
An efficient feature selection method for mobile devices with
application to activity recognition

Peng, J. X., Ferguson, S., Rafferty, K., & Kelly, P. (2011). An efficient feature selection method for mobile
devices with application to activity recognition. Neurocomputing, 74(17), 3543–3552. DOI:
10.1016/j.neucom.2011.06.023

Published in:
Neurocomputing

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

http://pure.qub.ac.uk/portal/en/publications/an-efficient-feature-selection-method-for-mobile-devices-with-application-to-activity-recognition(011e38d0-80ca-49b4-9077-497fde8122b4).html


An efficient feature selection method for mobile devices with application

to activity recognition

Jian-Xun Peng �, Stuart Ferguson, Karen Rafferty, Paul D. Kelly

The School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK

a r t i c l e i n f o

Article history:

Received 3 November 2010

Received in revised form

25 May 2011

Accepted 9 June 2011

Communicated by D. Zhang

Available online 3 August 2011

Keywords:

Feature selection algorithm

Data classification

Activity recognition

Mobile devices

a b s t r a c t

This paper presents a feature selection method for data classification, which combines a model-based

variable selection technique and a fast two-stage subset selection algorithm. The relationship between

a specified (and complete) set of candidate features and the class label is modeled using a non-linear

full regression model which is linear-in-the-parameters. The performance of a sub-model measured by

the sum of the squared-errors (SSE) is used to score the informativeness of the subset of features

involved in the sub-model. The two-stage subset selection algorithm approaches a solution sub-model

with the SSE being locally minimized. The features involved in the solution sub-model are selected as

inputs to support vector machines (SVMs) for classification. The memory requirement of this algorithm

is independent of the number of training patterns. This property makes this method suitable for

applications executed in mobile devices where physical RAM memory is very limited.

An application was developed for activity recognition, which implements the proposed feature

selection algorithm and an SVM training procedure. Experiments are carried out with the application

running on a PDA for human activity recognition using accelerometer data. A comparison with an

information gain-based feature selection method demonstrates the effectiveness and efficiency of the

proposed algorithm.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade, there has been considerable research

effort directed towards the monitoring and automatic recognition

of human activity patterns from (body-fixed sensor) data. This has

been motivated by a number of important health-related applica-

tions and ubiquitous computing. For example, there is growing

interest in the link between physical activity levels and common

health problems, such as diabetes [42], hypertension [7], depression

[47], cardiovascular disease [6] and osteoporosis [38,43] with the

trend towards more sedentary lifestyles especially in the developed

countries. In this field, automatic activity profiling systems are

beginning to play an important role in large-scale epidemiological

studies as traditional measures based on self-reporting have been

shown to be unreliable [2,46]. Furthermore, such systems can also

be used to assess the effectiveness of different interventions aimed

at increasing levels of physical activity and for motivating indivi-

duals to become more physically active.

In addition to health-related applications, activity-profiling

systems could play a fundamental role in ubiquitous computing

scenarios [11,45]. As a post-desktop model of human–computer

interaction, ubiquitous computing is inevitably computing in

context: it takes place in situations in the real world. Ubiquitous

computing is also described as pervasive computing or ambient

intelligence. Context awareness is a central issue in ubiquitous

computing [1,12,45,11]. The opportunity to perceive the world

from a user’s perspective is a key benefit of ubiquitous computing

systems compared to stationary, desktop-centered computers.

Human (user) activity is one of the most important ingredients

of context information [51] and the recognition of human activ-

ities attracts increasing research interests [5,40,41,48–50,14].

While context information can consist of any information describ-

ing the situation of the user, for many applications the current

activity and location of the user are considered to be highly

important. In ubiquitous computing scenarios, activities such as

walking, standing and sitting can be inferred from data provided

by body-worn sensors, e.g. accelerometer [39]. One of the key

difficulties in creating useful and robust ubiquitous, context-

aware computer applications is developing the algorithms that

can detect context from noisy sensor data.

As the popularity of portable handheld computers such as

mobile phones increases and their cost decreases, opportunities

for novel context-awareness applications arise into real-life. For

example, mobile phones are often carried with people nearly

everywhere they go, and people generally keep them functioning

and charged [44]. Consequently, they can be used to gather and

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.neucom.2011.06.023

� Corresponding author.

E-mail address: j.peng@qub.ac.uk (J.-X. Peng).

Neurocomputing 74 (2011) 3543–3552



deliver information to the user. One important area where mobile

phones and wearable accelerometers can be applied in combina-

tion is in creating valid and reliable measures of physical activity.

For example, mobile phones can be used to run algorithms that

automatically recognize physical activities. However in order to

do this effective algorithms are also required to interpret the

accelerometer data in the context of different activities [39,4].

The main contribution of this paper is the development of a

two-stage feature selection algorithm for data classification. This

algorithm combines a fast two-stage subset selection algorithm

and a model-based variable selection technique, and is efficient

and suitable for implementation on smart devices. This two-stage

feature selection algorithm is used to classify physical activities of

a human user when run on a smart device. Typically an activity

recognition application usually requires two phases: (A) feature

selection phase which is normally too resource intensive for

execution on a smart device, (B) classification stage where the

features are then used to classify activities. In this paper we show

that it is possible to implement both phases successfully on a

smart phone. This will have relevance to a range of health-related

and ubiquitous computing applications.

In the next section we explore the state of the art in terms of

feature selection algorithms. In Section 3, we propose a new feature

selection algorithm that is efficient in memory usage and so can be

implemented on a mobile device. Section 4 then explains the

important steps when implementing the algorithms on a mobile

device, and analyses the complexity. Testing and validation of the

proposed algorithm for feature selection and activity classification

are documented in Section 5. Finally we offer some conclusions on

the effectiveness and accuracy of the proposed algorithm when

implemented on a sample mobile device.

2. Brief state-of-the-art review

The term feature selection refers to algorithms that determine a

subset from a given (complete) set of candidate features as the inputs

to a data model (classifier). More generally, methods that create new

features based on transformations or combinations of the original

features are termed feature extraction algorithms. This paper

addresses the former group, which is defined as follows: given a

set of candidate features, select a subset that performs the best under

some classification system in the context of activity classification.

Feature selection is of considerable importance in classifica-

tion [3,15,17,18,24]. The feature subset that maximizes the

classification accuracy is to be identified based on the principle

of parsimony. The reason for this is twofold: to reduce the

computational complexity and to improve the classifier’s general-

ization ability. This is necessary because high-dimensional feature

vectors impose a high computational cost and a high cost of data

acquisition. On the other side, a low-dimensional representation

reduces the risk of overfitting [13,19].

Selecting the best subset of features is in nature a combinatorial

problem in the number of candidate features [15,20], and is proven

to be an NP-complete problem [25]. Exhaustive search of all

possible feature subsets guarantees the best solution, however this

is often computationally impractical. For a data set of M features,

the number of all possible feature subsets, or potential solutions, is

2M, and this is often too large to be evaluated in practice even for

modestM. A number of different techniques, of varying complexity,

have been used to select appropriate features for data classification.

Guyon and Elissee classify existing feature selection methods into

three types: filter, wrapper and embedded methods [15].

Filter methods select features in a preprocessing step inde-

pendent of the chosen classifier. Frequently used filter methods

include t-test [26], chi-square test [27], Wilcoxon Mann–Whitney

test [28], mutual information [29], Pearson correlation coeffi-

cients [30] and principal component analysis [31]. In a filter

method, the features are scored and ranked using certain statis-

tical criteria and those features with the highest ranking values

are selected. Filter methods are generally computationally cheap,

but often not very effective. In addition, it is not clear how to

determine the cut-off point for rankings to select only truly

important features and exclude noise.

Wrapper methods use a classifier of interest as a black box to

evaluate subsets of features. An exhaustive search is not compu-

tationally feasible in practice, and as a result some learning

algorithm is often employed to search for the good subset against

some criterion based on the classification accuracy of the classi-

fier. Greedy and stochastic types of search strategy have been

widely employed. Currently, the most popular learning algorithm

used in wrapper methods is support vector machines (SVMs).

