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UNITARY SK; OF GRADED AND VALUED DIVISION ALGEBRAS, I
R. HAZRAT AND A. R. WADSWORTH

ABSTRACT. The reduced unitary Whitehead group SK; of a graded division algebra equipped with a unitary
involution (i.e., an involution of the second kind) and graded by a torsion-free abelian group is studied. It
is shown that calculations in the graded setting are much simpler than their nongraded counterparts. The
bridge to the non-graded case is established by proving that the unitary SK; of a tame valued division
algebra wih a unitary involution over a henselian field coincides with the unitary SK; of its associated graded
division algebra. As a consequence, the graded approach allows us not only to recover results available in
the literature with substantially easier proofs, but also to calculate the unitary SK; for much wider classes
of division algebras over henselian fields.
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Motivated by Platonov’s striking work on the reduced Whitehead group SK; (D) of valued division alge-
bras D, see [P, 4], V. Yanchevskii, considered the unitary analogue, SK; (D, 7), for a division algebra D
with unitary (i.e., second kind) involution 7, see [V, Yo, Y3, Y.]. Working with division algebras over a

field with henselian discrete (rank 1) valuation whose residue field also contains a henselian discrete valua-

tion, and carrying out formidable technical calculations, he produced remarkable analogues to Platonov’s
results. By relating SK;(D, 7) to data over the residue algebra, he showed not only that SK;(D, ) could
be nontrivial but that it could be any finite abelian group, and he gave a formula in the bicyclic case
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expressing SK; (D, 7) as a quotient of relative Brauer groups. Over the years since then several approaches
have been given to understanding and calculating the (nonunitary) group SK; using different methods,
notably by Ershov [E], Suslin [S, 55], Merkurjev and Rost [Mer] (For surveys on the group SKj, see [P4],
[G], [Mer] or [Ws, §6].) However, even after the passage of some 30 years, there does not seem to have been
any improvement in calculating SK; in the unitary setting. This may be due in part to the complexity of
the formulas in Yanchevskii’s work, and the difficulty in following some of his arguments.

This paper is a sequel to | ] where the reduced Whitehead group SK; for a graded division algebra
was studied. Here we consider the reduced unitary Whitehead group of a graded division algebra with
unitary graded involution. As in our previous work, we will see that the graded calculus is much easier and
more transparent than the non-graded one. We calculate the unitary SK; in several important cases. We
also show how this enables one to calculate the unitary SK; of a tame division algebra over a henselian field,
by passage to the associated graded division algebra. The graded approach allows us not only to recover
most of Yanchevskii’s results in [Yo, Y3, Y], with very substantially simplified proofs, but also extend
them to arbitrary value groups and to calculate the unitary SK; for wider classes of division algebras.
There is a significant simplification gained by considering arbitrary value groups from the outset, rather
than towers of discrete valuations. But the greatest gain comes from passage to the graded setting, where
the reduction to arithmetic considerations in the degree 0 division subring is quicker and more transparent.

We briefly describe our principal results. Let E be a graded division algebra, with torsion free abelian
grade group I'g, and let 7 be a unitary graded involution on E. “Unitary” means that the action of 7 on
the center T = Z(E) is nontrivial (see §2.3). The reduced unitary Whitehead group for T on E is defined as

SKi(E,7) = {a € E"|Nrdg(a'™ ") =1}/(a € E* |a'" =1),

where Nrdg is the reduced norm map Nrdg: E* — T* (see | , §3]). Here, a'~7 means a7(a)~!. Let
R=T ={teT]|7@) =t} ST (see §2.3). Let Eg be the subring of homogeneous elements of
degree 0 in E; likewise for Tg and Rg. For an involution p on Eg, S,(Ep) denotes {a € Eg | p(a) = a} and
Y,(Eo) = (S,(Eo) NES). Let n be the index of E, and e the exponent of the group I'e /I't. Since [T : R] = 2,
there are just two possible cases: either (i) T is unramified over R, i.e., I't = I'g; or (ii) T is totally ramified
over R, i.e., |I't : T'r| =2 . We will prove the following formulas for the unitary SKj:

(i) Suppose T/R is unramified:
o If E/T is unramified, then SK;(E, 7) = SK;(Eo, 7|g,) (Prop. 4.10).
e If E/T is totally ramified, then (Th. 5.1):
SKi(E,7) & {a€T5|a" €R5}/{ae Ty | a® € R}
{w € tn(To) | T(w) = w_l}/ue.
o If I'g /'y is cyclic, and o is a generator of Gal(Z(Ey)/Tp), then (Prop. 4.13):

o SKl(E,T) = {a € ES | NZ(EO)/TQ(NrdEO (a)) S RQ}/(ET(E()) . EUT(E())).
o If Ep is a field, then SK;(E, 7) = 1.

