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VECTOR LATTICES OF ALMOST POLYNOMIAL
SEQUENCES.

A.W. WICKSTEAD

Abstract. We study the order structure, various duals and or-
thomorphisms on vector lattices of sequences that differ from a
polynomial (either of bounded or unbounded degree) by a sequence
in `p.

1. Introduction.

In [12] the suggestion was made of replacing a complete order unit
norm on a vector lattice E by the rather weaker assumption that there
is an element a ∈ E such that any ‖ · ‖a-Cauchy sequence is ‖ · ‖a-
convergent, where

‖x‖a = inf{λ ∈ R+ : |x| ≤ λ|a|},
with the convention that inf ∅ = +∞. In [11] I pointed out the very
high degree of generality of this notion and suggested restricting atten-
tion to the case that a was a weak order unit. I also suggested, as a
non-trivial example, the space of sequences that differ from a polyno-
mial (either of fixed or arbitrary degree) either by a bounded or a null
sequence. These examples actually have rather more structure than I
realized at the time, so we should expect particularly nice behaviour.
It turns out not to be all that good after all. It does, however, seem
that we can in some ways generalize my suggestion in [11] even more
without losing whatever nice properties we do have.

In §2 we define the spaces that we will study, make a few simple
comments on their topology and its relationship to the linear structure
and then we look at the order, showing that we do indeed have a vector
lattice structure but that not much more can be said about the order
in general. The third section looks at linear functionals on the vector
lattices that we define, in particular the relationship between continuity
and regularity for them. In the final section we characterize the centre
and orthomorphisms of these spaces and obtain some slightly surprising
results.
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2. Definitions, Topology and Order Structure.

Before we start, let us point out that at various points below it
is necessary to refer both to the set of positive integers and the set
of non-negative integers. In order to avoid continual repetition, we
define now N = {1, 2, 3, . . . } to be the set of positive integers and
N∗ = {0, 1, 2, . . . } to be the set of non-negative integers.

Our spaces are going to be defined as the sums of `p-spaces and
certain polynomial sequences. As some features of our results become
clearer if we allow the case p < 1, and proofs are no more complicated
(although details of statements sometimes differ) we will work with `p

for all p > 0. As a notational convenience, we will also define `0 to
mean the usual space of null sequences, c0, so that we will be allowing
p to range over [0,∞].

If 0 < p <∞ then we define on `p

‖x‖p =

(
∞∑

n=1

|xn|p
)1/p

.

If 1 ≤ p < ∞ then ‖ · ‖p is a norm, whilst for 0 < p < 1 it is a
quasi-norm. On `∞ and on `0 = c0 we use the usual supremum norm

‖x‖∞ = sup{|xn|; n ∈ N}.

In all cases, the topology induced on `p is a complete metrizable one,
so is of the second Baire category.

If 1 ≤ p < ∞ then the topological dual of `p, `′p, may be identified

with `q where p−1 +q−1 = 1, with the convention that if p = 1 then q =
∞. If p = 0 then `′0 may be identified with `1, whilst if 0 < p ≤ 1 then
Day proved in [5] that `′p may be identified with `∞. The topological
dual in the case that p = ∞ is much larger than `1, but we will have
no need of its detailed description. In all cases, it follows from the
representation of the topological dual that all elements are regular, i.e.
the difference of two positive linear functionals. The converse is also
true, so that the order dual of `p, `∼p , is equal to `′p in all these cases.
This is well known for the Banach lattice cases, but actually follows in
all the cases from Proposition 2.16 (c), in Chapter 2 of [9]. The order
continuous dual, `×p , is equal to `∼p in all cases except p =∞ when `×∞
may be identified with `1.

We will use the same notation for such of the various duals as are
defined in a general vector lattice E, and also the notation Es for the
band of singular linear functionals which is simply the complementary
band in E∼ to E×.
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Definition 2.1. If k ∈ N∗ and p ∈ [0,∞] then

(1) pp(k) consists of all real sequences (an) such that there is a
polynomial p of degree at most k such that

(
an − p(n)

)
∈ `p.

(2) pp =
⋃∞

k=1 pp(k).

It is clear that all of these define vector spaces over the reals. Note,
in particular, that p0(0) = c and that p∞(0) = `∞. If Xp denotes any
of the spaces pp(k) or pp and if p <∞ (including p = 0) then, as only
the zero polynomial lies in `p, the decomposition of an element of Xp

into a polynomial part and an `p-sequence is unique. If p = ∞ then
the decomposition is unique to within a constant sequence.