Sequential forward selection (SFS) and sequential backward

selection (SBS) are the two most commonly used greedy wrapper

methods using a greedy hill-climbing search strategy. Stochastic

algorithms such as ant colony optimization (ACO), genetic algo-

rithm (GA) [32], particle swarm optimization (PSO) [33] and

simulated annealing (SA) [34] are at the forefront of research in

feature subset selection.

Wrapper methods are computationally demanding, but often

provide more accurate results than filter methods. A wrapper

algorithm explores the feature space to score feature subsets

(rather than individual features) according to their classification

accuracy, optimizing the subsequent induction algorithm that

uses the respective subset for classification. Recursive feature

elimination for support vector machine (RFE-SVM) [16] is such a

feature selection algorithm. It was originally formulated for

binary classification problems, and then extended for multi-class

problems [10,23] and some other variants were also proposed

[15,17,21]. The goal of RFE-SVM is to find a subset of m from M

candidate features, moM, which maximizes the performance of

an SVM classifier. Given that one wishes to employ only moM

features for the final classifier, this method attempts to find the

best subset of m features. It operates by trying to choose the m

features which lead to the largest margin of class separation. This

problem is based on an SBS, i.e., it removes one or more features

at a time until m features remain. RFE is computationally

expensive although it consistently outperforms the naive ranking

methods, particularly for small feature subsets. The naive ranking

and RFE are qualitatively different. The naive ranking orders

feature according to their individual relevance. The RFE ranking

is a feature subset ranking.

Embedded methods perform feature selection as part of the

training process of the classifier. For example, Miranda et al. [22]

added an extra term that penalizes the size of the selected feature

subset to the standard cost function of SVM, and optimized the

new objective function to select features. However these

approaches are limited to linear SVMs. Another approach for

feature penalization is the so-called l0-SVM or concave feature

selection [8], which minimizes the ‘‘zero norm’’ which is defined

for a weighting vector w as 9fi : wia0g9, i.e., the number of

nonzero components, wi’s, of the weighting vector w. Note that

this l0-‘‘norm’’ is not an ordinary norm because, unlike lp-norms

with p40, the triangle inequality does not hold here. Since the

l0-‘‘norm’’ is discontinuous, it was approximated by a concave

function
P

ið1ÿexp ðÿa9wi9ÞÞ, a40, that eliminates the disconti-

nuities, where 9wi9 denotes the absolute value of component wi. It

is shown in [8] that for a finite value of a, which appears in the

concave exponential approximation, the smooth problem gener-

ates an exact solution of the original discontinuous problem.

Another example of the embedded method is feature selection via

scaling factors [9].

J.-X. Peng et al. / Neurocomputing 74 (2011) 3543–35523544



3. A feature selection algorithm

Existing embedded and wrapper methods are based on training

of the full or a series of (decreasing) SVMs. Initially all the potential

features are involved in the SVM. The training of an SVM involves

the determination of a scaling factor for each candidate feature and

one or more features with scaling factors of zero or small magni-

tude are eliminated. This procedure is iterated until no irrelevant

features remain. The training of the SVM involves a large-scale

nonlinear programming problem, particularly for those problems

with a large set of training patterns and a large number of candidate

features. This means great computational resources are required, so

it can be difficult to implement in mobile devices with limited

computational resources, particularly physical memory.

In this paper, a feature selection algorithm is proposed which

combines the model-based variable selection technique from [35]

and a fast two-stage subset selection algorithm [53] with exten-

sions for cases of multiple outputs. The relationship between the

candidate features and the class label is modeled using a full

regression model which is linear-in-the-parameters [35]. Each

sub-model involves a subset of features. It scores this feature

subset using the performance of the sub-model measured by the

sum of the squared modeling errors (SSE). A sub-model of smaller

SSE is assumed to include a more informative subset of features.

The two-stage subset selection algorithm is employed to

approach a solution sub-model by minimizing the SSE. The subset

of features involved in the solution sub-model can then be used

for classification. The algorithm is computationally efficient and

suitable for applications on devices with limited computational

resources, particularly physical memory.

This section describes in detail the design of the proposed

feature selection algorithm.

To define the problem, let fðxðkÞ,lðkÞÞ, . . . ,k¼ 1, . . . ,Ng be a set of

K-class labeled patterns, referred to as the training patterns or the

training set, where lðkÞAfLc ,c¼ 1, . . . ,Kg is the label attached to the

k’th pattern xðkÞ and Lc denotes the c’th class; K41 and N41 are

the numbers of classes and patterns, respectively. The problem of

data classification is to construct a discriminant function of

pattern features, referred to as the classifier, that separates the

patterns into K classes.

Suppose the patterns are of M dimensions and are represented

in row vectors: xðkÞ ¼ ½x1ðkÞ, . . . ,xMðkÞ�,k¼ 1, . . . ,N. Pattern compo-

nents, x1, . . . ,xM , are referred to as candidate features, which are

the candidate inputs to the classifier. Each component of a given

pattern is a value of the corresponding candidate feature. In

practice, there are a large number of candidate features available

and it is not normally known a priori which features should be

selected as the inputs to the final classifier. The problem of

feature selection concerned in this paper is to select a subset of

m,1rmrM, from the M candidate features, such that the

patterns can be discriminated to a high precision. For conveni-

ence, the space spanned by all the candidate features is referred

to as the full feature space, and the space spanned by the selected

features is referred to as the input space.

The method proposed in this paper allows a good subset of

features to be determined based on the fact that certain combina-

tions of features are highly correlated with specific activities (the

output, as identified by a label). This is revealed in some filter

selection methods. Regression theory also tells us that a variable

(the output label in this case) can be predicted from some

correlative factors (features in this case) using a regression model.

Intuitively, we can measure the correlation between the label and

a subset of features using a regression model and identify the

most informative subset of features.

To model the relationship between the K-class labels and the

patterns in the training set using a regression model, each of the

pattern labels is encoded in a binary string yðkÞ ¼ ½y1ðkÞ, � � � ,

yK ðkÞ�,ycðkÞAfþ1,ÿ1g,c¼ 1, . . . ,K ,k¼ 1, . . . ,N, forming an N-by-K

label matrix, which is given by

Y¼ ½yk,c�N�K ,yk,c ¼ ycðkÞ ¼
þ1 if lðkÞ ¼ Lc

ÿ1 if lðkÞaLc

(

ð1Þ

where l(k) is the label associated to the kth pattern, Lc is the cth class

label. In column c of Y, the components corresponding to patterns

belonging to class Lc are set at þ1, while others are set at ÿ1.

To improve the classification precision, nonlinear classifiers

(SVMs) are normally employed, as the given data are often not

linearly separatable in practice. Corresponding to this, the full

feature space is mapped into a high-dimensional space using some

nonlinear map that is given in advance. In this study, polynomials

of the candidate features are employed. For example, for a three-

dimensional full feature space, a pattern ½x1,x2,x3�, is mapped into a

point in a 9-dimensional space using all the first- and second-order

polynomial terms of the 3 candidate features, given by ½x1,x2,x3,

x1x1,x1x2,x1x3,x2x2,x2x3,x3x3�. In this way, a set of terms defines the

map from the full feature space into a high-dimensional space. This

new high-dimensional space is simply referred to as the F-space,

and the set of terms is referred to as the term pool hereafter. Each

term from the term pool is a predefined linear or nonlinear function

of one or a few candidate features. More generally, the term pool is

denoted as ffiðxÞ,i¼ 1, . . . ,Hg, where x denotes a full feature vector

composed of all the candidate features and H is the number of

predefined terms. With the term pool, the binary label string is

modeled in a regression model of M inputs, x1, . . . ,xM , and K

outputs, y1, . . . ,yK , which is nonlinear with regard to the features

while line-in-the-parameters.

