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Abstract JellyWsh are increasingly topical within studies
of marine food webs. Stable isotope analysis represents a
valuable technique to unravel the complex trophic role of
these long-overlooked species. In other taxa, sample preser-
vation has been shown to alter the isotopic values of species
under consideration, potentially leading to misinterpreta-
tion of trophic ecology. To identify potential preservation
eVects in jellyWsh, we collected Aurelia aurita from Strang-
ford Lough (54o22�44.73�N, 5o32�53.44�W) during May
2009 and processed them using three diVerent methods
prior to isotopic analysis (unpreserved, frozen and pre-
served in ethanol). A distinct preservation eVect was found
on �15N values: furthermore, preservation also inXuenced
the positive allometric relationship between individual size
and �15N values. Conversely, �13C values remained consis-
tent between the three preservation methods, conXicting
with previous Wndings for other invertebrate, Wsh and mam-
malian species. These Wndings have implications for incor-
poration of jellyWsh into marine food webs and remote
sampling regimes where preservation of samples is
unavoidable.

Introduction

Gelatinous zooplankton or jellyWsh (here considered as
Phylum Cnidaria, Class Schyphozoa) have been viewed as
peripheral and transient components within marine ecosys-
tems, constituting little more than a carbon sink or a trophic
dead end (Hansson and Norrman 1995; Arai 2005). This
perception now appears outdated and international eVorts
are underway to redress this long-standing gap in our
knowledge (Mills 2001; Purcell and Arai 2001). However,
until recently, many questions surrounding the trophody-
namics of jellyWsh seemed somewhat intractable given the
spatial and temporal variability of aggregations (Doyle
et al. 2007a; Houghton et al. 2007) and the broad scale over
which they can occur (Houghton et al. 2006; Doyle et al.
2008). Addressing such bottlenecks is paramount and the
recent application of biochemical techniques shows great
promise for future studies (see Malej et al. 1993 and Pitt
et al. 2009 for review).

Advances in stable isotope techniques over the last
20 years have greatly improved ecological research in
marine and estuarine systems (Peterson and Fry 1987). The
use of nitrogen and carbon stable isotope ratios as food web
tracers in marine ecosystems (Carabel et al. 2006; Mich-
ener and Kaufman 2007) has made it possible to character-
ise trophic pathways, aiding the understanding of energy
transfer in these systems (e.g. Wada et al. 1987; Kaehler
et al. 2000) and allowing us to assess food web structure
more accurately (e.g. Peterson and Fry 1987; Hobson and
Welch 1992; Davenport and Bax 2002).

Biologists seeking to unravel the trophic interactions of
jellyWsh face many taxa-speciWc experimental challenges,
with three speciWc issues rising to the fore: (1) gut content
analysis can be highly problematic as gelatinous prey (e.g.
ctenophores) are diYcult to quantify and identify owing to
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fast deterioration in the oral arms and gut cavity (Båmstedt
and Martinussen 2000; Ishii and Tanaka 2001; Pitt et al.
2009); (2) once out of the water, gelatinous samples rapidly
lose physical integrity; (3) sampling at remote sites or on
research cruises of extended duration can limit access to
suitable processing/analytical equipment and jellyWsh col-
lected in the Weld are typically preserved by freezing or
storage in ethanol (EtOH) (Hobson et al. 1997). Preserva-
tion methods employed prior to stable isotope analysis
(SIA) have been shown to alter isotopic composition in a
range of marine taxa ranging from algae (Kaehler and
Pakhomov 2001; Carabel et al. 2009) through to inverte-
brates (Bosley and Wainwright 1999; Kaehler and Pakho-
mov 2001; Carabel et al. 2009) and higher vertebrates
(Bosley and Wainwright 1999; Kaehler and Pakhomov
2001). Mateo et al. (2008) additionally highlighted pre-ana-
lytical biases at the class level with the greatest eVects
exhibited by Maxillopoda, Gastropoda and Polychaeta. Our
knowledge of such eVects does not currently extend to
gelatinous zooplankton, presenting a potential problem for
future studies.

