

By contrast, conventional OLS or TSS only need 3NMm

operations for this component. The total computation in
PSO-assisted OLS except the RBF output calculation is

COLSþPSO
 2Nnðnþ 1Þ � 2n�
1

2
nðn� 1Þ

� �
sls: ð43Þ

For the TSS, the original algorithm is more efficient than
conventional OLS, and the computation required is (Li
et al., 2006)

CTSS
2NMðnþ 1Þ �Nnðn� 1Þ þMðn2 þ 4n� 6Þ

�
n

3
ð2n2 þ 3n� 17Þ þ 8ðMnþ 3n3 þ n2 þ 2nÞlt0,

ð44Þ

where lt0 is the total number of check loops in the second
stage of network refinement. Normally five loops are
enough for a satisfactory improvement. It is obvious that

the second stage only adds a small amount of computation
to the first stage. However, for the new method proposed in
this paper, the updating scheme in PSO consumes more com-

putation than the first stage. The operations in computing the
RBF output becomes

CPSOþTSS ¼ 4Nnmsl ðlt1 þ 1Þ, ð45Þ

where lt1 is the total number of check loops involved at the
second stage of the new method here. Experiment results
show that two or three cycles are enough to reduce most of

the constraints in the first stage. The total computation of
TSS, apart from the RBF output calculation is given by

CTSSþPSO

 Nnð2nvþ nþ 2Þ þ
1

6
nðnþ 1Þðnþ 8Þ þ 18mnþ 2n

� �
slt1:

ð46Þ

Normally the final network size is much smaller than the
available data, so n�N and n�M. The input size m is usu-
ally small. The main computation with and without the RBF
output calculation are compared in Table 1. This shows that

the Two-Stage Selection (TSS) based on PSO requires about
2-4 times more computation than with conventional alterna-
tives. However, the new method can greatly reduce the net-

work size and enhance the generalization capability.
Furthermore, the RBF width needs to be pre-determined in
a conventional method, and the search for optimal RBF

width needs much more computation than the new method
proposed here.

Simulation example

In this section, the new algorithm is compared with several

popular alternatives for RBF network construction, including
OLS (Chen et al., 1989), OLS with the LOO cross-validation
(Hong et al., 2003) and the PSO-assisted FRA (the first stage

of the new algorithm).

Example 1. Consider a nonlinear dynamic system defined by
(Narendra and Parthasarathy, 1990)

yðtÞ ¼
yðt� 1Þyðt� 2Þyðt� 3Þuðt� 2Þ½yðt� 3Þ � 1� þ uðt� 1Þ

1þ y2ðt� 2Þ þ y2ðt� 3Þ
,

ð47Þ

6 Transactions of the Institute of Measurement and Control 0(0)

where u(t) is the random system input which is uni-
formly distributed in the range [�1, 1]. A total of 400

data samples were generated, and a Gaussian white
noise sequence with zero mean and variance 0.12 was
added to the first 200. The RBF network employed the
Gaussian kernel function �ðx,ciÞ ¼ expð� 1

2 k x� ci k
2
DiÞ

as the basis function. For the conventional forward selection
methods, the width of the Gaussian basis function was fixed
at s2

¼ 1.096 for all centres. The input vector was predeter-

mined as x(t)¼ [y(t� 1), y(t� 2), y(t� 3), u(t� 1), u(t� 2)]T.

With the first 200 data samples used for network training
and the remaining 200 noise-free data reserved for testing, the
original OLS method selected 28 RBF centres with the assist
of the AIC. The OLS with LOO improved the construction

procedure, it chose 18 RBF centres before the LOO error
started to increase. Finally, for the algorithm described in
this paper, the swarm size was set at 15 and the maximum

number of iterations was 20. The inertia weight in the velocity
updating was 0.8, while c1, c2 in Equation (5) were altered as
in Equations (7) and (8). As the network size continuously

increased, the first stage found that only five RBF centres
were sufficient to approximate the nonlinear dynamic
system in (47), while the second refinement stage reduced

this to three with a smaller training and test error. The root
mean-squared error (RMSE) over the training and test data
sets are given in Table 2.

