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1 Introduction and Definitions.

An operator T from a Banach lattice E into a Banach space X is M-weakly compact if
limn ‖T (xn)‖= 0 holds for every norm bounded disjoint sequence (xn) in E. An op-
erator T from a Banach space X into a Banach lattice E is called L-weakly compact if
limn ‖yn‖= 0 holds for every disjoint sequence (yn) in the solid hull of T (BX ) where
BX is the closed unit ball of X . Neither L-weakly nor M-weakly compact operators
are necessary compact (see Proposition 3.6.20 of [9]) whilst compact operators need
not be either L-weakly or M-weakly compact (see [2], page 322.)

On the other hand, Chen and Wickstead [7] showed that an M-weakly compact
operator from an AL-space into a Banach space is compact ([7], Corollary 2.7) and
each L-weakly compact operator from a Banach space into an AM-space is compact
([7], Corollary 2.8). Here, we generalize these two results, study the converse problem
and seek conditions on the other space which force the same conclusion.

For any unexplained terms from Banach lattice theory and positive operators, we
refer the reader to [2] and [9].

2 Some Preliminaries.

Our generalizations of the results from [7] depend on identifying a suitable class of
Banach lattices containing the AM-spaces. Recall that if E is a Banach lattice then Ea
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is the maximal lattice ideal in E on which the norm is order continuous. A positive
element in E+ is discrete or an atom if its linear span is a lattice ideal in E. E is
termed discrete or atomic if the band generated by the discrete elements is the whole
space. It turns out that the class of Banach lattices E that we need are those such that
Ea is discrete. Although a sublattice of a discrete vector lattice need not be discrete,
an ideal must be, so that if E is discrete then so is Ea. In Corollary 2.3 of [8], it
was shown that if E has an order continuous norm then E is discrete if and only if E
has weakly sequentially continuous lattice operations. It is clear that if F is a closed
sublattice of a Banach lattice with weakly sequentially continuous lattice operations
then the same is true for F . This applies, in particular, when F = Ea so that if E has
weakly sequentially continuous lattice operations then Ea is discrete. AM-spaces E
have weakly sequentially continuous lattice operations, Theorem 4.31 of [2], so that
Ea is discrete and we see that this property does indeed generalize that of being an
AM-space.

3 Compactness of L-weakly compact operators.

A subset A of a Banach lattice E is said to be approximately order bounded if for every
ε > 0 there exists u ∈ E+ such that A⊂ [−u,u]+εBE where BE = {x ∈ E : ‖x‖ ≤ 1}
is the closed unit ball of E.

The following result is a straightforward generalization of Corollary 2.8 of [7].

Theorem 1 Let F be a Banach lattice and X a Banach space. If Fa is discrete, then
every L-weakly compact operator T : X → F is compact.

Proof If T : X → F is L-weakly compact then, by Proposition 3.6.2 of [9], T (BX ) is
approximately order bounded in Fa. Thus if ε > 0 there exists x ∈ Fa

+ such that

T (BX )⊂ [−x,x]+ εBFa . (∗)

If Fa is discrete it follows from Theorem 6.1 of [12] that the order interval [−x,x] is
norm compact. Now (∗), combined with part (4) of Theorem 3.1 of [2], shows that
T (BX ) is norm totally bounded so that T is compact. ut

As a partial converse, we have

Theorem 2 Let E and F be Banach lattices and assume that E ′ does not have an
order continuous norm. The following are equivalent:

1. Every L-weakly compact operator T : E→ F is compact.
2. Each positive L-weakly compact operator T : E→ F is compact.
3. Fa is discrete.

Proof Clearly (1) implies (2) and Theorem 1 gives us that (3) implies (1). It remains
to prove that (2) implies (3). Since the norm of E ′ is not order continuous then, by
Theorem 116.1 of [13] or Theorem 2.4.14 of [9], there is a norm bounded disjoint
sequence (un) of positive elements in E which does not converge weakly to zero.
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Without loss of generality, we may assume that ‖un‖ ≤ 1 for all n and that there are
φ ∈ E ′+ and ε > 0 such that φ (un) > ε for all n. It follows from Theorem 116.3 of
Zaanen [13] that the components φn of φ , in the carriers Cun , form an order bounded
disjoint sequence in E ′+ such that

φn (un) = φ (un) for all n and φn (um) = 0 if n 6= m. (†)

Note that 0≤ φn ≤ φ for all n.
If we assume that Fa is not discrete, it follows from Theorem 6.1 of [12] that there

exists some 0≤ y ∈ Fa such that [0,y] is not norm compact. Now, fix a sequence (yn)
in [0,y] which has no norm convergent subsequence in Fa and therefore in none in F .

