
FPGA Implementation of a Pipelined Gaussian Calculation for
HMM-Based Large Vocabulary Speech Recognition

Veitch, R., Aubert, L-M., Woods, R., & Fischaber, S. (2011). FPGA Implementation of a Pipelined Gaussian
Calculation for HMM-Based Large Vocabulary Speech Recognition. International Journal of Reconfigurable
Computing, 2011, [697080]. DOI: 10.1155/2011/697080

Published in:
International Journal of Reconfigurable Computing

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

http://pure.qub.ac.uk/portal/en/publications/fpga-implementation-of-a-pipelined-gaussian-calculation-for-hmmbased-large-vocabulary-speech-recognition(4e51c3da-18dc-4ec7-a762-384436434bda).html


Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2011, Article ID 697080, 10 pages
doi:10.1155/2011/697080

Research Article

FPGA Implementation of a Pipelined Gaussian Calculation for
HMM-Based Large Vocabulary Speech Recognition

Richard Veitch, Louis-Marie Aubert, Roger Woods, and Scott Fischaber

Electronics, Communications and Information Technology (ECIT), Queens University Belfast, Northern Ireland Science Park,
Belfast BT3 9DT, UK

Correspondence should be addressed to Richard Veitch, r.veitch@ecit.qub.ac.uk

Received 1 June 2010; Revised 19 September 2010; Accepted 27 September 2010

Academic Editor: Gustavo Sutter

Copyright © 2011 Richard Veitch et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A scalable large vocabulary, speaker independent speech recognition system is being developed using Hidden Markov Models
(HMMs) for acoustic modeling and a Weighted Finite State Transducer (WFST) to compile sentence, word, and phoneme models.
The system comprises a software backend search and an FPGA-based Gaussian calculation which are covered here. In this paper, we
present an efficient pipelined design implemented both as an embedded peripheral and as a scalable, parallel hardware accelerator.
Both architectures have been implemented on an Alpha Data XRC-5T1, reconfigurable computer housing a Virtex 5 SX95T FPGA.
The core has been tested and is capable of calculating a full set of Gaussian results from 3825 acoustic models in 9.03 ms which
coupled with a backend search of 5000 words has provided an accuracy of over 80%. Parallel implementations have been designed
with up to 32 cores and have been successfully implemented with a clock frequency of 133 MHz.

1. Introduction

Automated Speech Recognition (ASR) systems can revo-
lutionize the way that we interact with technology. Large
vocabulary speaker independent systems have potential in
all forms of computing, from hand held mobile devices to
personal computing and even large scale data centres. A
low power, real-time embedded system could dramatically
impact our daily interactions with digital mobile technology
[1] while a faster than real-time multi-stream batch decoder
could be used in server applications for distributed systems
[2] or data-mining [3, 4].

There are a range of open source software ASR systems
available [5, 6]. These tools employ Hidden Markov Models
and Viterbi decoding to provide a speech decoder that can
be configured for a variety of implementations. Over the last
5 years, however, the research concerning high performance
ASR has been more focused on hardware implementations
and as such, many FPGA-based speech recognition systems
have been implemented, although systems have generally
been limited by small vocabulary [7, 8] or have relied on
custom hardware to provide the necessary resources required
for a large vocabulary system [9]. The approach of pairing

a softcore processor with a custom IP peripheral is popular
and has been proposed in a number of papers [8, 10] but a
system operating on large vocabularies at real-time is yet to
be demonstrated. This is, in part, due to the low operating
frequencies of softcore processors but another problem is
the interfacing with off-chip, high capacity RAM which can
introduce large delays that cripple a high bandwidth system
like speech recognition.

A real-time speech recognition system is being designed
at Queens University Belfast which uses a Weighted Finite
State Transducer (WFST) [11] to precompute much of the
information needed. This design decision allows for a great
degree of flexibility since the WFST can be compiled to
suit the available system storage, bandwidth, and processing
potential. The decoder forms the basis of the recognition
algorithm and has been designed to be scalable to run either
in an embedded system where real-time performance at
low power will be the goal or alternatively in a server or
desktop situation, where higher processor frequencies will
allow better than real-time performance for batch or multi-
stream decoding.