12

e If E has a maximal graded subfield M unramified over T and another maximal graded subfield L
totally ramified over T, with 7(L) = L, then E is semiramified and (Cor. 4.11)

SKl(E,T) = {(L € Eg | NEO/TO(Q) S RQ}/ H EShT.
heGal(Eo/To)

(ii) If T/R is totally ramified, then SK;(E,7) =1 (Prop. 4.5).
The bridge between the graded and the non-graded henselian setting is established by Th. 3.5, which

shows that for a tame division algebra D over a henselian valued field with a unitary involution 7,
SK1(D, 1) = SK;(gr(D),T) where gr(D) is the graded division algebra associated to D by the valuation,
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and 7T is the graded involution on gr(D) induced by 7 (see §3). Thus, each of the results listed above
for graded division algebras yields analogous formulas for valued division algebras over a henselian field,
as illustrated in Example 5.3 and Th. 5.4. This recovers existing formulas, which were primarily for the
case with value group Z or Z x Z, but with easier and more transparent proofs than those in the existing
literature. Additionally, our results apply for any value groups whatever. The especially simple case where
E/T is totally ramified and T/R is unramified is entirely new.

In the sequel to this paper [W3], the very interesting special case will be treated where E/T is semi-
ramified (and T/R is unramified) and Gal(Ey/Tg) is bicyclic. This case was the setting of essentially all
of Platonov’s specifically computed examples with nontrivial SK; (D) [P, Ps], and likewise Yanchevskii’s
unitary examples in [Y3] where the nontrivial SK;(D,7) was fully computed. This case is not pursued
here because it requires some more specialized arguments. For such an E, it is known that [E] decomposes
(nonuniquely) as [l @1 N] in the graded Brauer group of T, where | is inertial over T and N is nicely
semiramified, i.e., semiramified and containing a maximal graded subfield totally ramified over T. Then a
formula will be given for SK;(F) as a factor group of the relative Brauer group Br(Eq/Tp) modulo other
relative Brauer groups and the class of lp. An exactly analogous formula will be proved for SK;(E,7) in
the unitary setting.

2. PRELIMINARIES

Throughout this paper we will be concerned with involutory division algebras and involutory graded
division algebras. In the non-graded setting, we will denote a division algebra by D and its center by K;
this D is equipped with an involution 7, and we set F' = K™ = {a € K | 7(a) = a}. In the graded setting,
we will write E for a graded division algebra with center T, and R = T” where 7 is a graded involution on E.
(This is consistent with the notation used in | ].) Depending on the context, we will write 7(a) or a”
for the action of the involution on an element, and K™ for the set of elements of K invariant under 7. Our
convention is that a?” means o(7(a)).

In this section, we recall the notion of graded division algebras and collect the facts we need about
them in §2.1. We will then introduce the unitary and graded reduced unitary Whitehead groups in §2.2
and §2.3.

2.1. Graded division algebras. In this subsection we establish notation and recall some fundamental
facts about graded division algebras indexed by a totally ordered abelian group. For an extensive study
of such graded division algebras and their relations with valued division algebras, we refer the reader
to | |. For generalities on graded rings see | ].

Let R = @761“ R, be a graded ring, i.e., I' is an abelian group, and R is a unital ring such that each Ry
is a subgroup of (R,+) and Ry - R C R, for all 4,8 € I'. Set

I'n = {yeTI'|R,#0}, the grade set of R;

Rl = U, erg Ry: the set of homogeneous elements of R.

For a homogeneous element of R of degree v, i.e., an r € R, \ {0}, we write deg(r) = 7. Recall that Ry is
a subring of R and that for each v € I'r, the group R, is a left and right Rp-module. A subring S of R is a
graded subring if S = €D, cr, (SNRy). For example, the center of R, denoted Z(R), is a graded subring of R.
IfT= ®76F T, is another graded ring, a graded ring homomorphism is a ring homomorphism f: R — T
with f(Ry) C T, for all v € I'. If f is also bijective, it is called a graded ring isomorphism; we then write
R, T.