Define an operator T : E→ F by

T (x) =
∞

∑
k=1

(
φk(x)/φ (uk)

)
yk

for x ∈ E. Note that in view of the inequality

∞

∑
k=1

∥∥(φk(x)/φ (uk)
)
yk
∥∥≤ ε

−1‖y‖
∞

∑
k=1

φk(|x|)≤ ε
−1‖y‖φ(|x|)

for each x ∈ E, the series defining T converges in norm for each x ∈ E. It follows
from (†) that T (un) = yn for all n. Since (yn) has no norm convergent subsequence in
F , T is not compact. However, T is L-weakly compact. To see this, note that for all
x ∈ BE , we have

|T (x)| ≤ T (|x|) =
∞

∑
k=1

(
φk(|x|)/φ (uk)

)
yk

≤ ε
−1

(
∞

∑
k=1

φk(|x|)

)
y

≤ ε
−1

φ(|x|)y
≤ ε

−1 ‖φ‖y.

so that T (BE)⊂ ε−1 ‖φ‖ [−y,y]. Since y ∈ Fa, [−y,y] is an L-weakly compact subset
of F , so that T (BE) is also L-weakly compact and hence T is L-weakly compact. ut

Theorem 2.1 of [5] (which is essentially part of Theorem 1 in [6]) includes the
statement that if E and F are non-zero Banach lattices then F has an order continuous
norm if and only if every positive compact operator T : E→ F is L-weakly compact.
Combining that with Theorem 2 we see that:

Corollary 1 For a Banach lattice F the following assertions are equivalent:

1. An operator T : `1→ F is L-weakly compact if and only if it is compact.
2. F is discrete with an order continuous norm.
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The hypothesis that E ′ does not have an order continuous norm can certainly not
be omitted from Theorem 2. In fact, if E ′ is discrete with an order continuous norm
then we can deduce nothing about F .

Let us first note some sufficient conditions to force compactness of regular oper-
ators.

Proposition 1 Let E and F be Banach lattices.

1. If F is discrete with an order continuous norm then every regular M-weakly com-
pact operator T : E→ F is compact.

2. If E ′ is discrete with an order continuous norm then each regular L-weakly com-
pact operator T : E→ F is compact.

Proof If F is discrete with an order continuous norm then by Corollary 3.6.14 of
[9] every regular M-weakly compact operator T : E → F is L-weakly compact1 and
hence is compact by Theorem 1. This establishes (1). Statement (2) follows from (1)
by duality (see Proposition 3.6.11 of [9].) ut

Example 1 The assumption that T is regular cannot be omitted from Proposition 1. In
fact, let E = l2 and F = L1[0,1] . Note that E and E ′ are reflexive (so have order con-
tinuous norms) and discrete. By Corollary 2.7.7 of [9], F contains a closed subspace
H which is isomorphic to l2. The isomorphism T : E→H ⊂F is weakly compact and
hence, as F is an AL-space, L-weakly compact. As T is certainly not compact, (2)
fails for non-regular operators. By Proposition 3.6.11 of [9] the adjoint T ′ : F ′→ E ′

is M-weakly compact but not compact, so that (1) also fails for non-regular operators.

In fact, the property in (2) gives a characterization of Banach lattices whose duals
are discrete and order continuous.

Theorem 3 The following conditions on a Banach lattice E are equivalent:

1. E ′ is discrete and its norm is order continuous.
2. For every Banach lattice F, every regular L-weakly compact operator T : E→ F

is compact.
3. For every Banach lattice F, every positive L-weakly compact operator T : E→ F

is compact.

Proof That (1) implies (2) is Proposition 1, whilst (2) certainly implies (3).
Assume now that (3) holds. If we choose F such that Fa is not discrete, for ex-

ample F = L1([0,1]), Theorem 2 tells us that the norm of E ′ is order continuous.
Now assume, by way of contradiction, that E ′ is not discrete. Then there exists

some 0 ≤ x′ ∈ E ′ such that the order interval [−x′,x′] is not norm compact in E ′

(see Theorem 6.1 of [12].) Let G denote the AL-space which is the completion of
the quotient E/N, where N = {x ∈ E : x′(|x|) = 0}, under the norm induced on the
quotient by the semi-norm x 7→ x′(|x|) on E. Let Q denote the quotient map of E into
G. It follows from Chapter IV, Exercise 9 of [10] that the topological dual of (G,x′)

1 Corollary 3.6.14 of [9] actually claims this for any M-weakly compact operator, but the proof uses
Proposition 3.6.13 and the proof of that, in turn, explicitly assumes that T is regular. Both results are false
without the assumption of regularity as Example 1 shows.
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is isomorphic to (E ′)x′ , the ideal generated by x′ in E ′, under the order unit norm
induced by x′. Furthermore, the adjoint of Q may then be identified with the natural
embedding of (E ′)x′ into E ′.