If a sequence x does not lie in `p then we will set ‖x‖p = ∞ (note
that X0∩ `∞ = c0.) The sets of the form {x : ‖x−y‖p < ε}, for y ∈ Xp

and ε > 0 form a base for a topology on Xp for which convergence is
precisely ‖ · ‖p-convergence. If p < ∞ and ‖x − y‖p < ∞ then the
polynomial parts of x and of y must be the same whilst if p =∞ those
polynomial parts may differ by a constant. This topology is metrizable
and the definitions make it clear that all of these spaces are complete
and hence of the second Baire category. Unfortunately that is not as
useful as might have been thought as open sets will not be absorbent.

It is easy to see that addition is continuous for this topology so
that these spaces are commutative topological groups under addition.
However if ‖x‖p = ∞ then ‖ 1

n
x‖p = ∞ for all n ∈ N so that 1

n
x 6→ 0

and scalar multiplication is not continuous so that we do not have a
topological vector space.

These spaces were introduced as examples of vector lattices, so it is
natural that we investigate their order structure. First we must justify
our implied claim that they are vector lattices.

Proposition 2.2. For all k ∈ N∗, and p ∈ [0,∞], pp(k) and pp are
vector lattices under the pointwise partial order.

Proof. If a, b ∈ pp(k) then there are polynomials q and r of degree at
most k such that

(
an−q(n)

)
,
(
bn−r(n)

)
∈ `p. Without loss of generality

we may make the choice of polynomials unique by specifying that the
constant term is zero. As `p ⊆ `∞ for all p, there is M ∈ R with
|an − q(n)|, |bn − r(n)| ≤M for all n ∈ N.

If q = r then(
an ∨ bn − q(n)

)
=
(
an − q(n)

)
∨
(
bn − q(n)

)
=
(
an − q(n)

)
∨
(
bn − r(n)

)
∈ `p,

so that (an ∨ bn) ∈ pp(k).
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If q 6= r then, given that neither has a non-zero constant term,
q − r is unbounded so that either q(n) − r(n) → ∞ as n → ∞ or
r(n) − q(n) → ∞ as n → ∞. We consider the first case, the second
being similar. Choose N ∈ N such that n ≥ N ⇒ q(n) − r(n) ≥ 2M .
Then, if n ≥ N we have

an ≥ p(n)−M ≥ q(n) + M ≥ bn

so that an ∨ bn = an if n ≥ N . Hence |an ∨ bn − q(n)| = |an − q(n)| if
n ≥ N . It follows that

(an) ∨ (bn)−
(
q(n)

)
∈ `p

so that (an ∨ bn) ∈ pp(k). This suffices to show that pp is a vector
lattice.

It is clear that pp(k) ⊂ pp(k +1) for all k ∈ N∗, from which it follows
easily that pp is also a vector lattice.

�

We noted above that p0(0) = c, so that we should not expect the
spaces p0(k) to enjoy any nice order theoretic completeness properties.
The space p∞(0), on the other hand is just `∞ which is Dedekind
complete. However, we have:

Example 2.3. For any p ∈ [0,∞], pp(1) is not Dedekind σ-complete.

Proof. If we use en to denote the usual n’th basis vector then certainly
nen ∈ pp(1) for all n ∈ N. The sequence i = (n) lies in pp(1) and is an
upper bound for the set {2ne2n : n ∈ N}. It is routine, because of the
presence of the basis vectors in the space, to see that if this set had
a supremum then it would be the pointwise supremum. That would
be the sequence (sn) where s2n = 2n and s2n−1 = 0 for all n ∈ N.
No matter what first degree polynomial, an + b, we take, which we
might hope had ‖

(
sn − (an + b)

)
‖p <∞ and hence (for some M ∈ R)

|sn − (an + b)| ≤M for all n ∈ N, we would have

2M ≥
∣∣2n− (a(2n) + b

)∣∣+ |a(2n + 1) + b− 0|
=
∣∣(2n + a)−

(
a(2n + 1) + b

)∣∣+ |a(2n + 1) + b|
≥ |2n + a| → ∞

as n→∞, which is impossible. �

Using as upper bounds all the possible sequences i − (2n + 1)e2n+1

will similarly show that pp(1) does not have the countable interpolation
property.

The bands in the spaces pp(k) and in pp are precisely the sequences
supported by a fixed subset of N and, as elements of `p can be found
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which are non-zero precisely on any specified subset of N, they are
all principal bands. In the language of the last example, there is no
band projection onto the band consisting of sequences supported by
{2n : n ∈ N}, as can be seen by considering the image of the sequence i.
This shows that (at least for k ≥ 1) pp(k) does not have the principal
projection property.