For a graded ring R, a graded left R-module M is a left R-module with a grading M = 69761“’ M,, where
the M, are all abelian groups and I" is an abelian group containing I', such that R, - Ms C M, s for all
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v € T'R,0 € I'. Then, T'y and M” are defined analogously to I'r and R". We say that M is a graded free
R-module if it has a base as a free R-module consisting of homogeneous elements.

A graded ring E = @wer E, is called a graded division ring if I' is a torsion-free abelian group and
every non-zero homogeneous element of E has a multiplicative inverse in E. Note that the grade set ['g is
actually a group. Also, Eq is a division ring, and E, is a 1-dimensional left and right Eg vector space for
every v € I'e. Set E} = E, \ {0}. The requirement that I be torsion-free is made because we are interested
in graded division rings arising from valuations on division rings, and all the grade groups appearing there
are torsion-free. Recall that every torsion-free abelian group I' admits total orderings compatible with the
group structure. (For example, I' embeds in I' ®z Q which can be given a lexicographic total ordering
using any base of it as a Q-vector space.) By using any total ordering on I'g, it is easy to see that E has no
zero divisors and that E*, the multiplicative group of units of E, coincides with E"\ {0} (cf. | , p- 78]).
Furthermore, the degree map

deg: E* - T (2.1)

is a group epimorphism with kernel Eg.
By an easy adaptation of the ungraded arguments, one can see that every graded module M over a
graded division ring E is graded free, and every two homogenous bases have the same cardinality. We thus
call M a graded vector space over E and write dimg(M) for the rank of M as a graded free E-module. Let

S C E be a graded subring which is also a graded division ring. Then we can view E as a graded left
S-vector space, and we write [E : S] for dimg(E). It is easy to check the “Fundamental Equality,”

[E:S] = [Eo:So]|Te:Ts|, (2.2)
where [Eq : Sp] is the dimension of Eg as a left vector space over the division ring Sg and |I'g : I's| denotes

the index in the group I'g of its subgroup I's.

A graded field T is a commutative graded division ring. Such a T is an integral domain (as I't is torsion
free), so it has a quotient field, which we denote ¢(T). It is known, see | , Cor. 1.3], that T is integrally
closed in ¢(T). An extensive theory of graded algebraic field extensions of graded fields has been developed
in [ ].

If E is a graded division ring, then its center Z(E) is clearly a graded field. The graded division rings con-
sidered in this paper will always be assumed finite-dimensional over their centers. The finite-dimensionality
assures that E has a quotient division ring ¢(E) obtained by central localization, i.e., ¢(E) = E ®71 ¢(T),
where T = Z(E). Clearly, Z(q(E)) = ¢(T) and ind(E) = ind(¢q(E)), where the index of E is defined
by ind(E)? = [E : T] (see | , p- 89]). If S is a graded field which is a graded subring of Z(E) and
[E : S] < oo, then E is said to be a graded division algebra over S. We recall a fundamental connection
between I'e and Z(Ep): The field Z(Ep) is Galois over Ty, and there is a well-defined group epimorphism

Op: I'e — Gal(Z(Ey)/To) given by  deg(e) — (2 +— eze ), (2.3)

for any e € E*. (See | , Prop. 2.3] for a proof).

Let E =P aerg Ea be a graded division algebra with a graded center T (with, as always, I'g a torsion-free
abelian group). After fixing some total ordering on I'g, define a function

A:EN{0} = E* by A(>cy) =cs, where § is minimal among the v € I'e with ¢, # 0.
Note that A(a) = a for a € E*, and

A(ab) = A(a)A(b) for all a,b € E\ {0}. (2.4)

Let @ = ¢(E) = E®1 ¢(T), which is a division ring as E has no zero divisors and is finite-dimensional
over T. We can extend A to a map defined on all of Q* = @ \ {0} as follows: for ¢ € Q*, write ¢ = ac™!
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with a € E\ {0}, ¢ € Z(E) \ {0}, and set A(q) = A(a)\(c)~!. It follows from (2.4) that A\: Q* — E* is
well-defined and is a group homomorphism. Since the composition

E* — Q" 25 E (2.5)

is the identity, A is a splitting map for the injection E* — Q*.

