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ABSTRACT

Physical-modelling based sound resynthesis is considered by
estimating physical model parameters for a clarinet-like system.
Having as a starting point the pressure and flow signals in the
mouthpiece, a two-stage optimisation routine is employed, in or-
der to estimate a set of physical model parameters that can be used
to resynthesise the original sound. Tested on numerically gener-
ated signals, the presented inverse-modelling method can almost
entirely resynthesise the input sound. For signals measured un-
der real playing conditions, captured by three microphones em-
bedded in the instrument bore, the pressure can be successfully
reproduced, while uncertainties in the fluid dynamical behaviour
reveal that further model refinement is needed to reproduce the
flow in the mouthpiece.

1. INTRODUCTION

Resynthesis of realistic sounds using physical models can be achie-
ved by estimating the value of the parameters that govern the in-
strument oscillations. Even thoughthis is possible by carrying out
a system identification process that estimates fitted parameters [1],
this study aims to estimate parameters that have a direct physical
interpretation; this is a pre-requisite for achieving the long term
aim of the authors to perform physically-based transformation by
altering these parameters. Since musical instruments behave non-
linearly, a physical model may fail to inherit all the aspects of the
real sound-production mechanism [2]. In the clarinet mouthpiece
two types of non-linearities manifest themselves. A mechanical
one, due to the interaction of the reed with the mouthpiece lay,
and one attributed to fluid dynamical effects. The former can in
principle be incorporated in a lumped reed model by estimating
its parameters using a mechanical description of the system [3],
or by using quasi-static measurements [4, 5]. However, under real
playing conditions, the system may exhibit dynamic behaviour that
cannot be captured by quasi-static analysis. The present study es-
timates lumped reed model parameters from oscillations generated
naturally by an instrumentalist and investigates to what extent this
model can follow such measurement signals.

Focusing on the clarinet, this paper presents an inverse mod-
elling procedure that takes as input the pressure and flow signals
inside the clarinet mouthpiece and estimates the physical model
parameters needed to resynthesise a sound as close as possible to
the one performed by the real player. This procedure consists of a
two-step routine; two different optimisation methods are used, the
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Figure 1: Forward and inverse modelling of the reed-mouthpiece
system, where Ka is the effective stiffness, Sr the effective reed
surface, ym the closing position of the reed and p and u the pres-
sure and flow inside the mouthpiece.

first one to bring the problem to a good starting point, and the sec-
ond to minimise the difference of the real and the estimated signals
in the mouthpiece. Rather than using a perceptual criterion for the
objective function [2], we intend to study to what extent the model
will achieve to reproduce the original waveforms, since with per-
ceptual criteria it is not guaranteed that a physically meaningful
set of parameters is extracted.

To simulate a sustained clarinet tone, a non-linear excitation
mechanism (reed-mouthpiece-lip system) is coupled to a linear
resonator (bore). Using a set of parameters for the physical model,
the pressure and flow signals in the mouthpiece can be generated
numerically (i.e. a forward model). These signals can also be
measured experimentally using wave separation techniques [6, 7].
The process presented in the current paper uses the signals in the
mouthpiece as an input to estimate the parameters (i.e. an inverse
model), as depicted in Figure 1. Section 2 describes the lumped
reed model that interacts with the resonator to generate the os-
cillations of the instrument and Sections 3 and 4 present the two
optimisation methods as applied to numerically generated signals.
The experimental setup used to obtain the signals under real play-
ing conditions is described in Section 5, and the application of the
whole optimisation routine based on the measured signals is dis-
cussed in Section 6. Finally, the results of the process and future
objectives are summarised in Sections 7 and 8.
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2. A LUMPED REED MODEL