The Dedekind completions of pp(k) or of pp may be identified with
the ideal that they generate in the space of all real sequences, in which
they are clearly super order dense (i.e. every positive element of the
completion is the supremum of a countable family from the space.)
This means that the spaces are almost σ-Dedekind complete in the
terminology of [1].

Recall that a vector lattice is (o)-complete or order Cauchy complete
(see, [4]) if every order Cauchy sequence is order convergent. Even c,
which is precisely p0(1) fails to be (o)-complete.

The spaces pp(k) have a strong order unit, namely the sequence
(nk)∞n=1, whilst the spaces pp do not, although they do have weak order
units.

3. Linear Functionals.

There are three classes of linear functionals on our spaces in which
we have an obvious interest. We know that for Banach lattices, as well
as for other topological vector lattices including all the `p-spaces, the
toplogical and order duals coincide. That turns out not to be the case
here, although we do have, in the positive direction:

Proposition 3.1. For all k ∈ N∗, and p ∈ [0,∞], every regular linear
functional on any of the spaces pp(k) or pp is continuous.

Proof. It suffices to prove continuity at the origin. Sequences which
converge to the origin are eventually in the corresponding `p space, on
which the restriction of a regular functional is again regular. Now use
the continuity of regular linear functionals on `p. �

For a start, we describe the topological duals.

Proposition 3.2. For any p ∈ [0,∞), k ∈ N∗ and any f ∈ pp(k)′

there are g ∈ `′p and aj ∈ R, for 0 ≤ j ≤ k such that if pp(k) 3 x =

z + (
∑k

j=0 cjn
j)∞n=1 with z ∈ `p and cj ∈ R for 0 ≤ j ≤ k then

f(x) = g(z) +
k∑

j=0

ajcj.
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Proof. Algebraically, we may write pp(k) as a direct sum of `p and
the polynomial sequences of degree at most k. A sequence (xm) of
elements of pp(k), each of which may be written as xm = zm +

(
pm(n)

)
with zm ∈ `p and pm a polynomial, is convergent if and only if the
sequence of polynomials (pm) is eventually constant and (zm) converges
in `p. This shows that functionals of the given form are continuous.
Conversely, for algebraic reasons any functional may be written in the
given form except for not assuming that g is continuous. Continuity of
f applied to sequences in `p shows that g is continuous. �

If p = ∞ the description needs to be modified slightly to take into
account the fact that constant polynomials lie in `∞, but the proof is
no different.

Proposition 3.3. For any k ∈ N∗ and any f ∈ p∞(k)′ there are g ∈ `′∞
and aj ∈ R, for 1 ≤ j ≤ k such that if p∞(k) 3 x = z +(

∑k
j=1 cjn

j)∞n=1

with z ∈ `p and cj ∈ R for 1 ≤ j ≤ k then

f(x) = g(z) +
k∑

j=1

ajcj.

Similarly there are descriptions of p′p which involve infinite sequences
of reals (aj). There are no convergence considerations as we are only
considering polynomials of finite, although arbitrary, order.

Theorem 3.4. If p ∈ [0,∞) and k ∈ N∗ then

(1) If f ∈ pp(k)× then there is a sequence (an) with (nkan) ∈ `1

such that f(x) =
∑∞

n=1 anxn for all x ∈ pp(k). Conversely, ev-
ery such sequence (an) defines an order continuous linear func-
tional f .

(2) If g ∈ pp(k)s then there is α ∈ R such that if we write x =

z + (
∑k

j=0 cjn
j)∞n=1, with z ∈ `p, then g(x) = αck. Conversely,

this formula always defines a singular functional on pp(k).

Proof. It suffices to prove these claims for positive functionals and then
apply them to the positive and negative parts in general.

If f ∈ pp(k)×+ and we define an = f(en), then for any x ∈ pp(k) we
have x = sup{

∑n
j=1 xjej : n ∈ N} so that

f(x) = sup{
n∑

j=1

xjaj : n ∈ N} =
∞∑

j=1

xjaj.

The condition that (nkan) ∈ `1 is because the sequence (nk) ∈ pp(k).
The converse is clear.
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In particular, we may identify each en with an element of pp(k)×,
which we will denote by ẽn to distinguish it from the corresponding
member of pp(k). If g ∈ pp(k)s then g ∧ ẽn = 0 for all n. As

0 = (g ∧ ẽn)(en)

= inf{g(x) + ẽn(y) : 0 ≤ x, y with x + y = en}
(using the Riesz-Kantorovich formula for the infimum,

see e.g. Theorem 83.6 (5) of [13])