This tells us that Q′ maps the unit ball in G′ onto the order interval [−x′,x′] in E ′,
which is not compact so that Q′ is not a compact operator and therefore Q is not a
compact operator. In order to show that Q is actually L-weakly compact it suffices,
by Theorem 3.6.11 of [9], to show that Q′ is M-weakly compact. But if ( fn) is any
disjoint sequence in the unit ball of F ′ then (Q′ fn) is a disjoint sequence in the order
interval [−x′,x′] and, as we already know that E ′ has an order continuous norm, we
must have ‖Q′( fn)‖→ 0. Thus Q′ is M-weakly compact. ut

4 Compactness of M-weakly compact operators.

As an immediate consequence of Theorem 1 we have:

Corollary 2 Let E be a Banach lattice and X a Banach space. If (E ′)a is discrete,
then each M-weakly compact operator T : E→ X is compact.

Proof If T : E→X is M-weakly compact then by Theorem 3.6.11 of [9], T ′ : X ′→E ′

is L-weakly compact. If (E ′)a is discrete then Theorem 1 tells us that T ′ is compact
and Schauder’s Theorem now shows that T is compact. ut

Again, we have a partial converse. In the Banach lattice setting we have:

Theorem 4 Let E and F be Banach lattices and suppose that F does not have an
order continuous norm. The following are equivalent:

1. Every M-weakly compact operator T : E→ F is compact.
2. Every positive M-weakly compact operator T : E→ F is compact.
3. (E ′)a is discrete.

Proof Again (1) certainly implies (2) and that (3) implies (1) follows from Corollary
2. We prove that (2) implies (3). We assume that (E ′)a is not discrete and construct a
positive M-weakly compact operator from E into F which is not compact.

Since the norm of F is not order continuous then, by Theorem 2.4.2 of [9], there
exists a disjoint order bounded sequence (yn) in F+ which does not converge to zero
in norm. We may assume that 0≤ yn ≤ y and ‖yn‖= 1 for all n and some y ∈ F+.

As (E ′)a is not discrete, there is 0≤ ψ ∈ (E ′)a such that the order interval [0,ψ]
is not norm compact, see Theorem 6.1 of [12]. Fix a sequence (φn) in [0,ψ] which
has no norm convergent subsequence in E ′. Also, since ψ ∈ (E ′)a, the order interval
[0,ψ] is an L-weakly compact subset of E ′ and hence [0,ψ] is weakly compact in E ′

(see Proposition 3.6.5 of [9].) Thus, by the Eberlein-Šmulian Theorem ([2], Theorem
3.40), we may assume, by extracting a subsequence if necessary, that (φn) converges
weakly to some φ ∈ [0,ψ]. So (φn) converges weakly* to φ .

Now, define two operators S,T : E→ F by

S (x) = φ (x)y+
∞

∑
n=1

(φn−φ)(x)yn and T (x) = ψ (x)y for each x ∈ E.



Compactness of L-weakly and M-weakly compact operators on Banach lattices 7

It follows from the proof of Theorem 1 of [11] that 0≤ S≤ T and that S is not com-
pact. To finish the proof, we have to show that S is M-weakly compact. By Proposition
3.6.11 of [9], it suffices to establish that the adjoint S′ : F ′ → E ′ is L-weakly com-
pact. For this, note that 0≤ S′ ≤ T ′ and T ′ (h) = h(y)ψ for all h ∈ F ′. Then for every
h ∈ BF ′ , we have ∣∣S′ (h)∣∣≤ S′ (|h|)≤ T ′ (|h|) = |h|(y)ψ ≤ ‖y‖ψ,

so that S′ (BF ′) ⊂ ‖y‖ [−ψ,ψ]. Since [−ψ,ψ] is an L-weakly compact subset of E ′

so is S′ (BF ′) and S′ is L-weakly compact. ut

If we are willing to drop the second equivalence involving positive M-weakly
compact operators then we can do slightly better.