Here RMSE is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffi
SSE

N

r
¼

ffi
ðŷ� yÞTðŷ� yÞ

N

s
, ð48Þ

where SSE is the sum-squared error, ŷ is the RBF neural

network prediction, and N is the number of training samples.
The one-step-ahead prediction performance of the network
constructed by the new algorithm is illustrated in Figure 1.

This shows that most of the modelling errors are in the noise
range, and that the overall prediction is acceptable.

Example 2. Consider a chaotic time series generated by the

well-known Mackey–Glass differential delay equation
(Mackey and Glass, 1977)

_xðtÞ ¼
axðt� �Þ

1þ xcðt� �Þ
� bxðtÞ: ð49Þ

According to Jang (1993) and Chiu (1994), the parameters
were set as a¼ 0.2, b¼ 0.1, c¼ 10, and �¼ 17. To obtain

the time series value at each integer point, the fourth-
order Runge–Kutta method was applied to find the numerical
solution to Equation (49). The time step was set as 0.1,

while the initial condition x(0)¼ 1.2. Then 2000 data

0 50 100 150 200
−1

−0.5

0

0.5

1

S
ys

te
m

 o
ut

pu
t y

0 50 100 150 200
−0.2

0

0.2

Time t

E
rr

or

Actual output

Network output

Figure 1 Comparison of network output and the actual output (solid

line: one-step-ahead prediction; dashed line: actual system output).

Table 1 Comparison of the computation complexity of different algorithms (N is the total number of data samples; M is the number of candidate pool

size in conventional stepwise construction scheme; n represents the final network size; s is the number of particles in a swarm; ls denotes the number of

particle updating cycle; and lt1 is the number of check loops in the second stage of the new method)

Network RBF output

Algorithm construction calculation Total

OLS (Chen et al., 1991) 2NM(n2
þ 2n) 3NMm NM(2n2

þ 4nþ 3m)

TSS (Li et al., 2006) 2NMn 3NMm NM(2nþ 3m)

OLSþPSO 2Nn2sls 4Nnmsls 2Nn(nþ 2m)sls

TSSþPSO 2Nn2lt1sls 4Nnmsls(lt1þ 1) 2Nn((nþ 4m)lt1þ 4m)sls

Table 2 Comparison of network size and performance in experi-

ment 1 (for the new method, the error is from the mean value of

100 runs)

Algorithm Network size Training error Testing error

OLS 28 0.0333 0.0432

OLS with LOO 18 0.0554 0.0564

FRA based on PSO 5 0.0260 0.0218

New 3 0.0141 0.0120

Deng et al. 7

points were generated, based on which 1000 input–output

data pairs were extracted (t¼ [118, 1117]). Similarly, the
input vector was chosen as [x(t� 18), x(t� 12), x(t� 16),
x(t)], and the model was built to predict the output at
x(tþ6). The first 500 data pairs were used for network train-

ing while the remaining 500 data pairs were reserved for
validation.

For conventional OLS method, the width of Gaussian

basis function was again fixed at s¼ 2 for all centres.
With the assistance of the AIC criterion, OLS selected 22
RBF centres. In PSO-based methods, the swarm size was

set as 15; the maximum number of iterations was 20,
and c1, c2 in Equation (5) were still altered as in
Equations (7) and (8). The inertia weight in velocity updating
was again fixed at 0.8. The test results shows that FRA with

PSO (Deng et al., 2010a) significantly reduced the network
size to five with both smaller training and test error. As
expected, the new method further improved the network com-

pactness and generalization. Table 3 compares the perfor-
mance of different methods. It is clear that PSO-assisted
algorithms can significantly reduce the network. The new

method however requires more computation time as indicated

in the tests, but the resultant model is more compact and
performs better than other alternatives. The prediction per-
formance of RBF network produced by the new algorithm is

further illustrated in Figure 2.

Concluding discussion and future work

In this paper we have proposed a novel two-stage construc-
tion approach for RBF networks. It integrates our early pro-
posed TSS method (Li et al., 2006), with PSO, to produce a

sparse network with only a few significant RBF centres.
Although the new method requires more computation than
conventional OLS-based alternatives, a compact model with

better generalization capability can be obtained. Simulation
results confirmed the effectiveness of the proposed algorithm
compared with conventional OLS and its variants.