The reed oscillation is simulated using a lumped model of the reed-
mouthpiece-lip system [3, 8]. In previous studies the mechanical
parameters of this model were estimated from a two-dimensional
distributed model of a vibrating reed clamped to the mouthpiece
[9]. The resulting lumped model follows the mechanical behaviour
of the distributed model, taking into account the effect of the play-
ers lips, as well as the interaction of the reed with the mouthpiece
lay. It can be argued that keeping the effective mass and damping
of the reed constant in a lumped model formulation captures most
of the dynamics of the system, at least for small amplitude oscil-
lations [10]. Hence, the equation of motion for the lumped reed
model is

m
d2y

dt2
+ g

dy

dt
+ Ka(∆p)y = ∆p, (1)

wherey is the reed displacement,m the mass per unit area and
g the damping per unit area. The effective stiffness per unit area,
Ka, is treated as a function of∆p, the pressure difference across
the reed, thus rendering the model able to incorporate the quasi-
static mechanical non-linear behaviour of the system.

Concerning the flow inside the mouthpiece, an air jet with
a varying height is formed in the reed channel, as predicted by
boundary layer flow theory. Ifα is the “vena contracta” factor and
Sf the opening surface , it can be assumed that [8]

αSf ≈ λh, (2)

whereλ is the effective width of the reed andh the reed opening.
The flow (u) inside the reed channel is expressed by Bernoulli’s
equation for ideal fluid flow [11]

1

2
ρ|u|2 + p = const. (3)

wherep is the pressure in the mouthpiece, and the flow induced by
the oscillation of the reed is

ur =
dy

dt
Sr, (4)

with Sr the effective moving surface of the reed.
The mouthpiece pressurep can be decomposed into a wave

going into(p+) and out(p−) of the bore, which are related to the
total volume flowu = ur + uf by

Z0u = p+ − p−, (5)

whereZ0 is the characteristic impedance at the mouthpiece entry.
Combining equations (3) and (5) yields the non-linear equation for
uf

sign(uf )
ρ

2(λh)2
u2

f + Z0uf + (2p− − pm + Z0ur) = 0, (6)

wherepm is the blowing pressure andρ the air density.
The above lumped element is coupled to a digital bore model,

constructed using wave variables [12], to create a feedback loop
that completes the digital representation of the instrument. A the-
oretical approximation of the parameters of this physical model
enables the synthesis of the pressure and flow signals in the mouth-
piece. These numerically synthesised signals can be used as an
input to the presented optimisation routine, estimating a new set
of physical model parameters that can be directly compared to the
theoretical ones used during the simulation. Furthermore, using

the same physical model to resynthesise these signals gives us the
opportunity to directly compare the input signals with the ones
obtained with the estimated parameters. Since they have been
both numerically generated by the same model, any differences
between these signals will have been introduced during the opti-
misation process.

This lies in contrast to the optimisation based on input signals
from naturally performed sounds, since in that case errors can also
be attributed to (1) the inability of the model to capture all the
physical details of the experiment and (2) measurement errors.

3. FIRST OPTIMISATION STEP

The first step towards the parameter optimisation is based on the
simplyfying assumption that the the reed displacementy is propor-
tional to the pressure difference∆p across it [13]:

y = C∆p = C(pm − p), (7)

whereC is the compliance of the reed [14] andp the pressure
inside the mouthpiece. The reed openingh can be related toy as

h = ym − y, (8)

with ym the closing position of the reed.
Under this assumption the effects of inertia forces due to the

mass of the reed and frictional forces due to internal damping are
neglected. It can be argued that even though these forces might
dominate the transient behaviour of the system, their effect almost
vanishes at steady state (see Figures 4 and 5 in [8]), and it is the
steady state of the input signal that is going to be used for optimi-
sation purposes, thus allowing the above assumption to be made.

The total flow into the mouthpiece as a function of the reed
displacementy is

u = uf + ur

= (−λy + λym)

s
2(pm − p)

ρ
− CSr

dp

dt
(9)

= c1

r
2

ρ
(pm − p)3/2 + c2

r
2

ρ
(pm − p)1/2 + c3

dp

dt
,

with

8<
:

c1 = −Cλ
c2 = ymλ
c3 = −CSr

Since the effective stiffnessKa is the reciprocal of the compliance
C we can estimate physical model parameters from the arbitrary
parametersc1, c2 andc3 using the following relationships:

8<
:

Ka = −λ/c1

ym = c2/λ
Sr = λc3/c1

,

Note that during this processh is not restricted to positive val-
ues. This can be enforced by adding a constraint of the form
c2 + c1∆p > 0, or it can be dealt with during the fine-tuning
stage, at the second optimisation step.