= inf{g(λen) + ẽn(µen) : 0 ≤ λ, µ ∈ R with λ + µ = 1}
= inf{λg(en) + µ : 0 ≤ λ, µ ∈ R with λ + µ = 1}

we see that g(en) = 0. Given that regular linear functionals are con-
tinuous it follows that g is zero on `p. Thus, to describe g completely
we need only specify its value on the polynomial sequences (nj) for
1 ≤ j ≤ k. The claim in the theorem is that g vanishes at all of these
except for j = k. If j < k then, for all N ∈ N, there is n0 ∈ N such that
nk ≥ Nnj for n > n0. Thus there is a sequence (xn) with only finitely
many non-zero terms such that nk + xn ≥ Nnj for all n ∈ N. I.e. in
terms of sequences we have (nk) + x ≥ N(nj). As g(x) = 0, we see
that g

(
(nk)

)
≥ Ng

(
(nj)

)
≥ 0 for all N ∈ N. This certainly shows that

g
(
(nj)

)
= 0 as claimed. Again, the converse is routine to verify. �

Notice, in particular, that the order duals of pp(k) do not depend on
p, as long as p 6=∞. In this case, the order continuous dual is linearly
order isomorphic to `1, so that its order dual and order continuous dual
coincide and may be identified with `∞. It follows that:

Corollary 3.5. If p ∈ [0,∞) and k ∈ N∗ then pp(k)×∼ = pp(k)×× and
may be identified with the sequences (bn) such that (n−kbn) ∈ `∞. This
is precisely the order ideal generated in the space of all real sequences by
pp(k), which may be identified with the Dedekind completion of pp(k).

We can extend the descriptions of the duals to the case of polynomials
of arbitrary degree as well.

Corollary 3.6. If p ∈ [0,∞) then p∼p = p×p and both may be identified

with the sequences {(an) : (nkan) ∈ `1 for all k ∈ N∗}.

Proof. This description of p×p is immediate from the preceding theorem.
If g ∈ ps

p then the argument in the proof of the theorem (using the
fact that each ẽn ∈ p×p ) shows that g vanishes at each of the en. It
follows from the theorem that g|pp(k) ∈ pp(k)s so that g vanishes on the
sequence (nj) for any j < k. But k was arbitrary, so that g vanishes
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on all sequences (nk). As these, together with `p, span pp algebraically,
that shows that g = 0 and the proof is complete. �

The next result is very similar to Corollary 3.5, although the proof
is not quite so straightforward.

Corollary 3.7. If p ∈ [0,∞) then p∼∼p may be identified with the

sequences {(an) : (n−kan) ∈ `∞ for all k ∈ N∗}. This is precisely
the order ideal generated by pp in the space of all real sequences, which
may be identified with the Dedekind completion of pp.

Proof. We know that p∼p may be identified with the space of sequences

(xn) such that nkxn ∈ `1 for all k ∈ N∗. We can topologize p∼p using the

infinite sequence of norms ‖(xn)‖k+1 = ‖(nkxn)‖1, where ‖ · ‖1 denotes
the usual `1-norm. Our labeling of the norms makes the notation ‖ · ‖1
unambiguous. This topology, which is precisely |σ|(p∼p , pp), is certainly
metrizable. We claim that p∼p is complete under |σ|(p∼p , pp). Indeed, if
we have a sequence (xm) of elements of p∼p which is Cauchy for each of

the norms then
(
(nkxm

n )∞n=1

)∞
m=1

will be Cauchy in `1 for each k ∈ N∗

so converges to a limit yk ∈ `1. As ‖(zn)‖1 ≤ ‖(nzn)‖1 if (nzn) ∈ `1, we
see that these limits must be consistent in the sense that yk+1

n = nyk
n.

I.e. yk
n = nky0

n. This means that ‖xm − y0‖k → 0, as m → ∞, for all
k ∈ N∗ so that xm → y0 for |σ|(p∼p , pp). It is clear also that the positive
cone in p∼p is closed under each of the norms ‖ · ‖k and is therefore
closed so is itself complete. It now follows from Proposition 2.16 (c), in
Chapter 2 of [9] that every positive (and therefore every regular) linear
functional on p∼p is continuous. As the sequences with finitely many
non-zero terms are dense in p∼p , this means that such functionals may
certainly be described by real sequences acting in the usual duality.
The fact that the sequences which do so are precisely those that we
claim is now routine. �

Again note that the description of these duals does not involve the
number p. Notice also that there will certainly be continuous linear
functionals which are not regular, either because sequences representing
elements of the dual of `p need not satisfy the condition on elements
of the order continuous dual or because we can give (nj) a non-zero
image when working on pp(k) with k > j. The order dual of pp is
certainly non-trivial, including not only sequences of finite support,
but also sequences like (n−n).
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4. Centre and Orthomorphisms.