For a graded division algebra E over its center T, there is a reduced norm map Nrdg: E* — T* (see | ,
§3]) such that for a € E one has Nrdg(a) = Nrd,g(a). The reduced Whitehead group, SK1(E), is defined
as E) /E', where EM denotes the set of elements of E* with reduced norm 1, and E’ is the commutator
subgroup [E*,E*] of E*. This group was studied in detail in | |. We will be using the following facts
which were established in that paper:

Remarks 2.1. Let n = ind(E).

(i) For v € I'g, if a € E,, then Nrdg(a) € E,,. In particular, EM is a subset of Eq.
(ii) If S is any graded subfield of E containing T and a € S, then Nrdg(a) = NS/T(a)”/[S:T].
(iii) Set

9 = ind(E)/(ind(Eo) [Z(Eo): To)). (2.6)
If a € Eg, then,
Nrde(a) = Nyo)7,Nrdg,(a)? € To. (2.7)
(iv) If N is a normal subgroup of E*, then N™ C Nrdg(V)[E*, N].
For proofs of (i)-(iv) see | , Prop. 3.2 and 3.3].
(v) SK;(E) is n-torsion.
Proof. By taking N = E()| the assertion follows from (iv). O

A graded division algebra E with center T is said to be inertial (or unramified) if I'e = I't. From (2.2),
it then follows that [E : T] = [Eg : To|; indeed, Ey is central simple over Tg and E =4 Eg®7, T. At the other
extreme, E is said to be totally ramified if Eg = Ty. In an intermediate case E is said to be semiramified
if Eg is a field and [Eq : To] = |T'g : I't| = ind(E). These definitions are motivated by analogous definitions
for valued division algebras ([\W5]). Indeed, if a tame valued division algebra is unramified, semiramified,
or totally ramified, then so is its associated graded division algebra. Likewise, a graded field extension
L of T is said to be inertial (or unramified) if L =g Lo @1, T and the field L is separable over Ty. At the
other extreme, L is totally ramified over T if [L: T| = |T'L : I't|. A graded division algebra E is said to be
inertially split if E has a maximal graded subfield L with L inertial over T. When this occurs, Eqg = Lg, and
ind(E) = ind(Eg) [Z(Eo) : To] by Lemma 2.2 below. In particular, if E is semiramified then E is inertially
split, Eg is abelian Galois over T, and the canonical map Og: I'e — Gal(Eqg/T¢) has kernel I't (see (2.3)
above and | , Prop. 2.3]).

Lemma 2.2. Let E be a graded division algebra with center T. For the O of (2.6), 0°> = |ker(©g)/T'1|.
Also, 0 = 1 iff E is inertially split.

Proof. Since O is surjective, I't C ker(Og), and Z(Ey) is Galois over T, we have
9® = ind(E)* / (ind(Eo)? [Z(Eo) : To]*) = [E:T]/([Eo: Z(To)][Z(Eo) : To] | Gal(Z(Eo)/To)|)
= [Eo: To] [Te/Tr|/ ([Eo : To] |im(Ok)|) = |ker(©g)/Trl.

Now, suppose M is a maximal subfield of Ey with M separable over Tg. Then, M 2O Z(Ejp) and
[M : Z(Ep)] = ind(Ep). Let L = M ®T, T which is a graded subfield of E inertial over T, with Lo = M.
Then,

[L:T] = [Lo:To] = [Lo: Z(Eo)][Z(Eo): To] = ind(E)/0.
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Thus, if 9 = 1, then E is inertially split, since L is a maximal graded subfield of E which is inertial over T.
Conversely, suppose E is inertially split, say | is a maximal graded subfield of E with | inertial over T. So,

[lo: To] =[l: T] = ind(E). Since l9Z(Eyp) is a subfield of Eg, we have
[l() : To] S [loZ(Eo) : Tg] = [loZ(Eo) : Z(Eo)] [Z(EO) : To}
< ind(Eo) [Z(Eo) :To] = 1nd(E)/8 = [l[) : To]/a

So, as d is a positive integer, 0 = 1. a

2.2. Unitary SK; of division algebras. We begin with a description of unitary K and SK; for a division
algebra with an involution. The analogous definitions for graded division algebras will be given in §2.3.

Let D be a division ring finite-dimensional over its center K of index n, and let 7 be an involution
on D, i.e., T is an antiautomorphism of D with 72 = id. Let

S-(D) = {de D |7(d) =d};
Y. (D) = (S-(D)nD*).

Note that ¥,(D) is a normal subgroup of D*. For, if a € S;(D), a # 0, and b € D*, then bab~! =
[baT (b)][bT(b)] ! € B.(D), as bar(b),br(b) € S-(D).