The main feature of this technique stems from the fact that in-
cluding the reed induced flowur in equation (9) brings into effect
the derivative of the pressure with respect to time (dp/dt). Since
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Figure 2:Effective stiffness per unit area as predicted by the me-
chanical properties of the reed [9] (dotted-black) and as estimated
from the numerically synthesised signals (grey).

the reed is assumed to move in phasewith the pressure difference
across it, the model can now distinguish between the opening and
closing phases of the reed motion. As such, the two branches that
appear if we plot flow over pressure difference can be treated sepa-
rately. This branch separation allows an optimisation process to be
applied twice; once for the opening state of the reed (dp/dt < 0)
and once for the closing state (dp/dt > 0). Taking as our ob-
jective function the mean square error between the original flow
signal and the estimated flow as calculated from equation (9), and
using the Nelder-Mead optimisation algorithm [15, 16], we can
get a first estimate forKa, Sr, ym andpm [13]. These parameters
can be then fed into the lumped model to resynthesise the signals
in the mouthpiece. In the case ofKa, and since it is expected to
behave as a function of pressure difference, the estimated value is
treated as the (constant) value ofKa for a low pressure difference
(when the reed behaves linearly, for there is no interaction with the
lay), whereas for higher values of∆p it rises to around 1.5 times
its value, as predicted by theory (see Figure 2).

One way to evaluate the obtained results of this first estimation
of the physical model parameters is to compare the flow signal
that was used as an input with the estimated flow that is synthe-
sised using the set of the estimated parameters. These are plotted
in Figure 3 over the pressure difference across the reed. It can
be deduced that for pressure difference values within the range
[500, 3000]N/m2 the estimation is good enough to be used as a
starting point for a second optimisation method. It is also possible
to feed the new parameter set to the lumped model and compare
the signals in the mouthpiece that have been used as input and the
resynthesised signals. A zoomed-in version of these signals is plot-
ted in Figure 4. Finally the values of the estimated parameters and
the parameters used to create the input signals are listed in table 1,
including the parameters estimated from the second optimisation
method, as explained in the next section.

4. SECOND OPTIMISATION STEP

Having established a method to get a first estimate of the physical
model parameters allows us to proceed with a second optimisation
method that completes the routine presented in the current paper.
The parameters obtained so far enable the synthesis of oscillatory
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Figure 3: Flow into the mouthpiece over pressure difference, for
the original model (black) and as calculated using the estimated
parameters (grey).

signals; they lie within a range so that the simulation of sustained
clarinet notes is possible. As seen in Section 3 it is possible to
recreate a note using these parameters, avoiding any regions where
blowing thresholds are not reached[17]. It remains to fine-tune the
estimated parameters so that we get a better match for the original
and the resynthesised signals.

Using as our objective function the mean square error of the
pressure signals at the steady state, we employ the Rosenbrock
method [18, 19] to locate the optimum set of parameters. The
Rosenbrock algorithm is a direct search method, that can go through
ann-dimensional search space. Starting with a set ofn orthogo-
nal directions, the algorithm moves towards those directions that
reduce the value of the objective function (for minimisation prob-
lems) and then it changes the directions to a new orthogonal set,
more likely to yield better results. It has the advantage that by
changing the set of the search directions, it can adapt to narrow
“valleys” that can appear in the search-space. In addition, by ex-
panding the motion towards successful directions and reducing
that towards unsuccessful ones, it has the ability to avoid getting
trapped within regions of local minima.