The centre of an Archimedean vector lattice E consists of all linear
operators T on E for which there is λ ∈ R such that |Tx| ≤ λ|x|
for all x ∈ E. In a concrete setting, these operators are precisely
the operators of pointwise multiplication by bounded functions which
leave E invariant. The orthomorphisms of E are the order bounded
operators such that x ⊥ y ⇒ Tx ⊥ y. In concrete cases, these are
similar to central operators except that the boundedness condition on
the multiplier function is removed. The centre of E is denoted by
Z(E) and the space of orthomorphisms on E by Orth(E). We always
have Z(E) ⊂ Orth(E). For any p ∈ [0,∞] we have identifications
Orth(`p) = Z(`p) = `∞.

We start by dealing with the space pp(k).

Theorem 4.1. If p ∈ {0}∪ (1,∞] and k ∈ N∗ then the centre of pp(k),
Z
(
pp(k)

)
, coincides with Orth

(
pp(k)

)
and may be identified with the

space of all sequences (zn) such that (nkzn) ∈ pp(k) under the action
(an) 7→ (anzn).

Proof. It is routine to verify that orthomorphisms on pp(k) may be
identified with a certain sequence space acting in this manner. We
need to verify exactly which sequences (zn) arise in this way.

First, note that (nk) ∈ pp(k) so that we certainly need (znn
k) ∈ pp(k)

if multiplication by (zn) does define a orthomorphism.
Now suppose that (zn) does satisfy this condition. Notice first that

this certainly entails that (zn) is bounded, so that if multiplication by
(zn) does leave pp(k) invariant then that will certainly define a central
operator. If (an) ∈ pp(k) then we need to verify that (anzn) ∈ pp(k).
There are polynomials p and q of degree at most k and sequences
(cn), (dn) ∈ `p such that an = cn + p(n) and nkzn = dn + q(n). As (zn)
is bounded, (zncn) ∈ `p. Also, (dn/n

k)
(
p(n)

)
= (dn)

(
p(n)/nk

)
and

p(n)/nk is bounded as p is of degree at most k so that (dn/n
k)
(
p(n)

)
∈

`p. Finally, the expression q(n)
nk × p(n) may be written as a polynomial

of degree k in n, for which the corresponding sequence certainly lies in
pp(k), plus a polynomial in n−1 with no constant term. The sequence
defined by the polynomial in n−1 will certainly lie in c0, taking care of
the cases p = 0 and p = ∞ and will behave like (1/n) so will lie in `p

for p > 1. �

It is clear that the final stage in this proof fails for 0 < p ≤ 1, but
does the result? Yes!
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Theorem 4.2. If k ∈ N∗ and 0 < p ≤ 1 then the centre of pp(k),
Z
(
pp(k)

)
, coincides with Orth

(
pp(k)

)
and may be identified with the

space of all sequences (zn), which may be written as a constant se-
quence plus a sequence (wn) such that (nkwn) ∈ `p, under the action
(an) 7→ (anzn).

Proof. The proof of the preceding theorem certainly shows that such
sequences (wn) define central operators on p1(k) as do the constant
sequences. If (zn) does define an orthomorphism on pp(k) then by
applying it to the sequence (nk) we see that (nkzn)∞n=1 ∈ pp(k). As
the `p part of this sequence does act on pp(k), the difference, which is
multiplication by a polynomial of degree at most k divided by nk, will
also do so. This difference may be written as

∑k
j=0 cjn

−j. How does

this act on the sequence (ni) ∈ pp(k), for 0 ≤ i < k? We obtain the

sequence with n’th term
∑k

j=0 cjn
i−j =

∑i
j=0 cjn

j−i +
∑k

j=i+1 cjn
j−i

where the first sum is a polynomial and the second behaves like ci+1/n
if ci+1 6= 0. This would prevent the non-polynomial part of the sequence
from being in `p so that ci+1 = 0 if 0 ≤ i < k. Thus the difference
sequence is actually constantly c0. �

Alternatively we could describe these sequences (zn) by the property
that (nkzn) ∈ `p+R(nk) which simultaneously shows how much smaller
the centre is in this case than in the case p > 1 and is also somewhat
reminiscent of the description of regular functionals on the space.

We haven’t actually seen the following circle of ideas in the literature,
although it does seems a natural one. We use the notation Ê for the
Dedekind completion of E and if x ∈ E+ then we use the notations
[0, x]E and [0, x]Ê to denote order intervals in E and in Ê respectively.