To simplify the regression model, the means of the terms and

outputs over the training data are removed. In this way, a DC term

does not need to be considered in the regression model. The

regression model for the centered outputs and terms is thus given

by

yðkÞ ¼UðxðkÞÞWþeðkÞ,k¼ 1, . . . ,N ð2Þ

where yðkÞ denotes the kth row of column-centered Y, UðxðkÞÞ

denotes the row vector composed of the centered values of the H

predefined terms evaluated for pattern k, W¼ ½w1, . . . ,wK � is the

model parameters to be determined and eðkÞ denotes the model-

ing errors of the label string code for the kth pattern, the centered

outputs and terms are given by

yðkÞ ¼ ½y1ðkÞÿy1, . . . ,yK ðkÞÿyK �

UðxðkÞÞ ¼ ½f1ðxðkÞÞÿf1, . . . ,fHðxðkÞÞÿfH�

(

ð3Þ

with the means of the outputs and terms being

yc ¼
1

N

X

N

k ¼ 1

ycðkÞ, c¼ 1, . . . ,K

fh ¼
1

N

X

N

k ¼ 1

fhðxðkÞÞ, h¼ 1, . . . ,H

8

>

>

>

>

>

<

>

>

>

>

>

:

ð4Þ

Note that model (2) for centered data is equivalent to a model

with a DC term for un-centered data: yðkÞ ¼w0þUðxðkÞÞWþeðkÞ

where w0 represents the DC term.

Model (2) is referred to as the full model as it involves all the

candidate features. It is often too complex for practical usage. By

(2), the feature selection problem is transformed into the problem

of identifying a significant subset of terms. In this study, a subset

selection technique is used to select a sub-model that includes

only a small subset of terms from the term pool while provides

satisfactory prediction performance. As each term includes one or

more features, the features involved in all the selected terms are

J.-X. Peng et al. / Neurocomputing 74 (2011) 3543–3552 3545



viewed as sufficiently informative so as to discriminate the output

labels.

This model-based method was originally proposed for select-

ing inputs to single output neural networks [35], where a forward

subset selection algorithm is used. It is extended in this study for

cases of multiple outputs and used to select informative subset

features for multi-class classification problems. A fast two-stage

subset selection algorithm is used instead of the forward one. This

two-stage algorithm combines both forward and backward subset

selection techniques. In the first stage, an initial sub-model is

selected incrementally. The second-stage is to refine the initial

sub-model constructed in the first stage by reviewing each of the

selected terms. The features involved in the terms of the final sub-

model are then selected as inputs to a classifier.

3.1. Stage I—forward selection

In the first stage, one term is selected from the term pool in

each step. For the (sþ1)th step, suppose s terms have been

selected in the previous s steps, forming an intermediate sub-

model, of which the modeling errors over the training data are

denoted in matrix form Es, and given by

Es ¼
YÿPsWs, s¼ 1,2, . . .

Y, s¼ 0

(

ð5Þ

where Ps ¼ ½p1, � � � ,ps� collects the s terms selected in the previous s

steps, Ws the s-by-K model parameter matrix to be determined,

Y¼ ½y1, � � � ,yK � is the N�K label matrix with its columns centered.

For each one from the term pool, say fhðxÞ, a centered column

vector can be computed in advance, denoted as Uh ¼ ½fhðxð1ÞÞÿ

fh, . . . ,fhðxðNÞÞÿfh�
T

,h¼ 1, . . . ,H. Hereafter, except specifically

mentioned, Y refers to the column-centered label matrix with its

K centered columns referred to as y1, . . . ,yK ; and Uh refers to the

centered column vector with the N components computed with

term /h over the N patterns, respectively.

In addition, to distinguish selected terms from candidate terms

in the term pool, column vectors p1, . . . ,ps refer to the centered

columns generated by the s selected terms over the training data.

The terms that generate Uh and pi are simply referred to as term

Uh and term pi, respectively.

The parameter matrix Ws is determined by minimizing the

sum of squared errors (SSE), i.e., the sum of the squared elements

of E. Assume that Ps is fully column ranked. The minimized SSE

for the least-squares (LS) solution to Ws is given by

VðPsÞ ¼ JEsJ
2
2 ¼ traceðYTRsYÞ ð6Þ

where Rs is an N-by-N matrix function of Ps, which is given by

Rs ¼RðPsÞ ¼
IÿPsðP

T
s PsÞ

ÿ1PT
s , s40

I, s¼ 0

(

ð7Þ

where I is the N-by-N identity matrix.

To simplify the description, the unselected Hÿs terms remain-

ing in the term pool are re-sorted and numbered as

fUiðxÞ,i¼ sþ1, . . . ,Hg. To select the (sþ1)th term, for each of the

Hÿs unselected terms, say Ui, adding it into the sth intermediate

model of s terms forms a temporary model with the error matrix

given by Esþ1 ¼ Yÿ½Ps,Ui�½
Ws
wsþ 1

�. The reduction in the SSE due to

adding of Ui is given by

DVðPs,UiÞ ¼ VðPsÞÿVð½Ps,Ui�Þ ¼ trðYT
DRYÞ ð8Þ

where DR¼ RðPsÞÿRð½Ps,Ui�Þ. The one that maximizes the SSE

reduction (8) is selected as the sþ1th terms:

psþ1 ¼ arg max fDVðPs,UiÞ,Ui ¼Usþ1,Usþ2, . . . ,UHg ð9Þ

By extending the fast forward selection algorithm proposed in

[54,53] for cases of multiple outputs, the SSE reduction (8) can be

computed as

DVðPs,UiÞ ¼
X

K

c ¼ 1

ðrsÞc,iÞ
2

dsÞ
i

, i¼ sþ1, . . . ,H ð10Þ

where rsÞc,i and dsÞi are computed iteratively as

rsþ1Þ
c,i

¼ rsÞ
c,i
ÿ
rsÞc,sþ1asþ1,i

dsÞsþ1

, c¼ 1, . . . ,K , i¼ sþ2, . . . ,H

dsþ1Þ
i

¼ dsÞ
i
ÿ
asþ1,iasþ1,i

dsÞsþ1

, i¼ sþ2, . . . ,H

asþ1,i ¼ pT
sþ1Uiÿ

X

s

j ¼ 1

aj,sþ1aj,i
dj,j

, i¼ sþ1, . . . ,H

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð11Þ

with initial values r0Þ
c,i
¼ yTcUi and d0Þ

i
¼U

T
i Ui. Eqs. (10) and (11)

are derived from rsÞc,i ¼ yTcRsUi, d
sÞ
i ¼U

T
i RsUi and asþ1,i ¼ pT

sþ1RsUi

using recursive equation Rsþ1 ¼RsÿðRspsþ1p
T
sþ1RsÞ=ðp

T
sþ1Rs

psþ1Þ. For more details, one is referred to [53,54]. It could be

noted that ai,i ¼ diÿ1Þ
i

holds for i¼ 1, . . . ,m, where m denotes the

number of selected terms. Because the terms remaining in the

term pool are re-sorted as mentioned before, we have

pi ¼Ui,i¼ 1, . . . ,m, i.e., the first m ones are the m selected terms.

Adding the selected term into the sth intermediate sub-model

of s terms, results in the sþ1th intermediate sub-model of sþ1

terms, for which the SSE is given by VðPsþ1Þ ¼ VðPsÞÿDVðPs,psþ1Þ.

Note that initially VðP0Þ ¼ JYJ22, i.e., the sum of the squared

elements of the centered label matrix. In the first stage, this

forward selection procedure is iterated for s¼ 0,1,2, . . . until some

criterion is satisfied, for example, a given number of terms or

features are selected.

Suppose an initial sub-model of m terms is selected in the first

stage, the model is then refined in the second stage. As the terms

in the term pool fUk,k¼ 1, . . . ,Hg are normally not orthogonal

with each other, the selected sub-model is often not optimal even

locally. It can be further refined by replacing some of the selected

model terms (especially those selected in the early stage) with

terms from the term pool. This is done by testing the selected

term one by one in the second stage.