In our application, we run the clarinet simulation after each
parameter search within the Rosenbrock algorithm, to synthesise
the pressure signal in the mouthpiece and compare it to the original
one. In contrast to the first optimisation step, it is now possible
to include in the model all the physical parameters that govern
the oscillations of the system, namelyKa, Sr, ym, pm, massm,

Table 1:Theoretical vs. estimated parameters.

theoretical estimated (I) estimated (II) units
Ka 8.66 · 106 8.97 · 106 8.67 · 106 N/m3

Sr 7.61 · 105 8.42 · 105 8.33 · 105 m2

ym 4 · 10−4 3.2 · 10−4 3.68 · 10−4 m
pm 1800 1919 1825 Pa
λ 0.013 — 0.0142 m
m 0.05 — 0.044 Kg/m2

g 3000 — 3805 1/sec
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Figure 4:Pressure signals in the mouthpiece for the original model
(dashed-black) and as synthesised using the estimated parameters
after the first optimisation step (grey).

dampingg and effective widthλ. In addition, forKa a second
parameter is introduced, corresponding to its maximum value at
high∆p.

The resynthesised pressure signal should, at every iteration,
lie closer to the pressure signal that was used as an input. Thus
by starting with two signals that lie reasonably close to each other,
something achieved in the previous section, it is possible to reach
a suitable set of parameters that produces almost identical results.
Again, working only with numerically generated signals, and since
we are using the same model to create both the input and the resyn-
thesised signal, an almost perfect match is required to indicate the
efficiency of the method. A comparison between the input and
the resulting pressure and flow in the mouthpiece can been seen in
Figure 5. This two-stage optimisation routine can also be applied
to signals measured under real playing conditions, as long as the
pressure and flow signals are known.
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Figure 5: Pressure signals in the mouthpiece for the original
(dashed-black) and the resynthesised (grey) sound (top) and the
corresponding flow signals (bottom).
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Figure 6:Schematic depiction of the experimental setup.

5. SIGNAL MEASUREMENT

The experimental data is obtained from experiments with blow-
ing a simplified clarinet, the schematic bore profile of which is
shown in Figure 6. Following [12], the mouthpiece is modelled
as a cylindrical plus a conical section, where the first is a heavily
simplified axially symmetric representation of the entry of the real
mouthpiece; this approach is somewhat justified by the fact that
the dimensions of the real mouthpiece geometry are small com-
pared to the wavelength. Another reason to use such a simple
model is that the fluid dynamics in this area are generally much
more complicated than in the remaining part of the bore, involving
complex phenomena such as jet formation and its attachment and
de-attachment from the side wall. For dynamic cases (i.e. when the
reed moves), this behaviour is not yet understood well [8, 20, 21],
and in the light of such modelling uncertainties, the best approach
seems to use a simple model. The dimensions of the conical sec-
tion as well as the step in the radius can be measured directly;
the length of the cylindrical section was determined from the mea-
sured volume of the section (≈ 3 ml).

In the experiments, the player generates a sustained note of
about 4 seconds. The signals captured by the three microphones
embedded in the side wall of the main cylindrical bore are then
processed using adaptive delay-loop filtering in order to derive the
pressure and flow at the reference plane. This method involves
estimation of the parameters that model the transfer function be-
tween the microphones, adapting to the playing conditions (the
reader is referred to [7] for a more detailed description).

Once the pressure (p0) and volume flow (u0) at the refer-
ence plane are measured, classical transmission-line theory using
ABCD matrices [22] is applied in order to derive the correspond-
ing pressure (p) and flow (u) at the mouthpiece entry. Zero-phase
lowpass filtering with a 7.25 kHz cut-off is applied to both sig-
nals in order to remove high frequency errors that arise from the
singularities inherent to the three-microphone adaptive delay-loop
filtering method.

6. OPTIMISATION ROUTINE FOR THE MEASURED
SIGNALS

Having obtained the signals of pressure and flow in the mouth-
piece we can directly proceed to the first step of our optimisation
routine. Equation (9) is used to form the objective function for
the Nelder-Mead method. Working on a “slice” of the measured
signal that closely resembles the steady state of a sustained note,
it is still possible to distinguish between the opening and closing
states of the reed motion, by calculatingdp/dt from the pressure
signal. As in Section 3, optimising separately for each branch and
averaging the obtained results gives a first estimate for the physical
model parameters, the validity of which is suggested by the com-
parison of the measured flow and the calculated flow, as depicted
in Figure 7.
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Figure 7: Flow into the mouthpiece over pressure difference, for
the measured data (dotted-black) and as calculated using the esti-
mated parameters after the first optimisation step (grey).