In addition, there are still some remaining problems that
need to be tackled. The new method involves more computa-
tional effort. However, for a really large data set, the first
stage of the proposed method is sufficient to produce a

sparse model with satisfactory performance. This first stage
(also known as FRA) has been proven to be more effective
and efficient than conventional OLS method.

Further, the use of Sum Squared Error (SSE) as the cost
function may cause the network to be easily over-fitted.
Basically, lower training error leads to more precise of the

model on training data, but over-trained model may fit the
noise while using SSE as the cost function. An appropriate
criterion is therefore required to terminate the selection pro-
cess to prevent over-fitting. Cross-validation has proven to be

a better alternative where the RBF centres are optimized
based on their test error instead of training error. A special
case of this technique is the LOO cross-validation (Hong

et al., 2003; Deng et al., 2010b). However, the reduction in
LOO error may becomes insufficient while more terms are
added to an acceptable mode. The Bayesian learning frame-

work (MacKay, 1992; Tipping, 2001) is also useful in prevent-
ing over-fitting. Specifically, the output layer weights are
assigned with a priori known hyperparameters, and the

most probable values of these hyperparameters are iteratively
estimated from the data. In practice, the posterior distribu-
tion of irrelevant weights are sharply peaked around zero
(Tipping, 2001). Therefore, centres that are mainly deter-

mined by the noise will have large values of hyperparameters,
and their corresponding layer weights are forced to be near to
zero. Sparsity is then achieved by removing these irrelevant

centres from the trained network.
In future work we will try to effectively integrate such

techniques into the above proposed construction framework

to produce even better RBF network models. Further, this
new algorithm can also be easily generalized to a wide range
of nonlinear models that have a LITP structure, such as the
Nonlinear AutoRegressive with eXogenous input (NARX)

model.

Funding

Jing Deng wishes to thank Queens University Belfast for the award of

an ORS scholarship to support his doctoral studies. This work is also

partially supported by the UK EPSRC under grants EP/G042594/1

and EP/F021070/1, and the Key Project of Science and Technology

0 50 100 150 200 250 300 350 400 450 500
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

N
et

w
or

k
pr

ed
ic

tio
n

x

0 50 100 150 200 250 300 350 400 450 500
−0.05

0

0.05

Time t

E
rr

or

Measured output
Network prediction

Figure 2 Comparison of measured output and network prediction

in experiment 2 (solid line: one-step-ahead prediction; dashed line:

measured output).

Table 3 Comparison of network size and performance for different

algorithms in experiment 2

Algorithm Network size Training Error Test error Run-time

OLS 20 0.0303 0.0293 1.46 s

FRAþ PSO 8 0.0151 0.0148 0.49 s

New 6 0.0131 0.0130 1.91 s

8 Transactions of the Institute of Measurement and Control 0(0)

Commission of Shanghai Municipality (grant numbers 08160512100

and 08160705900).

References

Blum C and Merkle D (2008) Swarm Intelligence: Introduction and

Applications. New York: Springer-Verlag.

Chen S (2006) Local regularization assisted orthogonal least squares

regression. Neurocomputing 69: 559–85.

Chen S and Billings SA (1992) Neural networks for nonlinear

dynamic system modelling and identification. International

Journal of Control 56: 319–46.

Chen S, Billings SA and Luo W (1989) Orthogonal least squares

methods and their application to non-linear system identification.

International Journal of Control 50: 1873–96.

Chen S, Cowan CFN and Grant PM (1991) Orthogonal least squares

learning algorithm for radial basis function networks. IEEE

Transactions on Neural Networks 2: 302–9.

Chen S, Hong X and Harris C (2010) Particle swarm optimization

aided orthogonal forward regression for unified data modeling.

IEEE Transactions on Evolutionary Computation 14: 477–99.

Chen S, Hong X and Harris CJ (2004) Sparse kernel density con-

struction using orthogonal forward regression with leave-one-out

test score and local regularization. IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics 34: 1708–17.

Chen S, Hong X, Luk BL and Harris CJ (2009) Non-linear system

identification using particle swarm optimisation tuned radial basis

function models. International Journal of Bio-Inspired

Computation 1: 246–58.

Chiu S (1994) Fuzzy model identification based on cluster estimation.

Journal of intelligent and Fuzzy systems 2: 267–78.