A software implementation has been created as a proof
of concept and tested successfully on a PC. This system
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is capable of running at better than real-time, using a
vocabulary of 5000 words with an accuracy of 80%, which is
consistent with the current state of the art, but does require
the full effort of a 3 GHz Intel processor with 3 GB of DDR3
RAM. In order to provide a mobile implementation of the
system, work has been carried out to design a multicore
architecture comprising of embedded processors and custom
IP. The first step in the creation of this mobile architecture
is an FPGA-based demonstrator based around a Microblaze
softcore processor.

Through profiling of the software system, the Gaussian
calculation has been identified as a performance bottleneck.
For this reason, a custom Gaussian core was developed
with a simple interface that allows it to be implemented
either as an embedded peripheral in a system-on-chip speech
recognition system or as an FPGA hardware accelerator for
use with a desktop or server software system. By decoupling
the control and data flow components of the core from the
RAM interface, parallel implementations can be achieved in
multiple different configurations which can be tailored to
make the most of the available resources.

This work, originally presented at the 6th Southern
Programmable Logic Conference [12], outlined the Gaussian
core as a hardware peripheral capable of real-time operation;
dual cores were implemented in order to achieve this.
Improvements to that paper that have been included here are
given below.

(i) The single core is now capable of running at real
time. This increase was achieved by streamlining the
loading of acoustic model data from the SDRAM.

(ii) The Software proof of concept system has been
optimized to include SIMD instructions and multi-
threading.

(iii) A number of multicore parallel implementations
have been designed and implemented.

(iv) Both the software proof of concept and the multi-
core implementation of the Gaussian core have been
demonstrated to run faster than real-time.

The paper is organized as follows. Section 2 describes the
HMM/WFST speech recognition system. Section 3 describes
the performance of a software proof of concept implementa-
tion and gives some details of optimizations. Section 4 details
the design decisions made to allow efficient implementation
of the Gaussian calculation as an FPGA-based custom IP core
and the options for parallelization. Section 5 gives details
of the FPGA implementation of the Gaussian core along
with speed and area results for various parallel architectures.
Finally, section 6 discusses the implications of the pipelined
Gaussian core for both real-time embedded mobile systems
and server-based distributed systems.

2. HMM-Based Continuous Speech Recognition

The speech recognition system outputs a textual transcrip-
tion of the input speech. To do so, the system uses three main

knowledge sources prebuilt from speech statistics, which are
illustrated in Figure 1: the language model, or grammar, gives
statistical information on how sentences are broken up into
sequences of words; the lexicon describes how words are
broken up into sequences of sounds, or phonemes; these
phonemes are represented by Hidden Markov Models as
sequences of states with transition probabilities [13].

Each state in the HMM is associated with an acoustic
model. Acoustic models, sometimes referred to as Gaussian
Mixture Models (GMMs), are Gaussian-based functions
used to compute the probability that the input speech
frame belongs to the corresponding phoneme [7, 14]. By
precomputing these knowledge sources off-line, we are able
to reduce the processing power required by the speech
recognition system as a whole, at the expense of increasing
the memory storage and bandwidth requirements.

At the implementation level, the decoding of the input
speech can be separated into three blocks, as shown in
Figure 2. These are feature extraction, Gaussian calculation,
and backend search. The Gaussian calculation calculates
probabilities according to the input speech which are passed
to the backend search. Note that it does not work on the
audio waveform itself but on a series of Acoustic Observation
Vectors (AOVs) created from that waveform by the process of
feature extraction.

2.1. Acoustic Observation Vectors. Each AOV consists of
typically 39 Mel-Frequency Cepstral Coefficients (MFCCs)
which are created from a frame of input speech by applying
a series of transforms [15, 16] as shown in Figure 3. The
MFCCs contain all the necessary acoustic information of
one frame of input speech. A frame represents a 25 ms
Hamming window of speech. Frames overlap such that a
new AOV is available every 10 ms of speech as shown in
Figure 4. Hence, in order to offer real-time performances, the
Gaussian calculation block must process each AOV in less
than 10 ms.