Theorem 5 Let E be a Banach lattice and Y a Banach space which contains an
isomorphic copy of c0 then the following are equivalent:

1. Every M-weakly compact operator T : E→ Y is compact.
2. (E ′)a is discrete.

Proof Again (2) implies (1) follows from Corollary 2. We again prove that (1) implies
(2) by contradiction. We assume that (E ′)a is not discrete and construct an M-weakly
compact operator from E into Y which is not compact.

Let J : co→ H be an isomorphism, where H is a closed subspace of Y .
As (E ′)a is not discrete, there is 0≤ ψ ∈ (E ′)a such that the order interval [0,ψ]

is not norm compact (see Theorem 6.1 of [12]). Fix a sequence (φn) in [0,ψ] which
has no norm convergent subsequence. Also, since ψ ∈ (E ′)a, the order interval [0,ψ]
is relatively weakly compact. Thus, by the Eberlein-Šmulian Theorem ([2], Theorem
3.40), we may assume, by extracting a subsequence if necessary, that (φn) converges
weakly, and hence weak∗, to some φ ∈ [0,ψ].

Define a positive operator R : E→ c0 by

R(x) =
(
(φ −φn)(x)

)∞

n=1 for each x ∈ E.

We show that the composed operator T = J ◦R : E → Y is M-weakly compact but it
is not compact or, equivalently, R is M-weakly compact but it is not compact.

If R were compact then Schauder’s Theorem would show that R′ : `1 → E ′ is
compact. But if en is the usual basis element in `1 then R′(en) = φ −φn so that (φn)
would have a norm convergent subsequence. This contradicts the choice of (φn).

To show that R is M-weakly compact, it suffices to establish that R′ : `1→ E ′ is
L-weakly compact, by Proposition 3.6.11 of [9]. For this, note that each φ − φn ∈
[−ψ,ψ]. For every (λn) ∈ Bl1 we have

∣∣R′((λn)
)∣∣= ∣∣∣∣∣ ∞

∑
n=1

λn (φ −φn)

∣∣∣∣∣≤
(

∞

∑
n=1
|λn|
)

ψ ≤ ψ.

Hence R′ (Bl1) ⊂ [−ψ,ψ]. Since [−ψ,ψ] is an L-weakly compact subset of E ′

(because ψ ∈ (E ′)a) so is R′ (Bl1). Hence R′ is L-weakly compact. ut



8 Belmesnaoui Aqzzouz et al.

In particular, by Theorem 2.4.12 of [9], the conclusion of Theorem 5 holds if Y is
a Banach lattice which is not a KB-space.

Using Theorem 5 and Theorem 2.2 of [4] we have:

Corollary 3 For a Banach lattice E the following assertions are equivalent:

1. An operator T : E→ c0 is M-weakly compact if and only if it is compact.
2. E ′ is discrete with an order continuous norm.

As with L-weakly compact operators, we also have a condition on the range space
which gives the conclusion we seek for regular operators.

Theorem 6 The following conditions on a Banach lattice F are equivalent:

1. F is discrete and its norm is order continuous.
2. For every Banach lattice E, every regular M-weakly compact operator T : E→ F

is compact.
3. For every Banach lattice E, every positive M-weakly compact operator T : E→ F

is compact.

Proof That (1) implies (2) follows from Proposition 1 whilst (2) implies (3) is clear.
Let us suppose that (3) holds. If we choose E such that (E ′)a is not discrete (for

example E = l∞) we obtain from Theorem 4 that F has an order continuous norm.
Next, we claim that F is discrete. Assume by way of contradiction that F is not
discrete. Then there exists some 0 ≤ y ∈ F such that the order interval [−y,y] is not
norm compact in F (Theorem 6.1 of [12].) Take E = Fy, the principal ideal in F
generated by y, with the order unit norm generated by y, and let i : E→ F denote the
canonical imbedding.

The image under i of the unit ball in E is precisely the order interval [−y,y] which
is not norm compact in F , so that i is not compact. However, i is M-weakly compact.
To see this, let (xn) be a disjoint sequence in the closed unit ball of E. Then |xn| ≤ y
for all n. Hence the sequence (xn) is disjoint and order bounded in F and, since the
norm of F is order continuous, converges to 0 for the norm of F . I.e. i is M-weakly
compact as claimed. ut

Notice that, by combining Theorem 5 with Theorem 6, we see that every regular
M-weakly compact operator from any Banach lattice E into c0 is compact but that, if
(E ′)a is not discrete, there is a (non-regular) M-weakly compact operator from E into
c0 which is not compact.
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