Definition 4.3. If E is an Archimedean vector lattice let D(E) denote
the linear span of the cone D(E)+ = {x ∈ E : [0, x]E = [0, x]Ê}.
Theorem 4.4. For any Archimedean vector lattice E, D(E) is the
largest ideal in E which is Dedekind complete in itself.

Proof. It is clear that D(E)+ is closed under multiplication by non-
negative scalars. It is closed under addition as if x1, x2 ∈ D(E)+ and

y ∈ [0, x1 + x2]Ê then the Riesz Decomposition property in Ê gives us

y1, y2 ∈ Ê with yi ∈ [0, xi]Ê for i = 1, 2. By hypothesis, yi ∈ [0, xi]E, so
that y = y1 + y2 ∈ E also. If 0 ≤ z ≤ x ∈ D(E)+ and y ∈ [0, z]Ê then
also y ∈ [0, x]Ê = [0, x]E, so that y ∈ [0, z]E and hence z ∈ D(E)+.
The linear span of D(E) is now clearly an ideal in E. To see that it
is Dedekind complete it suffices to consider non-empty subsets A of
the positive cone that are bounded above in D(E). For some x ∈ E,
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A ⊂ [0, x]E = [0, x]Ê, so A has a supremum in [0, x]Ê which also lies in
[0, x].

Conversely, if J is a Dedekind complete ideal in E let x ∈ J+ and
y ∈ [0, x]Ê then the set {z ∈ E : 0 ≤ z ≤ y} has supremum y in Ê and
also has a supremum in J as J is Dedekind complete. As the Dedekind
completion preserves arbitrary suprema and infima ([8], Theorem 32.2)
these suprema coincide, showing that y ∈ [0, x]E and hence that x ∈
D(E)+. As J+ ⊂ D(E)+ we certainly have J ⊂ D(E). �

Corollary 4.5. In every vector lattice there is a largest ideal which is
Dedekind complete in itself.

Proof. Theorem 4.4 establishes this in the Archimedean case. Recall
that a Dedekind complete vector lattice must be Archimedean, so that
any Dedekind complete ideal in a vector lattice E will be Archimedean.
But E contains a largest Archimedean ideal (see Theorem 1.5 of [6],
Corollary 2.2 of [10] or look at [7] together with the MathSciNet review
of [10]) and the largest Dedekind complete ideal in that will necessary
be the largest Dedekind complete ideal in the original vector lattice. �

We will term this largest Dedekind complete ideal in E the Dedekind
complete kernel of E. It is compatible with our previous definition if
we also denote this by D(E) in general, although the characterization
in the Archimedean case will not work in general. In view of the fact
that the result does not depend on E being Archimedean, our detour
via the Archimedean case seems rather unnatural so that we would like
to see a direct proof of this result.

In our context we have already commented on the description of the
Dedekind completion of pp(k) and of pp. These make the following
result almost obvious.

Proposition 4.6. If p ∈ {0} ∪ [1,∞) and k ∈ N∗ then the Dedekind
complete kernel of pp(k), and of pp, is precisely `p.

Definition 4.7. The non-Dedekind dimension of a vector lattice is the
linear dimension of the quotient space E/D(E).

This is an isomorphic invariant of an Archimedean vector lattice,
which will rarely be of any interest! However, in our setting the fact
that the non-Dedekind dimension of pp(k) is precisely k + 1, except
when p =∞ when it is k, is of some use to us.

Coming back to the centres of pp(k) we now note the following facts.

Proposition 4.8. The spaces pp(k) and Z
(
pp(k)

)
are order isomorphic

precisely when p ∈ {0} ∪ (1,∞] or when 0 < p ≤ 1 and k = 0.
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Proof. Theorem 4.1 proves the isomorphism when p = 0 or p > 1,
via the map (zn) 7→ (nkzn) : pp(k) → Z

(
pp(k)

)
. When 0 < p ≤ 1 and

k = 0 the description of the centre in Theorem 4.2 shows that Z
(
pp(0)

)
may be identified with the linear span of `p and the constant sequences,
which is precisely pp(0). The description of Z

(
pp(k)

)
for 0 < p ≤ 1

shows that it has non-Dedekind dimension of 1, whilst pp(k) has non-
Dedekind dimension of k + 1 so these spaces are not order isomorphic
if k 6= 0. �

Even though pp(k) $ pp(k+1) and we have just seen that Z
(
pp(k)

)
is

order isomorphic to pp(k) provided p 6= 1, we have the reverse inclusion
between the centres.

Proposition 4.9. For any p ∈ [0,∞] and k ∈ N∗, pp(k) is invariant
under the action of Z

(
pp(k + 1)

)
.