2.2. Gaussian Calculation. In this system, the most compu-
tational intensive task is the Gaussian calculation. It must
compute the probability for the acoustic models which are
expressed as a mixture of multi-dimensional Gaussians as
shown in following equation [7]:

pj =
M∑

m=1

wj,m

2π
∏K

k=1σj,m,k
exp

⎛
⎜⎝

K∑

k=1

(
xk − μj,m,k

)2

2σ2
j,m,k

⎞
⎟⎠, (1)

where j is an index for the current acoustic model and M
denotes the number of mixtures in the model. Typically there
are 8 mixtures in each model although that may vary between
models depending on their complexity. The coefficients, xk,
are the MFCCs of the input AOVs. As seen in (1), acoustic
models are fully characterized by their mean (μ), variance
(σ2), and weight coefficients (w). This strict implementation
of the mixture of Gaussian models is complex as it involves
highly nonlinear operations. However, it has been proven
that taking the maximum of all of the mixtures, instead of
the sum, is a very good approximation of the result [17].
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Hence, by taking the negative of the logarithm of (1) in order
to convert probabilities into costs and applying the previous
approximation, the acoustic cost can be evaluated by

cj =
M

min
m=1

⎛
⎜⎝αj,m +

K∑

k=1

(
xk − μj,m,k

)2

2σ2
j,m,k

⎞
⎟⎠, (2)
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Figure 4: Overlapping of acoustic observation vectors.

where α is a coefficient per mixture that encompasses
all constants and parameters outside of the exponential
function in (1).

In order to further simplify the computation of the
Gaussian block, the variance σ2 is replaced by a new variable
v′ as described in (3). By storing this precomputed value
instead of the variance, the calculation can be carried out by
(4) which defines the calculation of a Gaussian result for one
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AOV and one Acoustic Model.

v′ = 1√
2σ2

, (3)

cj =
M

min
m=1

⎛
⎝αj,m +

K∑

k=1

((
μj,m,k − xk

)
× v′j,m,k

)2

⎞
⎠. (4)

2.3. Backend Search. The backend search portion of the
system is based on a token propagation algorithm which
uses a single WFST network to combine all static knowledge
sources of the recognizer: language model, lexicon, and
HMM state sequence. The WFST consists of nodes and
weighted arcs which are stored in memory and loaded as
needed. The token propagation algorithm begins by setting
a single token at the initial node of the network. The token is
replicated and propagated along every arc leaving the node.
Each propagated token has two costs added to its running
total. The first is a fixed cost which is the transitional cost of
the HMM state represented by the arc [13]. The second cost
is calculated by the Gaussian calculation and is dependent on
the current AOV and the Acoustic Model associated with the
arc [11]. This propagation process is repeated for all existing
tokens once per frame. Since the number of tokens within
the system increases with each iteration, pruning techniques
are required to discard least probable tokens with the highest
costs. At the end of a predefined period, the system outputs
the most probable transcriptions by tracing back the paths
through the WFST network taken by the token with the
lowest costs.

2.4. Test Data. In order to recognize continuous speech,
the HMMs used do not model isolated phonemes but
context dependent triphones, that is, phonemes altered by
the preceding and following phonemes. There is an extremely
large number of possible tri-phones but a tying-up technique
allows the system to work effectively with only 4 400 distinct
HMMs [13]. The system uses mainly 3-state HMMs and so
would require a theoretical number of 3 × 4 400 = 13 200
acoustic models. However, a pool of only 3 825 distinct
acoustic models is enough to address all HMM states. With
a set of acoustic models of this kind, the system is capable of
accurate recognition, even with very large vocabulary of up
to 50 000 words.

The current demonstrator uses a WFST built from a
5000-word vocabulary which embeds all static knowledge
sources, from the bi-gram language model down to all
4 400 HMMs. However, the system has been designed with
flexibility as the utmost priority. In the final system, it is
intended to increase the vocabulary to 50,000 words. There is
also the flexibility to use larger sets of acoustic models. This
could be particularly useful for other languages requiring a
larger quantity of component sounds.

3. Software Performance

A software implementation of the WFST/HMM speech
recognition system has been implemented and tested as a

Table 1: Timing results for software implementation.

Frames/s
Speed (×
real time)

Percentage of
Clock cycles spent
on gaussian calc.

Sequential C++ 114 0.88 80%

C++ with SSE
intrinsics

902 0.11 48%

8-thread parallel
C++ with SSE

2756 0.036 48%

proof of concept. The software was coded in C++ and has
been tested on a PC with an Intel Core i7 CPU running at
2.8 GHz with 3 GB of RAM. The system performance is listed
in Table 1.