SinceKa is known not to be constant, it is possible to get a
better estimation by feeding the rest of the estimated parameters
to equation (9) and solving forKa as a function of∆p (sinceu is
known from the measurements). The pressure and flow signals in
the mouthpiece, as resynthesised using the parameters estimated
form this first-step optimisation, are compare to the original ones
in Figure 8. The main cause of the deviation of the flow signal of
this figure, as compared to the one in Figure 7, is the inclusion of
arbitrary mass and damping parameters during its resynthesis.

In order to transfer the above results to the second stage of
our optimisation routine, we have to adapt our model to the di-
mensions of the experimental setup, used to obtain the measure-
ments, as described in Section 5. The bore impedance (Z0) as
seen from the reference plane was calculated from theory [22]. A
frequency-domain comparison betweenP0(ω) andZ0(ω)U0(ω)
showed a good match between theory and measurement, validat-
ing the derivation of a suitable reflection function fromZ0(ω) for
use in the time-domain clarinet model.
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Figure 8: Pressure signals in the mouthpiece for the original
(dashed-black) and the resynthesised (grey) sound (top), and cor-
responding flow signals (bottom), after the first optimisation step.

Another problem that has to be tackled before proceeding with
the Rosenbrock algorithm is that the measured pressure signal and
the resynthesised signal from the lumped model might not be in
phase. This was not a problem in Section 4, as the two signals
were generated using the same model. Now it is not guaranteed,
constituting the synchronisation of the two signals necessary. This
can be achieved by shifting the numerically synthesised signal for
the required amount of samples, until it lies in phase with the orig-
inal (measured) signal. (Note that such a synchronisation will be
repeated several times during the optimisation routine, to ensure
that the compared signals lie in phase.) The results of the whole
optimisation routine, applied to a small, steady part of the mea-
sured signal, are shown in Figure 9.

7. DISCUSSION

The pressure signal in the mouthpiece can be resynthesised to match
the measured one. For the flow, however, even though the resyn-
thesised signal lies closer to the original one after the second op-
timisation stage, a perfect match was not obtained. The use of a
different objective function for the Rosenbrock algorithm, that in-
cluded both the pressure and flow signals in the mouthpiece, did
not improve the estimation process. This indicates that the focus
should be shifted towards improving the model rather than the op-
timisation routine.

For the measured signals there are non-linearities and uncer-
tainties in the fluid dynamics that are not incorporated in the physi-
cal model. These may stem from (1) a yet unpredictable behaviour
of the “vena contracta” factor at low∆p regimes [23], and (2) the
effects of turbulence. On the other hand, applying the optimisation
routine on numerically generated data succeeded in resynthesising
both pressure and flow signals. Since in that case both the input
and estimated signals are generated using the same model, the re-
lation between pressure and flow in the mouthpiece remains the
same.

Future studies will focus on attributing the difference of the
flow signals to appropriate physical phenomena, so that the model
can regenerate both signals in the mouthpiece. It has to be pointed
out here that the goal of our study remains to estimate parameters
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Figure 9: Pressure signals in the mouthpiece for the original
(dashed-black) and the resynthesised (grey) sound (top), and flow
signals (bottom), after the second optimisation step.
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that have a physical meaning. Thus, even though black-box tech-
niques could parameterise the reed non-linearity, most of the re-
sulting parameters would not have a direct physical interpretation.
Hence such an approach would be less in line with our objectives.

8. CONCLUSIONS

A two-stage optimisation routine, that uses the Nelder-Mead and
Rosenbrock algorithms, can estimate physical model parameters,
suitable for clarinet sound resynthesis. Starting from signals mea-
sured under real playing conditions, the pressure signal can be re-
generated using the estimated parameters as input to the model.
For the flow in the mouthpiece, though, our model has to be re-
fined, in order to improve the resynthesis accuracy.
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