3.2. Stage II—model review

In the second stage, the selected sub-model is further refined

by reviewing the selected terms. For each selected term, if

replacing it with another term in the term pool causes a decrease

in the SSE then, swap the two terms (i.e., bring the term from the

term pool into the sub-model, and put the term in the sub-model

back into the term pool.) For example, for a sub-model ofm terms,

to test the kth selected term pk, denote PkÞ
m ¼ ½p1, . . . ,pkÿ1,pkÿ1,

. . . ,pm�, i.e., it involves all the other mÿ1 terms. The SSE reduction

(10) for PkÞ
m is computed for pk and all the unselected terms in the

term pool, i.e., DVðPkÞ
m,UiÞ for i¼mþ1, . . . ,H. If

DVðPkÞ
m,pkÞomax fDVðPkÞ

m,UiÞ,i¼mþ1, . . . ,Hg ð12Þ

then the term from the term pool that gives the maximum, say

Uj, is selected to replace pk while pk is put back into the term

pool. Otherwise pk keeps unchanged for the sub-model.

This model review procedure is iterated until no term within the

sub-model can be replaced. That is: the SSE cannot be further

reduced through selecting a new candidate term to replace an

existing term in the sub-model. In this sense, the refined sub-model

is locally optimal, any change in one of the selected term will cause

increase in the model SSE. Once the sub-model is refined, the terms

presented in the final sub-model are investigated and the subset

J.-X. Peng et al. / Neurocomputing 74 (2011) 3543–35523546



of features involved in the selected terms are thus selected for

classifier design.

Note that, to check the kth term pk in the second stage, there

are two ways to compute the SSE reduction, DVðPkÞ
m,UiÞ: the first

one uses (11) for the re-sorted terms PkÞ
m ¼ ½p1, . . . ,pkÿ1,pkÿ1,

. . . ,pm� in order to re-construct the intermediate sub-model with

the mÿ1 selected terms (without pk) and then re-select the mth

term which can be pk again or a new one from the term pool, as is

done in [55]. Another one swaps pq and pqþ1 iteratively for

q¼ k,kþ1, . . . ,mÿ1 such that the intermediate sub-model is

constructed with pk being the last (mth) selected term and the

reduction of SSE due to introduction of pk, DVðP
kÞ
m,pkÞ, can be

computed and compared with that of the remained candidate

terms DVðPkÞ
m,UiÞ,i¼mþ1, . . . ,H, as is done in [53]. The first way

is simpler when implemented as the forward selection procedure

can be re-used in the second stage, but it is computationally more

complex. For the first way, the computational burden measured in

the number of floating-point operations (FPOs) to check each of

the m selected terms is almost the same as that of the first stage.

The computational burden to perform a full check loop for the

sub-model (of m selected terms) is thus about m times of that of

the first stage. However, for the second way, the number of FPOs

to check all the m terms is only about 3
4 of that of the first stage.

In this paper, the second way is employed with extension for

cases of multiple outputs. One is referred to [53] for more details.

Note that the operations on the vectors (including the outputs, the

selected and the unselected terms, i.e., computing Rsyc , Rspsþ1 and

RsUi for i¼ sþ1, . . . ,H,s¼ 1, . . . ,m) in [53] are unnecessary here,

see the implementation of this algorithm in Section 4.

This proposed algorithm has a number of useful features when

it comes to implementation as a computer program for limited

resource host systems.

4. Implementation on a mobile device

The implementation of an activity classification algorithm

usually requires two phases: feature selection phase determines

what features are to be selected for classification and trains a

classifier based on the selected features in an off-line process

(normally too resource intensive for execution on a smart phone),

and a classification phase where those selected features are

extracted from accelerations and used to carry out the classifica-

tion in real time. Our algorithm has the advantage that the

classification phase can operate in real-time and even the feature

selection phase is sufficiently memory efficient that it will

execute on the same platform. By being able to perform both

stages on a mobile device our procedure offers much greater

flexibility for applications that need to adapt to widely varying

operating conditions.

To demonstrate our algorithm an application program was

developed for activity recognition that executed on a HP iPAQ

pocket PC running Windows Mobile 6. In this application, SVMs are

employed as the classifiers. This application can perform interactive

activity recognition and background classifier updating. It includes

five modules in additional to the user interface module:

1. Signal data buffering and windowing.

2. Feature extraction.

3. Classifier (SVM).

4. Feature selection.

5. Classifier (SVM) training.

The information flow of this application is illustrated in Fig. 1. The

data source for the application can be accelerometers or a signal

data file recorded on other platforms. The signal data buffering

and windowing module read 256 samples each time in order to

compose signal segments. The feature extracting module extracts

all candidate features (for feature selection) or a specified subset

of features (for activity recognition). For activity recognition, the

specified features are sent to the classifier module which imple-

ments a trained SVM for real-time activity recognition.

Different users (subjects) may generate different acceleration

signal patterns for a particular activity, for example, the accelera-

tion signals of disabled people could be quite different forms that of

the general population. In addition to the basic thread for real-time

activity recognition, a thread can be started for classifier calibration

using customized acceleration data. In this classifier calibration

thread, a feature data file is generated by all the candidate features

for a period of accelerometer readings or a given raw signal data

file, and the proposed algorithm (implemented in the feature

selection module) is used to select informative features using the

generated feature data file. Specifications of the selected subset of

features are saved in an additional file (subset selection file), which

can be used to specify the feature extracting module and to perform

classifier training. An SVM training module is implemented in this

application that uses the selected features and the data saved in the

feature data file. The trained model is saved in a classifier model file

and can be implemented in the classifier module for real-time

activity recognition.

Looking at the proposed algorithm, to select m from M

candidate features for a set of K-class patterns with H predefined

terms, the main memory requirement is as follows: the m-by-H

Fig. 1. Information flow of the application.

J.-X. Peng et al. / Neurocomputing 74 (2011) 3543–3552 3547



matrix A¼ ½ak,i�m�H , the K-by-H matrix r¼ ½rsÞc,i�K�H and the vector

d¼ ½dsÞ
i
�1�H and finally the upper-triangular part of an H-by-H

symmetric matrix

C¼ ½ci,j�H�H , ci,j ¼U
T
i Uj ¼

X

N

k ¼ 1

fiðxðkÞÞfjðxðkÞÞÿNfifj ð13Þ

Note again that fkðxÞ,k¼ 1, . . . ,N are the predefined terms and, as

mentioned before, polynomial terms are employed in this study.

Matrix A, r and vector d store quantities ak,i’s, rsÞ
c,i
’s and dsÞ

i
’s,

respectively, that are computed using (11) in the first stage and

updated corresponding to term-pair swapping during the second

stage (see [53] for the details). Matrix C is defined to store the

correlations of the centered vectors generated by all the candidate

terms over the training data. It can be computed sequentially as

each training pattern (with all candidate features) is obtained

from the input channel (extracted from a fresh window of signals

read from sensors or directly read from a given file). In this way it

is not necessary to load the full training data set into the memory.

It should be noted that it is not absolutely necessary to introduce

matrix C in order to implement the proposed feature selection

algorithm, but it avoids repeating the calculation of the term

correlations when updating/computing the components of matrix

A during both the forward selection and model review stages.

For a set of N training patterns from K classes and H predefined

terms, matrices A, r, d and C (only the upper triangular part needs

to be computed and stored) are of ½mþKþðHþ3Þ=2�H elements in

total. Note that the memory requirement is not dependent on N,

the number of patterns. This property makes this algorithm

suitable for devices of limited physical memory resources, e.g.,

the HP iPAQ pocket PC, on which an application can only allocate

about 14 MB memory.

Initially, the feature selection procedure computes N-dimen-

sional vectors Ui,i¼ 1, . . . ,H over raw feature data, the upper-

triangular of the correlation matrix C and initial values of r and d.

Note that the elements of matrix d are initially the same as the

diagonals of matrix C. Computing Ui’s involves N evaluations of

each of the H predefined terms. Computing initial matrices C and

r involves centering HþK N-dimensional vectors and H(Hþ1)/2

and KH inner products computation of these centered vectors,

respectively. Centering one N-dimensional vector and computing

one inner product of two N-dimensional vectors involve 2N and

2Nÿ1 floating-point operations (FPOs, including addition/sub-

traction and multiplication/division and comparison). The overall

computation burden in this stage includes 2NðKþHÞþð2Nÿ1Þ

½KHþHðHþ1Þ=2� FPOs and NH terms’ evaluations.