Proof. We deal first with the case that p = 0 or p > 1. If (zn) acts
on pp(k + 1) then nk+1zn = xn + pk+1(n) where (xn) ∈ `p and pk+1

is a polynomial of degree at most k + 1. We may write pk+1(n) =
npk(n) + α where pk is a polynomial of degree at most k and α ∈ R.
Now (nkzn) = (xn/n) +

(
pk(n)

)
+ (α/n). As p = 0 or p > 1 the first

and third term in this sum lie in `p (remembering that (xn) is bounded)
whilst the centre one is a polynomial, so that (nkzn) ∈ pp(k) showing
that (zn) ∈ Z

(
pp(k)

)
.

If 0 < p ≤ 1 then the condition for a sequence to act on pp(k + 1)
is that we can write it as constant sequence, which will certainly act
on pp(k), plus a term (zn) with (nk+1zk) ∈ `p. Clearly we will have
(nkzn) ∈ `p so that the sequence also acts on pp(k). �

It is clear that the restriction map from Z
(
pp(k + 1)

)
to Z

(
pp(k)

)
is

never onto, so that we may also write Z
(
pp(k + 1)

)
$ Z

(
pp(k)

)
.

Although it is clear that none of the spaces pp(k) are closed under
pointwise multiplication, it is now clear that we do have a product
structure on them if p > 1 or p = 0.

Recall that a Riesz algebra is a vector lattice, which is also an asso-
ciative algebra under a multiplication ?, such that x, y ≥ 0⇒ x?y ≥ 0,
whilst and f -algebra is a Riesz algebra such that if y ⊥ z then x?y ⊥ z
and y ? x ⊥ z. See [2] and [3] for two recent relevant survey articles.

Proposition 4.10. If p ∈ {0} ∪ (1,∞] and k ∈ N∗ then pp(k) is
an f -algebra under the multiplication a ?k b = (anbn/n

k) with identity
(nk)∞n=1.

Proof. The centres are algebras under composition, and this translates
into pointwise multiplication of the representing sequences. Combining
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this with the order isomorphism of the centre with the original space
shows that pp(k) is ?k-closed. The remainder of the proof is routine. �

This is not true when 0 < p ≤ 1 and k > 0. For example, (1),
(nk−1) ∈ pp(k) but (1 × nk−1 × n−k) = (1/n) /∈ pp(k). Of course, in
the case k = 0, pp(0) is just `p ⊕ R(1) which is certainly closed under
pointwise multiplication.

The description of the centres of pp are rather more interesting. Be-
fore we deal with the detailed representations in the two cases that we
need to separate, we see what we can prove in general.

Theorem 4.11. If p ∈ [0,∞] then the following conditions on a se-
quence z = (zn) are equivalent:

(1) z ∈ Orth(pp),
(2) z ∈ Z(pp),
(3) z ∈

⋂∞
k=1 Z

(
pp(k)

)
,

Proof. As central operators are always orthomorphisms, to show that
(1) ⇔ (2), we need only show that if (zn) ∈ Orth(pp) then (zn) is
bounded. As (1) ∈ pp we see that (zn) = (zn× 1) ∈ pp. Thus there is a
polynomial q and a constant M (as `p ⊂ `∞) such that |zn−q(n)| ≤M
for all n ∈ N. If (zn) were not bounded then neither would q be and,
in particular, q is not constant. Choose a subsequence (nk) such that
q(nk) → ∞ fast enough that the sequence

(
k/q(nk)

)
∈ `p. Define

(xn) ∈ `p by xn = k/q(n2k) if n = 2k and xn = 0 otherwise. As (zn)
acts on pp the product (xnyn) lies in pp. As

(
(zn − q(n)

)
xn

)
∈ `p, we

see that
(
q(n)xn

)
∈ pp. But q(n)xn = k if n = n2k and q(n)xn = 0

otherwise. If we set
(
q(n)xn

)
=
(
r(n)

)
+ (bn) where r is a polynomial

and (bn) ∈ `p ⊂ `∞ then looking at the terms with n 6= n2k shows that
the polynomial part is bounded and therefore the entire sequence must
be bounded, which is not the case.

To see that (2) ⇒ (3), suppose that (zn) ∈ Z(pp). If (zn) /∈⋂∞
k=1 Z

(
pp(k)

)
, let m be the smallest integer such that (zn) /∈ pp(m),

noting that (1) ∈ pp and that (zn) = (zn)(1). It would follow that
(znn

m)∞n=1 ∈ pp \pp(m). Thus there is a polynomial, q, of degree higher
than m, such that

(
znn

m−q(n)
)∞

n=1
lies in `p and is therefore bounded.