Clerc M and Kennedy J (2002) The particle swarm-explosion, stabil-

ity, and convergence in a multidimensional complex space. IEEE

Transactions on Evolutionary Computation 6: 58–73.

Deng J, Li K, Irwin G and Fei M (2010a) Fast forward RBF network

construction based on particle swarm optimization. Life System

Modeling and Intelligent Computing 2010 (Lecture Notes in

Computer Science. Vol 6329, Berlin: Springer, 40–8.

Deng J, Li K and Irwin GW (2010b) A two-stage algorithm for auto-

matic construction of RBF neural models. In: Gatt E (ed.)

Proceedings of the 15th IEEE Mediterranean Electrotechnical

Conference, MELECON 2010. Valletta, Malta.

Eberhart RC and Shi Y (2000) Comparing inertia weights and con-

striction factors in particle swarm optimization. In Proceedings of

the Congress on Evolutionary Computation, Vol. 1, pp. 84–8.

Elanayar V and Shin Y (1994) Radial basis function neural network

for approximation and estimation of nonlinear stochastic

dynamic systems. IEEE Transactions on Neural Networks 5:

594–603.

Hong X, Mitchell RJ, Chen S, Harris CJ, Li K and Irwin GW (2008)

Model selection approaches for non-linear system identification: a

review. International Journal of Systems Science 39: 925–46.

Hong X, Sharkey PM and Warwick K (2003) Automatic nonlinear

predictive model-construction algorithm using forward regression

and the press statistic. IEE Proceedings: Control Theory and

Applications 150: 245–54.

Jang J (1993) ANFIS: Adaptive-network-based fuzzy inference

system. IEEE Transactions on Systems, Man, and Cybernetics

23: 665–85.

Kennedy J and Eberhart R (1995) Particle swarm optimization.

In: Proceedings of IEEE International Conference on Neural

Networks, Vol. 4, Perth, Australia, pp. 1942–48.

Li K, Peng JX and Bai EW (2006) A two-stage algorithm for iden-

tification of nonlinear dynamic systems. Automatica 42: 1189–97.

Li K, Peng JX and Bai EW (2009) Two-stage mixed discrete–contin-

uous identification of radial basis function (RBF) neural models

for nonlinear systems. IEEE Transactions on Circuits and

Systems—I 56: 630–43.

Li K, Peng JX and Irwin GW (2005) A fast nonlinear model identi-

fication method. IEEE Transactions on Automatic Control 50:

1211–6.

MacKay DJC (1992) Bayesian interpolation. Neural Computation 4:

415–47.

Mackey M and Glass L (1977) Oscillation and chaos in physiological

control systems. Science 197: 287–9.

Mao KZ and Billings SA (1997) Algorithms for minimal model struc-

ture detection in nonlinear dynamic system identification.

International Journal of Control 68: 311–30.

McLoone S, Brown MD, Irwin GW and Lightbody G (1998) A

hybrid linear/nonlinear training algorithm for feedforward

neural networks. IEEE Transactions on Neural Networks 9:

669–84.

Narendra KS and Parthasarathy K (1990) Identification and control

of dynamical systems using neural networks. IEEE Transactions

on Neural Networks 1: 4–27.

Nelles O (2001) Nonlinear System Identification. Berlin: Springer.

Peng JX, Li K and Huang DS (2006) A hybrid forward algorithm for

RBF neural network construction. IEEE Transactions on Neural

Networks 17: 1439–51.

Rajakarunakaran S, Devaraj D and Suryaprakasa Rao K (2008)

Fault detection in centrifugal pumping systems using neural net-

works. International Journal of Modelling, Identification and

Control 3: 131–9.

Sherstinsky A and Picard RW (1996) On the efficiency of the

orthogonal least squares training method for radial basis

function networks. IEEE Transactions on Neural Networks 7:

195–200.

Sutanto EL, Mason JD and Warwick K (1997) Mean-tracking clus-

tering algorithm for radial basis function centre selection.

International Journal of Control 67: 961–77.

Tipping ME (2001) Sparse Bayesian learning and the relevance vector

machine. Journal of Machine Learning Research 1: 211–44.

Trelea IC (2003) The particle swarm optimization algorithm: conver-

gence analysis and parameter selection. Information Processing

Letters 85: 317–25.

Deng et al. 9