Performance figures are given for two implementations.
The first case, which was originally presented in [12],
has been implemented in C++ compiled with Microsoft
compilers via Visual Studio 2008. This implementation
achieves speeds of 114 frames per second on average which
is better than the real-time figure of 100 frames per second.
Profiling of the software shows that the Gaussian calculation
takes up a large majority of the execution time; for this
reason, an effort was made to increase the efficiency of this
calculation.

In an alternative implementation, the Streaming SIMD
Extensions (SSE2) of Intel Processors are used to accelerate
the Gaussian calculation by exploiting data parallelism
within the arithmetic operations of the Gaussian core.
The other functions of the program remain sequential and
unchanged.

SIMD architectures provide multiple processing ele-
ments that perform the same operation on multiple data
simultaneously. SSE2 works on 128-bit registers, that are
interpreted in our implementation as 2 × 64-bit, 4 × 32-
bit, 8 × 16-bit, or 16 × 8-bit fixed point integers (signed or
unsigned). The effect of using fixed point rather than floating
point will be discussed further in Section 4.1. Figure 5 gives a
simplified data flow diagram of the SIMD implementation of
the Gaussian calculation. Note that numbers in brackets give
the fixed-point details on data. The memory organization
of the acoustic models was also reviewed to get 16-byte
memory-aligned data optimally transferred to SSE2 registers.
The use of SSE2 intrinsics with optimized memory access
allows the Gaussian calculations to run more than 13 times
faster, which translates to the whole speech recognition
systems running at 8 times faster than unoptimized code or 9
times faster than real time. However, note that even with the
SIMD instructions, the Gaussian core is responsible for 48%
of the program’s execution time.

The third implementation in Table 1 exploits parallelism
at thread level. The optimized software implementation is
modified with OpenMP pragmas in order to decode different
utterances in parallel on multiple threads. More than the
speed increase, this OpenMP implementation illustrates the
suitability of the WFST-based backend search for paralleliza-
tion across multiple threads without significant memory
overhead. The static WFST network is shared between
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Figure 5: SIMD implementation.

threads, which compensates for its large size. This typically
addresses server applications where multiple, independent
utterances are decoded in parallel.

So our requirement for our IP core is to be able to
address embedded applications, where real-time, low-latency
speech recognition must be achieved at low power, and server
applications where overall speed is of primary concern. This
is why the Gaussian core has been designed with flexibility
in mind, in order to fulfill both these roles with one piece of
IP. The hard coded custom IP peripheral must be capable of
handling the Gaussian calculation in a pipelined and parallel
manner if we are to achieve real-time operation with memory
bandwidth and clock frequency reductions.

4. FPGA Design Decisions

Even with the SIMD instructions, the Gaussian core is
responsible for 48% of the program’s execution time.
An FPGA-based hardware accelerator capable of operating
faster than the software implementation would allow faster

decoding of speech. Also, this performance will not be
reproducible in an embedded system since processor fre-
quencies are substantially lower and in the case of softcore
processors such as the Microblaze, SIMD instructions are not
available. In this case, a hard coded custom IP peripheral
capable of handling the Gaussian calculation in a pipelined
and parallel manner is necessary if we are to achieve real-
time operation. In this section, the design decisions involved
in FPGA implementation of the Gaussian calculation are
discussed.

4.1. Data and Storage. The data required, in order to
calculate Gaussian results, comprises acoustic models, which
are predefined and stored locally, and acoustic observation
vectors which are discrete representations of input speech.
During software testing, the dynamic range of each variable
was assessed, and a fixed point representation was chosen in
order to reduce storage and bandwidth requirements without
loss of accuracy in the results. Acoustic observation vectors
are stored as 16 bit (8.8) fixed point per coefficient. Acoustic
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Models use 16 bits (8.8) for each mean coefficient and 8 bits
(2.6) for each variance coefficient with 32 bit weighting per
model. Applying these width constraints to the test data
results in a mean error of 0.85% in the Gaussian results when
compared to the optimum values calculated from a double
precision floating point implementation. This error does not
measurably affect the word error rate of the decoded speech.

