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Abstract Ten polymorphic nuclear microsatellite loci

were developed from a microsatellite enriched genomic

library of the blue shark, Prionace glauca. The utility of

these markers for genetic studies of this globally distrib-

uted, heavily exploited, oceanic predator was assessed by

screening 120 specimens sampled from six locations

throughout the species’ range. Both moderately and highly

polymorphic marker loci were identified. Three to 35

alleles were found to be segregating per locus (mean 10.1)

with observed heterozygosities ranging from 24 to 91%.

Evaluation of the cross-species amplification of these

markers across 18 additional shark species indicates that

these microsatellites are potentially useful for genetic

studies of other species of conservation concern.

Keywords Blue shark � Prionace glauca � Carcharhinus �
Polymorphic � Microsatellite � Cross-species

The blue shark, Prionace glauca, is the most-wide ranging

of the open ocean sharks (Compagno 1984). As an apex

predator, P. glauca arguably functions as a keystone spe-

cies and may play a vital role in the stability of pelagic

marine ecosystems (Litvinov 2006). Blue sharks make up

the highest proportion by species in the global fin trade

(Clarke et al. 2006), and given indications of severe

regional declines due to heavy fishing, this species is listed

as Near Threatened by the International Union for Con-

servation of Nature (IUCN) Red List. Conservation and

management of fisheries requires information regarding

population genetic structuring and breeding biology of the

species involved. Presently, microsatellite markers provide

the best means of obtaining these data for species difficult

to study due to the fact that they live in environments that

prohibit direct observation. In comparison to many species,

however, microsatellite marker development for sharks has

proven difficult. This has been attributed to a compara-

tively low abundance of these loci in the genomes of these

ancient fishes (Heist and Gold 1999). Where microsatellite

development has been successful, however, they have

proven informative for addressing a broad range of con-

servation and management issues (e.g. Schrey and Heist

2003, Chapman et al. 2004, 2007, DiBattista et al. 2008,

Feldheim et al. 2010). Here we describe the isolation and

initial characterisation of ten novel P. glauca microsatel-

lites, and their cross-amplification and potential utility for

the study of additional shark species.

Genomic DNA was extracted from fin tissue of five blue

sharks following the protocol described by Taggart et al.

(1992). Isolation of microsatellites followed the enrichment

protocol of Kijas et al. (1994) with modifications as sum-

marised in Boston et al. (2009) and McInerney et al. (2009).

Recombinant cells were screened for microsatellites by

southern blot hybridisation with the [P32] end-labelled
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oligonucleotides (GATA)4, (GACA)4, (GGAT)4, (GAA)5,

and (GGA)5 following Prodöhl et al. (1996). Screening of

*2,500 colonies yielded 182 positives, which were

sequenced (Macrogen Inc.) using T3 and T7 universal

primers. PCR primer sets for 43 sequences containing

microsatellites with sufficiently large, unique flanking

regions were designed using PrimerSelectTM (Lasergene

4.0, DNAStar Inc.). From the initial primer sets tested, 16

were found to consistently amplify PCR products of

expected size. Six microsatellite loci were found to be

monomorphic and omitted from subsequent evaluation. The

remaining 10 microsatellites (Table 1) displayed varying

levels of polymorphism and were used to screen 120 blue

sharks obtained from the Atlantic, Indian, and Pacific

Oceans.

PCR amplification for genotyping was conducted in

12 ll reaction volumes containing 19 Promega Taq

polymerase buffer, 1.5–2.0 mM MgCl2, 100 lM dNTPs,

0.2–4.0 pM of each microsatellite primer (Table 1), 50 ng

of template DNA and 0.5 U of Promega Taq DNA poly-

merase. Cycling conditions consisted of an initial dena-

turation step at 95�C for 5 min, followed by 21–27 cycles

of 95�C for 1 min, 54–60�C for 1 min, and 72�C for 1 min.

In some instances (i.e. with loci Pgla-07 and Pgla-08) a

nested PCR was required due to the use of fluorescently

tailed primers which had different annealing temperatures

to the selective primers. Nested PCRs were performed as

detailed above, but included an additional five cycles at

95�C for 1 min, 53�C for 1 min, and 72�C for 1 min.

Following PCR, 6 ll of stop solution (95% Formamide,

10 mM NaOH, 10 mM EDTA, 0.01% Pararosaniline) was

added to each 12 ll reaction. Reactions were then dena-

tured at 90�C for 5 min, and 0.25 ll loaded onto 25 cm 6%

19 TBE polyacrylamide gels containing 6 M Urea

mounted on a Li-Cor dual laser automated DNA analyser.

A size ladder for the Li-Cor system (MicroStep-20a from

Microzone—UK) was run adjacent to the samples to size

allelic fragments. Gels were run at 40 W at a temperature

of 50�C for 1.5–2.5 h. Genotyping was conducted using the

SAGA genotyping software (Li-Cor Inc.). Control samples

of known allele size were used on each run to ensure

consistent allele calling.

All 10 P. glauca microsatellites resolved exceptionally

well allowing consistent and reproducible allele calling.

All ten loci were polymorphic, displaying 3–35 alleles per

locus (mean 10.1), with observed and expected heterozy-

gosities ranging between 24–91% and 27–95% (Table 1).

Tests for deviation from Hardy–Weinberg equilibrium

(HWE) and non-random association of alleles among dif-

ferent loci (i.e. linkage disequilibrium) were conducted

using GENEPOP ‘007 (Rousset 2008). All loci conformed

to HWE, and no significant associations of alleles between

loci were observed. These results highlight the potential

utility of these markers for P. glauca population and par-

entage studies. Cross-amplification of P. glauca microsat-

ellites was investigated in 18 additional shark species. PCR

and cycling conditions for cross-species amplification were

identical to those for P. glauca amplification. Summary

results (Table 2) indicate successful cross-amplification in

the more closely related (Carcharhinidae) species, sug-

gesting that these P. glauca microsatellites may also be

valuable for genetic studies of other shark species of con-

servation concern.
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