In the first stage, to select the (sþ1)th term, it needs firstly to

compute SSE reduction DVðPs,UiÞ for i¼ sþ1 to H in (10), and to

find the maximal one with the corresponding term be selected as

the (sþ1)th. This involves 4(Hÿs) FPOs. Then it needs to update

matrices r and d and to compute the (sþ1)th row of matrix A in

(11). This involves 3ðKþ1ÞðHÿsÞþ3sðHÿsÿ1Þ FPOs in total. To

select m terms, this selecting process is iterated for s¼ 0,1, . . . ,

mÿ1, and the computation totals up to mHð3Kþ7Þþ1
2m

ðmÿ1Þð3Hÿ3Kÿ2mÿ9Þ FPOs.

In the second stage, to check, say the kth, 1rkrmÿ1 term in

the model ofm selected terms, it needs to re-sort the selected terms

as ½PkÞ
m,pk� ¼ ½p1, . . . ,pkÿ1,pkÿ1, . . . ,pm,pk� by swapping pq and pqþ1

iteratively for q¼ k,kþ1, . . . ,mÿ1, and reconstruct the correspond-

ing matrices r, d and A for PkÞ
m. In this context, DVðPkÞ

m,pkÞ and

DVðPkÞ
m,UiÞ,i¼mþ1, . . . ,H can be computed. Term pk is then

checked as done in (12). If (12) holds, then pk is replaced and the

corresponding elements of r, d and A are updated. A model

reviewing loop iterates this term checking process for k¼mÿ1,

mÿ2, . . . ,1. If a selected term is replaced during this loop, a new

reviewing loop is restarted for k¼mÿ1,mÿ2, . . . ,1 again even the

current loop has not been completed. This reviewing process is

iterated until no terms in the model is changed.

According to the analysis in [53], the number of FPOs for a

reviewing loop is about 3
4 of that of the first stage in the worst

case, that is when the first term p1 is changed in a reviewing loop.

However it should be noted that the number of iterations of this

reviewing process in the second stage is not known a priori.

Generally, the more highly the terms are correlated, the more

iterations are required to approach the solution.

Normally, each evaluation of a term involves (or is equivalent

to) a few FPOs. Assume that the number of model reviewing loops

required in the second stage is of order O(m), and that the model

size m is of order O(K), with m,K5H. The overall computational

complexity of the algorithm measured in the number of FPOs is of

order OðNH2þm2HKÞ.

It should also be noted that the feature selection is imple-

mented in a batch way. That is, the feature selection can be

performed only after a set of data becomes available. To confirm

the uniqueness of the solution, it requires N, the number of

training patterns, to be at least not smaller than the number of

candidate terms H, i.e., NZH.

However this batch processing is time consuming and may

cause some potential challenges in mobile devices when it is busy

(engaged). In this case, an incremental version of this algorithm

running asynchronously in a sample-by-sample manner is more

suitable. It is not difficult to compute C and the initial values of r

and d in an incremental way in the initialization step. After all

data samples have been completed (matrix C, and initial values of

both r and d have been computed), both the second and the third

steps are started to perform term selection. According to the

previous complexity analysis results for the three steps, the initial

step dominates the computational burden of this algorithm, given

again that m5H generally holds. But it can be noted that the full

set of labeled training patterns should be ready in advance.

5. Application to activity recognition

To test the algorithm a practical scenario is considered in

which information is to be presented to the user of a mobile

phone in a form that depends on their activity (for example

walking, running or shopping.)

In practice the activity is to be determined from data streamed

by a set of accelerometers attached to the participant. For

experimental purposes three subjects participated in the experi-

ments and the set of dynamic acceleration data was collected

using four Nintendo Wiimote devices. Each device contains a tri-

axial accelerometer with a range of 73g (where g is the accel-

eration due to gravity) and a maximum sampling rate of 100 Hz.

One Wiimote was securely attached to each lower leg just above

the ankle, and to each forearm over the wrist using Velcro straps.

Care was taken to ensure that the Wiimotes were attached to

each subject with the same relative position, as described above,

and orientation, i.e., with the upper surface (containing the

buttons) facing outward (sideways) from the body, and the

infra-red sensor pointing upwards.

With the Wiimotes attached, the subjects performed three

different activities: (a) walking slowly, (b) walking quickly and

(c) browsing, i.e., stopping and starting, looking around, erratic

movement.

The four Wiimotes were interfaced using Bluetooth to a Linux

personal digital assistant (PDA) carried out in the subject’s hand

or pocket. The data capture program was written in C and used an

early prototype version of the HaptiMap [36] toolkit together

with the Cwiid Wiimote interface library [37]. The Cwiid library

was used in callback mode: a callback is called every time an

J.-X. Peng et al. / Neurocomputing 74 (2011) 3543–35523548



accelerometer report is received from the Wiimote (the Wiimote

sends accelerometer reports asynchronously, and at a higher rate

when greater acceleration is being experienced). This updates a

set of shared memory variables, which are then sampled at

100 Hz in order to give a uniform sampling rate for feature

derivation.

The collected signal data was then labeled manually according

to the recorded time information. The feature selection and

classification application were tested by passing the labeled data

to the HP iPAQ PDA where all the following experiments are

carried out. For this particular example there are 186 candidate

features extracted from the 12 acceleration signals, including

Means (12, with one for each of the 12 acceleration signals),

Deviations (12), Total Power-TD (12), Axes Correlation (66, there are

66 potential pairs from the 12 acceleration signals), FFT DC (12),

Dominant frequency-1 (12), Dominant frequency-2 (12), Dominant

power-1 (12), Dominant power-2 (12), Entropy-FD (12), Total

Power-FD (12), where TD and FD stand for time domain and

frequency domain, respectively. The features are extracted with a

sliding window of 256 signal samples. All these candidate

features are defined in Table 1.

The TD features are computed using time domain quantities

(raw signal samples), while the FD features are computed using the

frequency–energy spectrogram composed of 129 frequency com-

ponents (of frequency 100o
256 Hz, o¼ 0,1, . . . ,128, respectively)

obtained by a fast fourier transform (FFT) procedure on a 256-

sample signal segment. In Table 1, u and v are two signal segments

of 256 samples with the bracketed subscript t denoting the sample

index number; f(0) denotes the DC term of the FFT expression and

9f ð0Þ9 the absolute value; f ðoÞ,o¼ 1, . . . ,128 denote the 128 FFT

coefficients for nonzero frequency components and f ðoÞ the

corresponding complex conjugates, pðoÞ ¼ f ðoÞf ðoÞ=Total Power

ÿFD, o¼ 1, . . . ,128 are the normalized frequency–energy spectro-

gram; peak1) and peak2) denote the two functions searching for the

highest and second highest peaks, respectively, of a frequency–

energy spectrogram pðoÞ. The magnitudes of the two peaks are

respectively Dominant power-1 and Dominant power-2, while the

frequencies at the two peaks are respectively Dominant frequency-1

and Dominant frequency-2.

From the acceleration data of the three subjects, 15 819

patterns (each of which includes 186 candidate features) are

derived and labeled for use in the following tests.

For comparison, an information gain based feature selection

method [52] has also been tested. This algorithm defines the

first-order utility (FOU) as the scoring criterion which takes the

first-order (pairwise) interaction information into account. This

algorithm needs to store all the quantized patterns (integer

valued) to generate high-dimensional joint frequency tables.

Otherwise frequent data swapping between RAM and external

storage (e.g. hard disk or flash memory card) of smart device is

very time consuming. Therefore FOU requires much more mem-

ory than the proposed algorithm in this application. In compar-

ison, the memory requirement of the proposed algorithm is

independent of the number of samples.

Tests are performed for different sensor configurations and the

results are compared in Tables 2–6, TSM indicates the results of

our two-stage model-based method and FOU indicates the results

based on the FOU informatics criterion. Cases 1–4 used sensors 1,

2, 3 and 4 respectively; these where mounted on the left-ankle,

right-ankle, left-wrist and right-wrist. Case 5 used all the four

sensors. For each of the five cases, subsets of 4, 8, 12, 16 and 20

features are selected from the involved candidates, and then

SVMs are trained using the data from selected features. All the

15 819 labeled patterns are used for feature selection, while only

one quarter of the patterns (i.e., 3955) are used for training SVMs

(with polynomial kernels). It was failed to perform SVM training

with more training patterns on the PDA because of its limited

memory. The resulted SVMs are then validated over all the 15 819

labeled patterns. The precisions listed in Tables 2–6 are the

percentages of the patterns successfully predicted by the trained

SVMs over the 15 819 labeled patterns.