Let ¢ be an isotropic m-dimensional, nondegenerate skew-Hermitian form over D with respect to an
involution 7 on D. Let p be the involution on M,,(D) adjoint to ¢, let U,,,(D) = {a € M,,(D) | ap(a) = 1}
be the unitary group associated to ¢, and let EU,,(D) denote the normal subgroup of U,,(D) generated
by the unitary transvections. For m > 2, the Wall spinor norm map ©: U,, (D) — D*/%. (D)D" was

developed in [Wa], where it was shown that ker(©) = EU,,(D). Here, D' denotes the multiplicative
commutator group [D*, D*]. Combining this with [, Cor. 1 of §22] one obtains the commutative diagram:

Un(D)/ BUn(D) —Z= D"/ (8-(D)D')

| -

GLyy(D)/Em(D) —%*— D* /D’ (2.8)
Nrdl iNrd
K < K
where the map det is the Dieudonné determinant and 1 — 7: D*/(2,(D)D') — D*/D’ is defined as
X (D)D' +— x'=7D’, where '~ means z7(x) ! (see [[\, 6.4.3]).

From the diagram, and parallel to the “absolute” case, one defines the unitary Whitehead group,
Ki(D,7) = D*/(ET(D)D').
For any involution 7 on D, recall that
Nrdp(7(d)) = 7(Nrdp(d)), (2.9)
for any d € D. For, if p € K|[z] is the minimal polynomial of d over K, then 7(p) is the minimal polynomial
of 7(d) over K (see also [D, §22, Lemma 5]).

We consider two cases:

2.2.1. Involutions of the first kind. In this case the center K of D is elementwise invariant under the
involution, i.e., K C S;(D). Then S;(D) is a K-vector space. The involutions of this kind are further
subdivided into two types: orthogonal and symplectic involutions (see | , Def. 2.5]). By (| ,
Prop. 2.6]), if char(K) # 2 and 7 is orthogonal then, dimg (S;(D)) = n(n + 1)/2, while if 7 is symplectic
then dimg (S7(D)) = n(n —1)/2. However, if char(K) = 2, then dimg (S-(D)) = n(n+1)/2 for each type.
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If dimg (S7(D)) = n(n+ 1)/2, then for any z € D*, we have xS-(D) N S;(D) # 0 by dimension count;
it then follows that D* = ¥ (D), and thus K;(D,7) = 1. However, in the case dimg (S;(D)) = n(n—1)/2,
Platonov showed that K7(D,7) is not in general trivial, settling Dieudonné’s conjecture in negative [I;].
Note that whenever 7 is of the first kind we have Nrdp(7(d)) = Nrdp(d) for all d € D, by (2.9). Thus,
K1(D, ) is sent to the identity under the composition Nrdo(1—7). This explains why one does not consider
the kernel of this map, i.e., the unitary SKj, for involutions of the first kind. If char(K) # 2 and 7 is
symplectic, then as the m-dimensional form ¢ over D is skew-Hermitian, its associated adjoint involution p
on M,,(D) is of orthogonal type, so there is an associated spin group Spin(M,,(D), p). For any a € S(D)
one then has Nrdp(a) € K*? (| , Lemma 2.9]). One defines K; Spin(D,7) = R(D)/(2-(D)D’),
where R(D) = {d € D* | Nrdp(d) € K**}. This group is related to Spin(M,, (D), p), and has been studied
in [MY], parallel to the work on absolute SK; groups and unitary SK; groups for unitary involutions.

2.2.2. Involutions of the second kind (unitary involutions). In this case K ¢ S;(D). Then, let
F =K" (= KNS;(D)), which is a subfield of K with [K : F] = 2. It was already observed by Dieudonné
that Uy, (D) # EU,,(D). An important property proved by Platonov and Yanchevskii, which we will use
frequently, is that

D' C %.(D). (2.10)

(For a proof, see | , Prop. 17.26].) Thus K,(D,7) = D*/%¥.(D), which is not trivial in general. The
kernel of the map Nrdo(1—7) in diagram (2.8), is called the reduced unitary Whitehead group, and denoted
by SKi(D, 7). Using (2.9), it is straightforward to see that

SKy(D,7) = ¥(D)/%:(D), where ¥/ (D) = {a€ D*|Nrdp(a) € F*}.