If we write q(n) = αnr + . . . , where r > m and the remaining terms are
of lower degree, then zn − αnr−m tends to zero as n → ∞. It follows
that (zn) is not bounded, contrary to hypothesis.

Clearly, if (zn) ∈
⋂∞

k=1 Z
(
pp(k)

)
then it certainly leaves each pp(k)

invariant so also leaves their union, which is precisely pp, invariant.
Clearly (zn) will act as an orthomorphism on pp. I.e. (3)⇒ (1). �
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Theorem 4.12. If p ∈ {0}∪ (1,∞] then the following conditions on a
sequence z = (zn) are equivalent:

(1) z ∈
⋂∞

k=1 Z
(
pp(k)

)
,

(2) There is a (unique) real sequence (ak)
∞
k=0, such that

(nkzn −
∑k

j=0 ajn
k−j) ∈ `p for all k ∈ N∗.

Proof. It is clear from Theorem 4.1 that (2)⇒ (1). The same theorem
tells us that if (zn) ∈

⋂∞
k=1 Z

(
pp(k)

)
then for all k we may write

zn =
k∑

j=0

ak
j n

−j + bk
nn

−k

where, for each k, the sequence (bk
n) ∈ `p. If we temporarily fix k

and let n → ∞ we see that limn→∞ zn = ak
0 so that we may drop the

superscript and write a0 irrespective of k. Now,

n(zn − a0) =
k∑

j=1

ak
j n

1−j + bk
nn

−k

so that again ak
1 = limn→∞ n(zn − a0) independently of k. Proceeding

inductively we have an infinite sequence (aj) such that

zn =
k∑

j=0

ajn
−j + bk

nn
−k

where, for each k, the sequence (bk
n)∞n=1 ∈ `p. This is precisely (2).

The uniqueness of the sequence (an) is clear from the description of
the elements as limits. �

It is tempting to think that we actually have convergence of the series∑∞
j=0 ajn

−j to zn for this or some other sequence (aj). This need not be

the case. If there were then the sequence (aj) will certainly satisfy (2).
For example, if δm denotes the sequence with 0 for all terms except
the m’th which is 1, then this lies in Z(p0). Taking (aj) to be the
zero sequence, the difference between δm and the k’th approximation
using the sequence (aj) is precisely δm which is in c0 for all k. By the
uniqueness of the sequence (aj) there is no other possible choice.

Interestingly, the centres of p0 and of p∞ coincide, in spite of the ap-
parently different descriptions that are given in the preceding theorem.

Theorem 4.13. The following conditions on a sequence (zn) are equiv-
alent:

(1) (zn) ∈ Z(p∞),
(2) (zn) ∈ Z(p0),
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(3) There is a (unique) real sequence (ak)
∞
k=0, such that

(nkzn −
∑k

j=0 ajn
k−j) ∈ `∞ for all k ∈ N∗,

(4) There is a (unique) real sequence (ak)
∞
k=0, such that

(nkzn −
∑k

j=0 ajn
k−j) ∈ c0 for all k ∈ N∗.

Proof. That (1) is equivalent to (3), and (2) to (4), are immediate from
Theorem 4.11 and Theorem 4.12. Clearly (4) implies (3). If (an) is a
sequence satisfying (3) and k ∈ N∗, then

zn =
k+1∑
j=0

ajn
−j + bnn

−(k+1)

where (bn) ∈ `∞. Now

zn =
k∑

j=1

ajn
−j +

(
(ak+1 + bn)/n

)
n−k

and it is clear that
(
(ak+1 + bn)/n

)∞
n=1
∈ c0, establishing (4). �

In this case, where p ∈ {0} ∪ (1,∞], we have the following rather
unlikely looking diagram which is, of course, not commutative.

· · · ↪→ p∞(k) ↪→ p∞(k + 1) ↪→ · · · ↪→ p∞xy xy
· · · ←↩ Z

(
p∞(k)

)
←↩ Z

(
p∞(k + 1)

)
←↩ · · · ←↩ Z(p∞)

where l denotes order isomorphism. This diagram forces upon us the
question of whether or not pp is order isomorphic to its centre. This
is not the case as Z(pp) has a strong order unit, the identity operator,
whilst pp certainly does not have a strong order unit.

Finally, let us look at the centre of pp where p ∈ (0, 1], which turns
out to be rather simpler than our first case.

Theorem 4.14. If p ∈ (0, 1] then the sequence (zn) acts centrally on
pp if and only if (zn) can be written as the sum of a constant sequence
plus a sequence (wn) such that (nkwn) ∈ `p for all k ∈ N∗.

Proof. Immediate from Theorems 4.2 and 4.11. �
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