For cases 1–4, only the three acceleration components (x, y and

z axes) of the involved accelerometer are used, therefore only

Table 1

Definitions of candidate features.

Feature name Definition

Mean (v) 1

256

P

256

t ¼ 1

vðtÞ

T Deviation (v)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

256

P

256

t ¼ 1

ðvðtÞÿMeanÞ2

s

D Total Power-TD (v) 1

256

P

256

t ¼ 1

vðtÞ2

Axes Correlation (u,v)
P

256

t ¼ 1

uðtÞvðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

256

t ¼ 1

u2ðtÞ
P

256

t ¼ 1

v2ðtÞ

s

FFT DC (v) 9f ð0Þ9
Dominant frequency-1 (v) 100

256o
1Þ , o1Þ ¼ arg peak

1Þ
o ¼ 1,...,128fpðoÞg

F Dominant frequency-2 (v) 100
256o

2Þ , o2Þ ¼ arg peak
2Þ
o ¼ 1,...,128fpðoÞg

D Dominant power-1(v) peak
1Þ
o ¼ 1,...,128fpðoÞg

Dominant power-2(v) peak
2Þ
o ¼ 1,...,128fpðoÞg

Entropy-FD(v)
ÿ

P

128

o ¼ 1

pðoÞ log2 pðoÞ

Total Power-FD(v)
P

128

o ¼ 1

f ðoÞf ðoÞ

Table 2

Test results for case 1: using accelerometer 1 on left-ankle.

Selected

feature

subset

Feature selection SVM training Activity recognition

Memory

used

Running

time (s)

Number

of SVs

Running

time (s)

Precision

(%)

Updating

time (ms)

4 6.4 KB 1191 687 1801 81.52 160

T 8 7.4 KB 1237 641 1912 90.26 160

S 12 8.5 KK 1265 519 2025 99.56 150

M 16 9.5 KB 1303 514 2141 99.61 150

20 10.6 KB 1358 515 2287 99.66 150

4 2.16 MB 312 1807 40 83.35 124

F 8 2.16 MB 416 1410 52 90.78 156

O 12 2.16 MB 604 1519 65 90.78 149

U 16 2.16 MB 910 1545 72 92.39 156

20 2.17 MB 1775 1557 98 92.98 149

Table 3

Test results for case 2: using accelerometer 2 on right-ankle.

Selected

feature

subset

Feature selection SVM training Activity recognition

Memory

used

Running

time (s)

Number

of SVs

Running

time (s)

Precision

(%)

Updating

time (ms)

4 6.4 KB 1201 625 1812 81.26 160

T 8 7.4 KB 1232 557 1924 90.17 160

S 12 8.5 KB 1264 467 2043 99.87 150

M 16 9.5 KB 1302 449 2127 99.87 150

20 10.6 KB 1354 432 2267 99.88 150

4 2.16 MB 396 2188 50 79.25 95

F 8 2.16 MB 721 1865 45 86.26 95

O 12 2.16 MB 1092 1980 58 87.28 110

U 16 2.16 MB 2450 1913 58 88.22 158

20 2.17 MB 2704 1932 102 88.58 130

J.-X. Peng et al. / Neurocomputing 74 (2011) 3543–3552 3549



three axes correlation features are available, and the total number

of candidate features is 33. The term pool includes all the

polynomial terms of these 33 candidate features of degrees 1

and 2, resulting in term pools of size H¼594. For the case 5, there

are 186 candidate features for the 12 acceleration signals. The

term pool only includes the candidate features and their squares,

i.e., xi,x
2
i ,i¼ 1,2, . . . ,186, forming a pool of 372 terms.

It should be noted that the FOU algorithm needs to quantize

the continuous features and generate the M-dimensional joint

frequency distribution table for the M candidate features and

marginal frequency tables for different subsets of the M candidate

features from the quantized instances. Thus, the full set of feature

data with labels for feature selection needs to be loaded into the

memory for: (a) the quantization, (b) the generation of pairwise

joint frequency tables and (c) conditional frequency tables used

during the process of selection in order to rank feature subsets in

the FOU information criterion. This requires more memory than is

available in the PDA, thus, the FOU feature selection algorithm has

been tested in a desktop PC. In Tables 1–5 the execution times

have all been normalized to apply to the ARM processor in

the PDA.

It is shown in Tables 1–5 that the time taken to select a subset

of 4–20 features is about 20–25 min, and to train an SVM takes

about 30–40 min. The classification of incoming data is very

efficient and can be accomplished in real-time, it takes the SVMs

only 100–160 ms to update a prediction.

The tests also confirm that for the activities studied (walking

fast, walking slow and browsing(stolling, stopping, starting) ), the

feature selection algorithm classifies activity with an exception-

ally high success rate. It is also interesting to note that the results

indicate that there is little advantage to using the data from all

four sensors as opposed to a single sensor, with regards to the

classification precision (the percentage of successfully predicted

patterns as previously defined), given that in real-world applica-

tions we usually have only one sensor unit available.

It is also shown in Tables 1–5 that, in all the cases, the

proposed algorithm produces sparser SVMs than the FOU algo-

rithm. SVMs produced by the proposed algorithm have only 1
3 to

1
4

SVs of that produced by the FOU algorithm. However, SVMs

produced by the proposed algorithm have significant higher

prediction precision than that produced by the FOU algorithm,

except very few cases, particularly for cases of more selected

features.

6. Conclusions

A fast two-stage subset selection algorithm is combined with a

model-based feature selection method to identify significant

features to use in order to classify the activity of a human user

who is carrying a suitably equipped mobile device, e.g. phone

or PDA.

The proposed method allows a locally optimal subset of

features (the pattern) to be determined because certain combina-

tions of features are highly correlated with specific activities (the

output, identified by a label).

A full nonlinear regression model is employed to model the

relationship between the label and the pattern. A fast two-stage

subset selection algorithm is employed to select the sub-model

which is locally optimal. The features involved in the selected

sub-model are then used as inputs to the classifier.

This feature selection method is particularly efficient in

memory usage. Of special note is the fact that, the amount of

required memory is independent of the number of training

patterns. This property makes this method suitable for devices

limited in the amount of available physical memory.

Based on this feature selection method, an application has

been developed for mobile devices: PDAs and smart phones,

which can perform real-time activity classification using SVMs,

and background classier configuration, including feature selection

and SVM training. The application has been tested on a HP iPAQ

pocket PDA.

Using this case study, the method presented in this paper has

been evaluated and compared against an information-gain-based

feature selection method from the literature. The test results

demonstrated the significant effectiveness and high degree of

efficiency of the proposed feature selection method. In particular,

since an SVM training algorithm is implemented in this applica-

tion, it is possible for the user of the mobile device to train the

Table 4

Test results for case 3: using accelerometer 3 on left-wrist.

Selected

feature

subset

Feature selection SVM training Activity recognition

Memory

used

Running

time (s)

Number

of SVs

Running

time (s)

Precision

(%)

Updating

time (ms)

4 6.4 KB 1211 515 1824 80.91 140

T 8 7.4 KB 1243 475 1946 89.28 140

S 12 8.5 KB 1268 388 2035 98.93 130

M 16 9.5 KB 1307 372 2135 99.15 130

20 10.6 KB 1351 366 2264 99.17 130

4 2.16 MB 572 2698 98 76.38 156

F 8 2.16 MB 1554 2590 110 78.43 156

O 12 2.16 MB 3224 2395 105 83.98 157

U 16 2.16 MB 3392 2191 130 87.36 169

20 2.17 MB 3087 2134 124 89.15 162

Table 5

Test results for case 4: using accelerometer 4 on right-wrist.