Even though the application of SIA to gelatinous zoo-
plankton research is in its infancy, it has the potential to
provide a clearer picture of whether each species Wts within
established marine food webs or represents a trophic con-
duit to a separate gelatinous food web. Typically, �13C is
used to investigate energetic pathways through food webs
and identify foraging locations used by the individual
(DeNiro and Epstein 1978; Wallace et al. 2009). The tro-
phic level at which an organism feeds is reXected by its
�15N value (DeNiro and Epstein 1981; Post 2002). Any
mechanism altering the �13C or �15N value owing to preser-
vation could lead to incorrect estimation of trophic position
and thus overall patterns of consumption, causing problems
for further integration into food web and bioenergetic mod-
els. SIA provides a useful tool for examining ontogenetic
dietary shifts in a range of consumers (e.g. Olson 1996;
Harrod et al. 2005; KnoV et al. 2008); however, such pat-
terns have not been examined in jellyWsh. If preservation
eVects exist, and are not constant across a gradient of con-
sumer body size, this may aVect our capacity to correctly
interpret information regarding trophic ecology from iso-
tope data based on preserved samples. With research on jel-
lyWsh increasing, it is essential to have an a priori
knowledge of how diVering preservation methodologies
may bias isotopic values. In light of these considerations,
the aims of this study were to determine: (1) whether there
is an eVect of preservation on jellyWsh stable isotope values,
(2) whether SIA could detect any change in isotopic value
with increasing body mass (allometry) and (3) if an allome-
tric trend was present, is it aVected by preservation method?
In addressing these questions, we sought to establish an
eVective pre-analytical processing protocol for jellyWsh.

Materials and methods

The scyphozoan jellyWsh Aurelia aurita (L.) was selected
for the study as it is ubiquitous at temperate latitudes (Rus-
sell 1970; Lucas 2001) and has been previously considered
in numerous studies of marine food webs (e.g. Lynam et al.
2005; Malej et al. 2007; Purcell et al. 2010). Individuals
were collected from a pontoon located at the southern
extreme of Strangford Lough (a large coastal embayment
Xowing into the Irish Sea) near the Queen’s University
Marine Laboratory (54o22�44.73�N, 5o32�53.44�W; Co.
Down, Northern Ireland) during May 2009. A dip net
(mesh size 1 mm) was used to collect smaller jellyWsh from
the side of a small boat, with a landing net (5 mm mesh
size) used for larger individuals. Both nets were chosen as
they cause minimal damage to jellyWsh tissue (Fleming
pers. obs.). To make a direct comparison of the isotopic
value of jellyWsh from the same species and same size
class, individuals were collected at the same site on the
same day but were subsequently randomly assigned to one
of three diVerent preservation methods (unpreserved, fro-
zen, EtOH preserved). Originally, we aimed to split each
jellyWsh into three sections, and apply each treatment to
each individual, allowing comparisons including individual
responses to preservation. However, due to the high water
content within the bell of jellyWsh (»95%; Doyle et al.
2007b), small individuals did not provide adequate sample
mass for replicate samples to be analysed. Our decision was
also inXuenced by a wish to mimic procedures on research
cruises as closely as possible, where individuals are typi-
cally preserved whole.

In the laboratory, jellyWsh were rinsed in Wltered seawa-
ter, and individual bell diameter (§1 cm) and wet mass
(§1 g) recorded. To ensure that preservation treatments
were balanced across all size ranges, individuals were
sorted by bell diameter in 1 cm increments from 7 to 21 cm.
Size-matched samples were then randomly selected and
processed following the three diVerent experimental treat-
ments. Unpreserved samples were transferred immediately
to drying trays and placed into an oven to attain dry mass
(see below for details). Other specimens were either trans-
ferred individually into labelled zip-lock bags and frozen at
¡20°C (frozen treatment) or preserved in 75% EtOH and
stored at room temperature (EtOH treatment) for 6 months
before oven drying using the method described by Doyle
et al. (2007b). Frozen and blotted dry EtOH samples were
placed into pre-weighed aluminium containers, weighed
and placed into a drying oven at a temperature of 60°C and
dried to constant mass. Following drying, all samples were
ground into a Wne powder using an agate pestle and mortar.
The samples were analysed for C and N content and �13C
and �15N isotope ratios using a Thermo ScientiWc Elemen-
tal Analyser Isotope Ratio Mass Spectrometer model: Delta
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V Advantage. Isotope analysis was carried out at the
14CHRONO centre, School of Geography, Archaeology
and Palaeoecology, Queen’s University, Belfast. Sampling
precision for �13C and �15N was estimated from the use of
internal standards and was typically §0.1‰.

Statistical analyses

The eVects of preservation were investigated by performing
GLM, regression and ANCOVAs on the stable isotope data
using SPSS version 17.0. Wet mass and �15N values were
log10-transformed to improve normality, stabilise variances
and to linearise relationships.