The current fixed point representation of the acoustic
models requires 4 500 KB storage space. This is too large
to be stored in on-chip Block RAM which for Virtex 5
FPGAs is limited to 2000 KB [18]. Therefore, off-chip RAM
is necessary. Although the current set of acoustic models
could be stored in SRAM in order to allow for the possibility
of increased quantities of acoustic models, the decision was
made to use SDRAM for storage. The SDRAM controller
used in this design is a custom IP core provided by the board
manufacturer, Alpha Data, and was chosen as it was already
proven to work successfully with our test hardware. Other
solutions are available but were not investigated as this is not
the main focus of the work.

4.2. Partitioning. In order to successfully partition the
system, communication must be minimized between the
Gaussian calculation block and the backend search. This
allows the Gaussian calculation to be efficiently implemented
as a coprocessor in an embedded system or as an FPGA-
based hardware accelerator without the risk of creating a
communications bottleneck. In theory, it is not necessary to
calculate every Gaussian result for every AOV since results
will only be needed for the active arcs in each iteration.
For the software implementation, results are calculated as
needed resulting in an average number of calculations of
678 per frame from a theoretical maximum of 3 825. In
practice, however, if it is possible to calculate all results
for each frame, this can be beneficial since this means that
there is no need for the backend search to request specific
results; instead, the Gaussian block can work independently
as long as a full set of results is available at the beginning
of the corresponding iteration. Another benefit of this brute
force approach is that it simplifies the loading of acoustic
models. Since all are being computed, so they can be loaded
in the order in which they are stored and in bulk rather
than addressing individual models as would be necessary if

they were computed on demand. The requirement of the
Gaussian block is simple and clearly defined. For each period
of 10 ms, one Gaussian result must be calculated for each
acoustic model with respect to the current AOV.

4.3. Parallel Calculation. Once we have moved from a
request-based system where Gaussian results are calculated
individually on demand to a brute force system where
results are calculated in bulk ahead of time, we have the
opportunity to parallelize the calculation of Gaussian results.
This can be done in two different ways, each with its own
associated cost as shown in Figure 6. The first approach,
method A, involves buffering the input speech of the system.
This allows the use of a single acoustic model against
multiple observation vectors to calculate multiple results
in parallel. The alternative, method B, is to use a single
observation vector with multiple acoustic models in parallel.
This approach does not require buffering of the input speech
but would require an increase in bandwidth used for loading
acoustic models to achieve similar results.

The most appropriate choice will depend on the goal
of the system and could involve a combination of the two.
For example, input buffering will increase the overall latency
from input speech to transcription output. Since each AOV
represents 10 ms of input speech, this is the amount of
buffering that is required for each parallel calculation in
method A. For real-time applications, a small amount of
buffering is acceptable but the threshold must be kept low in
order to ensure usability. On the other hand, a server system
running at an order of magnitude faster than real time on
multiple streams will be a lot less sensitive to delays caused
by buffering.

5. FPGA Implementation

The Gaussian core has been designed with efficiency and
flexibility in mind. The calculation itself is fairly simple but
must be carried out on a large amount of data at high speed.
Since the same calculation is carried out on multiple models
independently, a high degree of parallelism can be exploited.
For this reason, the approach taken in designing the Gaussian
core was to first build a single, efficient pipeline with minimal
control and then to build a parallel architecture containing



International Journal of Reconfigurable Computing 7

Gaussian core
Cost FIFO RAM writer

Acoustic
observation

vector
registers

Acoustic models
FIFO

RAM reader

Empty

rd en

rst en

wr en

Full
Gaussian control

Figure 7: Single core implementation of Gaussian core.

Accumulate
results of 39
coefficients

Minimize
results from
M mixtures

ResultMin
∑

X

X

X

−

x

μ

v′

α

M

Figure 8: Data flow of Gaussian core.

multiple pipelines which could be configured to achieve
specific design goals. In this section, we will first present
the single core implementation which was first proposed
in the previous paper [12] and then describe a number of
new multi-core architectures that have been implemented
since the original publication, in order to provide a solution
tailored to the required performance of a range of speech
recognition systems.