Selected

feature

subset

Feature selection SVM training Activity recognition

Memory

used

Running

time (s)

Number

of SVs

Running

time (s)

Precision

(%)

Updating

time (ms)

4 6.4 KB 1216 368 1845 80.10 110

T 8 7.4 KB 1241 327 1924 89.18 110

S 12 8.5 KB 1262 249 2035 98.98 100

M 16 9.5 KB 1304 225 2146 99.18 100

20 10.6 KB 1353 224 2245 99.28 100

4 2.16 MB 812 2230 102 78.88 156

F 8 2.16 MB 1482 2098 84 84.09 149

O 12 2.16 MB 2551 2144 97 85.88 143

U 16 2.16 MB 2880 2042 110 87.31 158

20 2.17 MB 4320 2026 117 88.30 162

Table 6

Test results for case 5: using all the four accelerometers.

Selected

feature

subset

Feature selection SVM training Activity recognition

Memory

used

Running

time (s)

Number

of SVs

Running

time (s)

Precision

(%)

Updating

time (ms)

4 149.6 KB 1413 432 1832 80.91 130

T 8 155.5 KB 1452 417 1941 90.25 130

S 12 161.5 KB 1451 331 2025 99.94 120

M 16 167.4 KB 1513 312 2147 99.95 120

20 173.4 KB 1568 307 2289 99.98 120

4 11.62 MB 2068 1895 59 83.16 130

F 8 11.62 MB 4498 1708 52 87.88 130

O 12 11.62 MB 6092 1695 58 90.02 131

U 16 11.62 MB 7392 1348 52 95.35 131

20 11.62 MB 10166 1288 55 96.85 129

J.-X. Peng et al. / Neurocomputing 74 (2011) 3543–35523550



classifier using their own specific movement data. This will have

the added advantage of also enhancing the performance and

accuracy of the activity classifier since it can be trained specifi-

cally for a user’s needs.

Compared with that produced by the information-based fea-

ture selection algorithm, the SVMs (with polynomial kernels)

produced by the proposed fast two-stage feature selection algo-

rithm is much sparser in all the test cases, while have higher

prediction precision in most cases, particularly for more features.

The only major drawback is that selection of the features

cannot be accomplished in real-time. However this is not sig-

nificant, since selection of features to use for activity classification

are usually predefined in usual application software, to avoid

having to require the user to indulge in a complex process of

training, before they can use the program.

Compared with the information-based method, the proposed

method not only outperforms it by producing more accurate

classifications, but also much more memory and resource efficient

and so is an ideal candidate for use in mobile and embedded

processor applications.

Acknowledgment

This work was part-funded by the European Commission

under the Seventh Framework Programme: large-scale integrat-

ing project HaptiMap, FP7-ICT-224675.

References

[1] G.D. Abowd, A.K. Dey, P.J. Brown, N. Davies, M. Smith, P. Steggles, Towards a
better understanding of context and context-awareness, in: HUC ’99: Pro-
ceedings of the First International Symposium on Handheld and Ubiquitous
Computing, Springer-Verlag, London, UK, 1999, pp. 304–307.

[2] B.E. Ainsworth, D.R. Jacobs Jr., A.S. Leon, Validity and reliability of self-
reported physical activity status: the Lipid Research Clinics questionnaire,
Medicine and Science in Sports and Exercise 25 (1993) 92–98.

[3] A. Blum, P. Langley, Selection of relevant features and examples in machine
learning, Artificial Intelligence 97 (1997) 245–271.

[4] K. Aminian, B. Najafi, Capturing human motion using body-fixed sensors:
outdoor measurement and clinical applications, Computer Animation Virtual
Worlds, vol. 15, 2004, pp. 79–94.

[5] L. Bao, S.S. Intille, Activity recognition from user-annotated acceleration data,
in: Pervasive Computing (Lecture Notes in Computer Science, vol. 3001),
Springer, Berlin, 2004, pp. 1–17.

[6] N.C. Barengo, G. Hu, T.A. Lakka, H. Pekkarinen, A. Nissinen, J. Tuomilehto, Low
physical activity as a predictor for total and cardiovascular disease mortality
in middle-aged men and women in Finland, European Heart Journal 25
(2004) 2204–2211.

[7] S.N. Blair, T.R. Collingwood, R. Reynolds, M. Smith, R.D. Hagan, C.L. Sterling,
Health promotion for educators: impact on health behaviors, satisfaction, and
general well-being, American Journal of Public Health 74 (1984) 147–149.

[8] P. Bradley, O. Mangasarian, Feature selection via concave minimization and
support vector machines, in: Proceedings of the Fifteenth International
Conference Machine Learning (ICML’98), Morgan Kaufmann, San Francisco,
CA, 1998, pp. 82–90.

[9] O. Chapelle, S.S. Keerthi, Multi-class feature selection with support vector
machines, Yahoo Research, Technical Report YR-2008-002, 2008.

[10] X. Chen, X. Zeng, D. van Alphen, Multi-class feature selection for texture
classification, Pattern Recognition Letters 27 (14) (2006) 1685–1691.

[11] J. Coutaz, J.L. Crowley, S. Dobson, D. Garlan, Context is key, Communication of
the ACM 48 (2005) 49–53.

[12] A. Dey, G.D. Abowd, D. Salber, A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications, Human–
Computer Interaction 16 (2–4) (2001) 97–166.

[13] A. Famili, W.-M. Shen, R. Weber, E. Simoudis, Data preprocessing and
intelligent data analysis, Intelligent Data Analysis 1 (1997) 3–23.

[14] A. Flanagan, J. Mantyjarvi, J. Himberg, Unsupervised clustering of symbol
strings and context recognition, in: Proceedings of the IEEE International
Conference on Data Mining (ICDM’02), 2002, p. 171.

[15] I. Guyon, A. Elisseeff, An introduction to variable and feature selection,
Journal of Machine Learning Research 3 (2003) 1157–1182.

[16] I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer
classification using support vector machines, Machine Learning 46 (1–3)
(2002) 389–422.

[17] T.N. Lal, O. Chapelle, J. Weston, A. Elisseeff, Embedded methods, in: I. Guyon,
S. Gunn, M. Nikravesh, L.A. Zadeh (Eds.), Feature Extraction: Foundations and

Applications. Studies in Fuzziness and Soft Computing, vol. 207, Springer,
Berlin, Heidelberg, 2006, pp. 137–165.

[18] S.J. Preece, J.Y. Goulermas, L.P.J. Kenney, D. Howard, A comparison of feature
extraction methods for the classification of dynamic activities from accelerometer
data, IEEE Transactions on Biomedical Engineering 56 (3) (2009) 871–879.

[19] Y. Liu, Y.F. Zheng, FS-SFS: a novel feature selection method for support vector
machines, Pattern Recognition 39 (2006) 1333–1345.

[20] G. Nemhauser, L. Wolsey, Integer and Combinatorial Optimization, John
Wiley and Sons, New York, 1988.

[21] S. Maldonado, R. Weber, A wrapper method for feature selection using
support vector machines, Information Sciences 179 (2009) 2208–2217.

[22] J. Miranda, R. Montoya, R. Weber, Linear penalization support vector
machines for feature selection, in: S.K. Pal et al.(Ed.), First International
Conference Pattern Recognition and Machine Intelligence (PReMI 2005),
Lecture Notes in Computer Sciences, vol. 3776, Springer-Verlag, Berlin,
Heidelberg, 2005, pp. 188–192.

[23] M.-D. Shieh, C-C. Yang, Multiclass SVM-RFE for product form feature selec-
tion, Expert Systems with Applications 35 (1–2) (2008) 531–541.

[24] I. Gheyas, L. Smith, Feature subset selection in large dimensionality domains,
Pattern Recognition 43 (2010) 5–13.

[25] A.A. Albrecht, Stochastic local search for the feature set problem, with
applications to micro array data, Applied Mathematics and Computation
183 (2006) 1148–1164.

[26] J. Hua, W. Tembe, E.R. Dougherty, Feature selection in the classification of
high-dimension data, in: IEEE International Work Shop on Genomic Signal
Processing and Statistics, 2008, pp. 1–2.

[27] X. Jin, A. Xu, R. Bie, P. Guo, Machine learning techniques and chi-square
feature selection for cancer classification using SAGE gene expression
profiles, Lecture Notes in Computer Science 3916 (2006) 106–115.