Results

A. aurita isotopic values for �13C and �15N varied consider-
ably between individuals, and following the diVerent exper-
imental treatments: unpreserved (�13C = ¡19.7 to ¡20.7‰,
mean = ¡20.1‰ SD § 0.4‰; �15N = 6.1 to 9.4‰,
mean = 8.1‰ SD § 0.9‰), frozen (�13C = ¡19.6 to
¡20.6‰, mean = ¡20.1‰ SD § 0.3‰; �15N = 8.9 to
12.6‰, mean = 10.1‰ SD § 1.2‰) and EtOH
(�13C = ¡18.8 to ¡20.3 ‰, mean = ¡19.6‰ SD § 0.4‰;
�15N = 9.9 to 12.1‰, mean = 10.7‰ SD § 0.6‰).

GLM was used to examine variation in mean �13C and
�15N values between control (fresh) and preservation meth-
ods (Fig. 1). There were no signiWcant diVerences in mean
�13C values between control samples and those subjected to
the two diVerent preservation methods (F2,40 = 2.1,
p ¸ 0.05). However, mean �15N values did diVer signiW-
cantly between the three groups (F2,40 = 27.8, p · 0.001).
SheVe’s post hoc test revealed isotope mean diVerences
(iMD) between control and preserved samples in both
freezing (iMD = ¡2.1‰, p · 0.001) and alcohol
(iMD = ¡2.4‰, p · 0.001) treatments.

Using linear regression of log10-transformed data, we
examined (1) the presence of a size-isotope relationship in
A. aurita and (2) if this existed, whether it was aVected fol-
lowing preservation by freezing or storage in EtOH. Non-
preserved A. aurita showed a signiWcant linear mass-�15N
relationship (R2 = 0.43, df = 1.13, p · 0.05; Fig. 2). Com-
parison of mass-�15N relationships between non-preserved
and preserved samples through ANCOVA of log10-trans-
formed data showed that slopes were not homogeneous
(F2,40 = 3.8 p = 0.03). However, this reXected the lack of a
relationship between bell-mass and �15N in EtOH pre-
served samples (R2 = 0.14, df = 13, p ¸ 0.05; Fig. 2). When
these data were removed from the ANCOVA, it was appar-
ent that the slope of the mass-�15N relationship was similar
for both unpreserved and frozen samples (F1,27 = 0.49,

p = 0.49). However, the intercepts diVered between the two
treatments (F1,28 = 46.2, p < 0.0001), reXecting an enrich-
ment eVect of freezing on A. aurita �15N values (Fig. 2).

Discussion

Stable isotope analysis is a fundamental tool in food web
studies yet comes with a number of well-documented cave-
ats (Gannes et al. 1997; Vander Zanden and Rasmussen

Fig. 1 Variation in mean (§SD) A. aurita �15N and �13C values
reXect the eVects of preservation (frozen-Wlled triangle (n = 14, size
range = 7–21 cm) and EtOH open circle (n = 14, size range = 7–
19 cm) relative to unpreserved open square (n = 15, size range = 7–
20 cm) samples

Fig. 2 An allometric eVect of size on �15N was apparent in unpre-
served A. aurita (see open square symbols). This revealed that preser-
vation aVected the relationship between size and �15N. ANCOVA
revealed a signiWcant preservation eVect between preserved and non-
preserved samples. Both frozen (Wlled triangle) and ethanol (open cir-
cle) preserved samples had elevated log10 �15N values when compared
with unpreserved A. aurita samples (open square)
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2001; Mateo et al. 2008). For example, numerous studies
have indicated how inconsistencies in �13C and �15N values
for the same species can arise through diVerences in pre-
analytical protocols (Feuchtmayr and Grey 2003; Sarakinos
et al. 2002; Syväranta et al. 2008). In this context, the need
to standardise, or at least consider the eYcacy of protocols,
is important for the success of future studies (Mateo et al.
2008; Carabel et al. 2009). Ideally, when only large medu-
sae are to be considered, separating the bell into three equal
components and subjecting each to a diVerent preservation
might be appropriate, but for small species such as
A. aurita this is not always possible. Where preservation is
required, freezing is often the preferred method as it typi-
cally does not aVect isotopic values. Evidence for this
approach can be gathered from studies of vertebrate (Wsh),
invertebrate (cephalopod, anemone and gastropod species)
and algal (kelp and fucoids) species, which demonstrated
isotopic values were not aVected by freezing (Bosley and
Wainwright 1999; Kaehler and Pakhomov 2001; Carabel
et al. 2009). Quite unexpectedly, our data suggested this
was not the case for gelatinous zooplankton, as freezing
enriched �15N values in A. aurita by »2‰, but did not
aVect �13C values compared with unpreserved samples.
Previous studies (see Kaehler and Pakhomov 2001) have
associated shifts in �13C values following preservation,
e.g., in EtOH with diVerential hydrolysis of 13C-depleted
lipids (DeNiro and Epstein 1977; Kiljunen et al. 2006)
leading to altered carbon isotope ratios following preserva-
tion. However, jellyWsh are lipid-poor (»1.2% by dry mass,
Doyle et al. 2007b), likely resulting in the lack of a preser-
vation eVect on �13C values.