5.1. Single Core. The Gaussian block is the main processing
core of the Gaussian calculation. It consists of control and
data flow elements and is designed to read inputs from a
set of FIFOs and write outputs to another FIFO. The use of
FIFOs reduces the complexity of the control logic since it is
not required to run the SDRAM interface. Separate modules
have been implemented which read acoustic models from
SDRAM and write them into the FIFOs and similarly, results
are read from the output FIFO and written to SDRAM.
This decoupling provides the benefit that the core could
be implemented on a completely different platform with
a different storage solution without the need to alter the
control logic. Figure 7 shows the architecture of a single
Gaussian core implementation.

The control component is an FSM which monitors the
level of the input FIFOs in order to ensure that enough data

is available to start a calculation. It then provides suitable
read enable signals to the input FIFOs and coordinates the
reset and enable signals to the data core. The control unit
also monitors the done signal of the data core and provides
a corresponding write enable signal to the output FIFO. The
data flow of the Gaussian block implements (4) as a pipeline
which can be split into three sections as shown in Figure 8.

a = ((μ− x)× v′)2
. (5)

The first section calculates (5) for every acoustic model
Gaussian coefficient. The results of the arithmetic section are
then accumulated over the 39 values of a that correspond
to one mixture and added to the weight, α, of that mixture.
The final stage of the pipeline finds the minimum of a set
of results from the accumulation which correspond to one
model.

The device utilization results of the single core imple-
mentation can be seen in Table 2. It should be noted that the
majority of the FPGA resources used in this implementation
are accounted for by the SDRAM controllers; this is evident
by the small increase in utilization between the single
and double core implementations. The single core has
been tested and requires 314 clock cycles on average to
compute the result of a single acoustic model consisting of
8 mixtures against a single AOV; this requires a minimum
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Table 2: Method A. device utilization on Virtex 5 SX95T FPGA (+did not meet timing for 266 MHz.).

Single core 2 cores 8 cores 16 cores 32 cores 64 cores+

Occupied Slices 8104(55%) 8782(59%) 9460(64%) 10, 485(71%) 12, 889(87%) 14, 557(98%)

Slice LUTs 18, 902(32%) 19, 306(32%) 21, 479(36%) 24, 729(41%) 33, 188(56%) 42, 976(72%)

Slice Registers 14, 669(24%) 15, 082(25%) 16, 976(28%) 20, 005(33%) 28, 653(48%) 37, 325(63%)

BlockRam (Kb) 252(2%) 288(3%) 504(5%) 864(9%) 1512(17%) 2808(31%)

DSP48es 8(1%) 14(2%) 50(7%) 98(15%) 194(30%) 386(60%)

clock frequency of 120 MHz for real-time reconstruction.
The design has been successfully placed and routed using
Xilinx ISE 11.5 and has passed timing with a clock frequency
of 133 MHz for the Gaussian core.

5.2. Multi-Core-FPGA Accelerator. In this section, two dif-
ferent multi-core implementations are presented. The first
is based on a buffered input system and is new for this
paper. The second was first proposed in [12] and uses parallel
acoustic models on a single Acoustic Observation Vector.

5.2.1. Method A Buffered AOVs. The simplest implemen-
tation is the buffered AOVs where the same data FIFOs
and control logic can be used with multiple data flows.
This is illustrated in Figure 9. This option requires the
same external memory bandwidth from the RAM reader
component and does not significantly increase the on-chip
block RAM storage. This design has been implemented with
a range of parallel cores, the results of which are presented
in Table 2. There is obviously a large overhead in terms of
slice utilization due to the RAM controllers and PCI interface
logic, which is evident by the fact that the growth in slice
utilization with the increase in number of cores is very small,
compared to the figures for slice utilization of the single
core. It is also evident that DSP slices are mostly used by
the Gaussian core itself, due to the almost linear increase
of 6 DSPs per core with very little overhead. Block RAM
usage in this design is low and does not significantly increase
with the number of cores. In fact, the block RAMs used per
core actually decrease with the number of cores. This makes
sense as the block RAMs are mostly used for the input FIFOs
which are not replicated for additional cores. The increase
in total block RAMs seen in the highly parallelized designs
is due to increased complexity of the output FIFO which is
implemented with asymmetric input/output widths in order
to combine the results of multiple cores into a single output
data stream.