[28] C. Liao, S. Li, Z. Luo, Gene selection using Wilcoxon rank sum test and support
vector machine for cancer, Lecture Notes in Computer Science 4456 (2007) 57–66.

[29] H. Peng, F. Long, C. Ding, Feature selection based on mutualin formation criteria
of max-dependency, max-relevance, and min redundancy, IEEE Transactions on
Pattern Analysis and Machine Intelligence 27 (2005) 1226–1238.

[30] J. Biesiada, W. Duch, Feature selection for high-dimensional data—a Pearson
redundancy based filter, Advances in Soft Computing 45 (2008) 242–249.

[31] L. Rocchi, L. Chiari, A. Cappello, Feature selection of stabilometric parameters
based on principal component analysis, Medical and Biological Engineering
and Computing 42 (2004) 71–79.

[32] J. Yang, V. Honavar, Feature subset selection using a genetic algorithm, IEEE
Intelligent Systems and their Applications 13 (1998) 44–49.

[33] X. Wang, J. Yang, X. Teng, W. Xia, J. Richard, Feature selection based on rough
sets and particle swarm optimization, Pattern Recognition Letters 28 (2007)
459–471.

[34] M. Ronen, Z. Jacob, Using simulated annealing to optimize feature selection
problem in marketing applications, European Journal of Operational Research
171 (2006) 842–858.

[35] K. Li, J.-X. Peng, Neural input selection—a fast model based approach,
Neurocomputing 70 (2007) 762–769.

[36] HaptiMap – Haptic, Audio and Visual Interfaces for Maps and Location-based
Services, Large-scale Integrating Project, European Commission Seventh
Framework Programme, /http://www.haptimap.org/S.

[37] Cwiid—A Collection of Linux Tools Written in C for Interfacing to the
Nintendo Wiimote, /http://abstrakraft.org/cwiid/S.

[38] H. Hagendoorn, I. Vuori, P. Oja, Guidelines for the development of national policies
and strategies for promoting health through physical activity, The European
Network for the Promotion of Health-Enhancing Physical Activity, (2004) /http://
www.who.int/gb/ebwha/pdf_files/WHA57/A57_R17-en.pdfS.

[39] M.J. Mathie, A.C.F. Coster, N.H. Lovell, B.G. Celler, Accelerometry: providing
an integrated, practical method for long-term, ambulatory monitoring of
human movement, Physiological Measurement. 25 (2004) R1–R20.

[40] V.-M. Mantyla, J. Mantyjarvi, T. Seppanen, E. Tuulari, Hand gesture recogni-
tion of a mobile device user, in: Proceedings of the International IEEE
Conference on Multimedia Expo (ICME), 2000, pp. 281–284.

[41] J. Mantyjarvi, J. Himberg, T. Seppanen, Recognizing human motion with
multiple acceleration sensors, in: Proceedings of the International IEEE
Conference on Systems, Man Cybernetics (SMC), 2001, pp. 747–752.

[42] J.E. Manson, E.B. Rimm, M.J. Stampfer, G.A. Colditz, W.C. Willett,
A.S. Krolewski, B. Rosner, C.H. Hennekens, F.E. Speizer, Physical activity and
incidence of non-insulin-dependent diabetes mellitus in women, Lancet 338
(1991) 774–778.

[43] R.R. Pate, M. Pratt, S.N. Blair, W.L. Haskell, C.A. Macera, C. Bouchard, D. Buchner,
W. Ettinger, G.W. Health, A.C. King, A. Kriska, A.S. Leon, B.H. Marcus, J. Morris,
R.S. Paffenbarger, K. Patrick, M.L. Pollock, J.M. Rippe, J. Sallis, J.H. Wilmore,
Physical activity and public health: a recommendation from the centers for
Disease Control and Prevention and the American College of Sports Medicine,
JAMA 273 (5) (1995) 402–407.

[44] S.N. Patel, J.A. Kientz, G.R. Hayes, S. Bhat, G.D. Abowd, Farther than you may
think: an empirical investigation of the proximity of users to their mobile
phones, in: Proceedings of Ubicomp, Springer-Veralg, 2006, pp. 123–140.

[45] N. Streitz, P. Nixon, The disappearing computer, Communication of the ACM
48 (2005) 32–35.

[46] R.A. Washburn, H.J. Montoye, The assessment of physical activity by ques-
tionnaire, American Journal of Epidemiology 123 (1986) 563–576.

J.-X. Peng et al. / Neurocomputing 74 (2011) 3543–3552 3551



[47] A.K. Yancey, C.M. Wold, W.J. McCarthy, M.D. Weber, B. Lee, P.A. Simon,
J.E. Fielding, Physical inactivity and overweight among Los Angeles County
adults, American Journal of Preventive Medicine 27 (2004) 146–152.

[48] S.-W. Lee, K. Mase, Activity and location recognition using wearable sensors,
Pervasive Computing 1 (3) (2002) 24–32.

[49] K. van Laerhoven, O. Cakmakci, What shall we teach our pants?, in:
Proceedings of the Fourth International Symposium on Wearable Computers,
2000, pp. 77–83.

[50] P. Korpipaa, M. Koskinen, J. Peltola, S.-M. Makela, T. Seppanen, Bayesian
approach to sensor-based context awareness, Personal and Ubiquitous
Computing Journal 7 (4) (2003) 113–124.

[51] D. Abowd Gregory, K. Dey Anind, J. Brown Peter, Davies Nigel, Smith Mark,
Steggles Pete, Towards a better understanding of context and context-
awareness, in: HUC’99: Proceedings of the First International Symposium
on Handheld and Ubiquitous Computing, Springer-Verlag, London, UK, 1999,
pp. 304–307.

[52] G. Brown, A new perspective for information theoretic feature selection, in:
Proceedings of the Twelfth International Conference on Artificial Intelligence
and Statistics, vol. 5, April 16–18, 2009, Clearwater Beach, Florida, USA, 2009,
pp. 49-56.

[53] K. Li, J.-X. Pengm, E.-W. Bai, A two-stage algorithm for identification of
nonlinear dynamic systems, Automatica 42 (7) (2006) 1189–1197.

[54] K. Li, J.-X. Peng, G. Irwin, A fast nonlinear model identification method, IEEE
Transactions on Automatic Control 50 (8) (2005) 1211–1216.

[55] K.M. Adeney, M.J. Korenberg, Iterative fast orthogonal search algorithm for
MDL-based training of generalized single-layer network, Neural Networks 13
(7) (2000) 787–799.

Jian-Xun Peng has over 15 years experience in avio-
nics, nonlinear system modeling and control, artificial
neural network, and computer graphics. He has
authored over 40 journal and conference papers. He
is currently with the School of Electronics, Electrical
Engineering and Computer Science at the Queen’s
University of Belfast where he is researching on
application context sensing and developing software
for the European Commission-funded ‘‘HaptiMap’’
project.

Stuart Ferguson has over 25 years experience in
computer graphics and software engineering. He is
the author of the book ‘‘Practical Algorithms for 3D
computer Graphics’’ (2001). He is currently a lecturer
in the School of Electronics, Electrical Engineering and
Computer Science at the Queen’s University of Belfast
where he is researching on real-time application
program implementations for mobile devices.

Karen Rafferty has over 10 years experience working
within the fields of image processing, computer vision,
and intelligent devices that can perceive their envir-
onment and respond to it. Dr. Rafferty has authored
over 30 journal and conference papers in the area of
intelligent devices, computer vision, image processing
and applications of virtual reality. Her first book on
Virtual Reality was published in 2007.

Paul D. Kelly received the MEng and PhD degrees in
Electrical & Electronic Engineering from the Queen’s
University of Belfast in 2000 and 2005 respectively.
Since then he has developed research interests in
geographical data processing and digital audio and
video processing, with a particular emphasis on C
programming. He is currently employed by Queen’s
University Belfast as a research fellow, primarily
developing software for the European Commission-
funded ‘‘HaptiMap’’ project.

J.-X. Peng et al. / Neurocomputing 74 (2011) 3543–35523552