The eVects of preservation prior to SIA also have impli-
cations when considering �15N values (e.g. Feuchtmayr and
Grey 2003; Carabel et al. 2009; Syväranta et al. 2011).
Although these shifts appear less pronounced than they are
for �13C (Bosley and Wainwright 1999; Kaehler and
Pakhomov 2001), they are important to consider as �15N
can elucidate the trophic relationships or identify the eco-
logical niche occupied by an organism (consumer) within a
food web (DeNiro and Epstein 1978, 1981; Post 2002;
Wallace et al. 2009). Ontogenetic trophic shifts have been
observed in a wide range of marine mammals and Wsh (e.g.
Olson 1996; Harrod et al. 2005; KnoV et al. 2008), but the
existence of such dietary changes within gelatinous species
is not well documented.

EtOH preserved A. aurita were 15N enriched by »2.5 ‰
relative to freshly prepared samples. Moreover, there was a
distinct allometric component to the preservation eVects
with an apparent ontogenetic shift of ca. one trophic level
between small and large A. aurita. Preservation by freezing
and EtOH each led to elevated �15N values along the same
size gradient, though interestingly EtOH dampened the
allometric signature of the individuals tested and decreased

the variability around the mean isotopic values. It is possi-
ble EtOH elevated the �15N values in our samples through
disruption of Xuid membranes allowing leakage of cellular
components (Goldstein and Chin 1981). If mean trophic
fractionation between consumer and prey is interpreted as
3.4‰ for �15N (Post 2002), then the eVect of EtOH preser-
vation could lead to the overestimation of trophic position,
with obvious eVects for those aiming to build food webs.

When sampling regimes may be protracted or geograph-
ically disparate, attention should also be given to the dura-
tion of tissue preservation. A. aurita frozen for 180 days
showed elevated �15N values, reXecting similar data from
freshwater zooplankton by Feuchtmayr and Grey (2003) (in
both studies, samples were stored at ¡20°C). In contrast,
Barrow et al. (2008) reported no eVect on marine turtle tis-
sue after 30 days and depletion in �15N values after 60 days
(samples stored at ¡10°C). These conXicting results high-
light preservation eVects can be speciWc to diVerent faunal
groups and that assumptions based on previous studies
regarding duration or method might prove problematic. For
example, Carabel et al. (2009) showed that freezing had no
eVect on isotopic values of another cnidarian species (Ane-
monia sulcata). Pinpointing the processes that drive these
inconsistencies is not simple. Feuchtmayr and Grey (2003)
and Barrow et al. (2008) suggested that potential sources of
error can arise at the cellular level through the mechanical
or chemical processes associated with preservation. For fro-
zen samples, these factors can cause the breakdown of cells
and loss of 12C and/or 13C components via leaching during
thawing or Wltration. It is also feasible that denaturing of
proteins or lipid protein complexes as a consequence of
freezing may lead to variation in perceived �15N values
(e.g. Lovelock 1957; Jiang et al. 1987; Wroblowski et al.
1996). This idea is supported by evidence of protein dena-
turation in a range of Wsh (Mackie 1993; Paredi et al. 2010),
cephalopod (Paredi et al. 2006; Reyes et al. 2009) and
bivalve species (Makri 2010; Syväranta et al. 2011). What
is clear, however, is that although freezing is often consid-
ered the preferred method of sample preservation for iso-
tope studies, it is not a panacea and the assumptions of no
preservation eVect of freezing should not be taken for
granted.

With concern about potential increases in scyphomedu-
sae biomass and geographical coverage through climatic
forcing and overWshing (e.g. Lynam et al. 2004; Doyle
et al. 2008; Kirby et al. 2009), the need to assess the role of
jellyWsh within marine systems is paramount. ReWning and
standardising SIA methodology is an important step to
achieving this goal. The scale of isotopic changes reported
here following preservation suggest that future studies
examining the isotope ecology of jellyWsh and other gelati-
nous zooplankton should seek to process samples without
preservation where possible. If preservation is unavoidable
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then researchers should conduct calibration experiments
prior to ecological studies so that correction factors can be
derived.
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