All designs have been synthesized, mapped and placed
and routed using Xilinx ISE 11.5. With the exception of the
64-core implementation, all designs passed timing for a clock
rate of 133 MHz for the Gaussian core and 266 MHz for
the SDRAM controllers. The 64 core implementation can be
run with a Gaussian clock of 60 MHz and 120 MHz for the
SDRAM controllers.

As noted in Section 5.1, a single core is capable of
calculating a full set of Gaussian results in 10 ms at a
clock frequency of 120 MHz. The speed increase due to
parallel cores in this implementation is linear and directly
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Figure 9: Method A. parallel implementation of Gaussian core.

proportional to the number of parallel cores, since the input
data is the same for all cases. The results calculated by the
Gaussian core are 16 KB per core per frame meaning that
the output bandwidth will be 1.5 MBs−1 per core. Assuming
that this bandwidth does not exceed that of the output bus,
the linear speedup will be maintained; hence the 32-core
implementation running at 120 MHz will provide 32 times
real-time performance.

5.2.2. Parallel Acoustic Models. An option which allows
parallelization without input buffering is to use the same
input data on multiple acoustic models concurrently. This
is illustrated in Figure 10 which shows that the system will
require more on-chip FIFOs to store acoustic models along
with replicated control logic for each data flow. Although
this system does not increase the buffering of input speech
to the system, there is a limit to the degree of parallelization
available due to the increase in bandwidth.

The results of implementing up to 4 parallel Gaussian
cores using this method are presented in Table 3. The main
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Figure 10: Method B. parallel implementation of Gaussian core.

difference in the results of this design compared to that
shown in Figure 9 is the almost linear increase in block RAMs
used. This is due to the fact that input FIFOs which are
implemented in block RAMs are replicated for each core. The
limit of the FPGA used for this project is approximately 8 Kb
which suggests that up to 64 cores could be implemented,
although the real limit of this design will be memory
bandwidth which will be reached much sooner.

The test data used for our proof of concept system
uses 1 152 bytes per model. This equates to a total data size
of 4 500 KB for 4000 models. This means that real-time
operation of a single core at 100 fps will require 439 MBs−1

and means each subsequent core will increase the bandwidth
by this same amount. A 64 bit DDRSDRAM chip running at
266 MHz will provide approximately 2 GBs−1 and so the limit
would be, at best, 4 cores per SDRAM chip.

As with the buffered AOV approach described in
Section 5.2.1, a linear speed increase, directly proportional
to the number of parallel cores, is theoretically possible;
however, in this case, the speed increase will be dependent
on the bandwidth at the input of the system. All the designs
in this section have been placed and routed and have passed
timing at the full system speed of 133 MHz with the SDRAM
clock running at 266 MHz.

6. Conclusions

We have presented a versatile pipelined Gaussian core along
with multiple implementation architectures. The single core
implementation has been proven as a real time solution

Table 3: Method B. Device utilization on virtex 5 SX95T FPGA.

Single core 2 cores 4 cores

Occupied Slices 8, 601(58%) 9, 117(61%) 9, 516(64%)

Slice LUTs 18, 618(31%) 19, 673(33%) 21, 288(36%)

Slice Registers 14, 212(24%) 15, 597(26%) 16, 895(28%)

BlockRam (Kb) 288(3%) 540(6%) 1, 044(11%)

DSP48es 8(1%) 14(2%) 26(4%)

suitable as an embedded peripheral for low power mobile
systems. Parallel implementations providing better than real-
time have been demonstrated with two degrees of flexibility.
This flexible design has the potential to either accelerate or
reduce the power consumption of any speech recognition
system which uses Gaussian Mixture Models for acoustic
modeling.

As detailed in Section 2, the Gaussian core is part of
a larger speech recognition system and must be paired
with a feature extraction component and a backend search.
For the purposes of testing and proof of concept, these
components have been implemented as software running
on the host PC. It is intended that in the final system
these components will be carried out using embedded
processor such as the softcore Microblaze or the dual-core
Arm processors provided by the Xilinx Extensible Processing
Platform. Pairing the Gaussian core presented here with an
ARM based backend search has the potential to provide a fast
and accurate low power portable speech recognition system.
The main challenge of such a system will be the efficient
utilization memory channels when loading the WFST data.
This will be addressed in a future publication.
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