Note that we use the notation SK; (D, 7) for the reduced unitary Whitehead group as opposed to Draxl’s
notation USK; (D, 7) in [D, p. 172] and Yanchevskii’s notation SUK; (D, 7) [Y5] and the notation USK; (D)
in [ ].

Before we define the corresponding groups in the graded setting, let us recall that all the groups above
fit in Tits’ framework [1] of the Whitehead group W (G, K) = G /G}; where G is an almost simple, simply
connected linear algebraic group defined over an infinite field K, with char(K) # 2, and G is isotropic
over K. Here, Gk is the set of K-rational points of G and G}r{, is the subgroup of G, generated by
the unipotent radicals of the minimal K-parabolic subgroups of G. In this setting, for Gx = SL, (D),
n > 1, we have W(G, K) = SK;(D); for 7 an involution of first or second kind on D and F' = K7, for
Gr = SL,(D, 1) := SL,(D)NU, (D) we have W (G, F') = SK;y(D, 7); and for 7 a symplectic involution on D
and p the adjoint involution of an m-dimensional isotropic skew-Hermitian form over D with m > 3, for
the spinor group Gx = Spin(M,, (D), p) we have W (G, K) is a double cover of Ky Spin(D, ) (see [MY]).

2.3. Unitary SK; of graded division algebras. We will now introduce the unitary K; and SK; in
the graded setting. Let E = @%FE E, be a graded division ring (with I'e a torsion-free abelian group)

2 over its center T, a graded field. Let 7 be a graded involution of E,

such that E has finite dimension n
i.e., 7 is an antiautomorphism of E with 72 = id and 7(E,) = E, for each v € I'e. We define S;(E)
and X, (E), analogously to the non-graded cases, as the set of elements of E which are invariant under 7,
and the multiplicative group generated by the nonzero homogenous elements of S;(E), respectively. We
say the involution of the first kind if all the elements of the center T are invariant under 7; it is of the
second kind (or unitary) otherwise. If 7 is of the first kind then, parallel to the non-graded case, either
dimT(S7(E)) = n(n+1)/2 or dimt(S;(E)) = n(n—1)/2. Indeed, one can show these equalities by arguments
analogous to the nongraded case as in the proof of | , Prop. 2.6(1)], as E is split by a graded maximal
subfield and the Skolem—Noether theorem is available in the graded setting ([ , Prop. 1.6]). (These
equalities can also be obtained by passing to the quotient division algebra as is done in Lemma 2.3(i)
below.)



8 R. HAZRAT AND A. R. WADSWORTH

Define the unitary Whitehead group
Ki(E,7) = E*/(ET(E)E’),

where E' = [E*, E*]. If 7 is of the first kind, char(T) # 2, and dimt(S;(E)) = n(n —1)/2, a proof similar to
[ , Prop. 2.9], shows that if a € S (E) is homogeneous, then Nrdg(a) € T*2 (This can also be verified
by passing to the quotient division algebra, then using Lemma 2.3(i) below and invoking the corresponding
result for ungraded division algebras.) For this type of involution, define the spinor Whitehead group

K, Spin(E,7) = {a € E* | Nrdg(a) € T} /(S (E)E).

When the graded involution 7 on E is unitary, i.e., 7|t # id, let R = T7, which is a graded subfield

of T with [T : R] = 2. Furthermore, T is Galois over R, with Gal(T/R) = {id, 7|t}. (See | | for Galois
theory for graded field extensions.) Define the reduced unitary Whitehead group

SKi(E,7) = ¥(E)/(B-(E)E) = XL(E) /%, (E), (2.11)
where

S (E) = {a€E*|Nrdg(a'" ") =1} = {a€E*|Nrdg(a) € R*}

and
Y(E) = (a€E*|a" " =1) = (S, (E)NE").

Here, a!~7 means a7(a)~!. See Lemma 2.3(iv) below for the second equality in (2.11). The group SK; (E, 7)
will be the main focus of the rest of the paper.

1—

We will use the following facts repeatedly:

Lemma 2.3.

(i) Any graded involution on E extends uniquely to an involution of the same kind (and type) on Q = q(E).
(ii) For any graded involution T on E, and its extension to Q = q(E), we have ¥.(Q) NE* C ¥ (E).
(iii) If 7 is a graded involution of the first kind on E with dim7(S;(E)) = n(n + 1)/2, then ¥,(E) = E*.
(iv) If T is a unitary graded involution on E, then E' C X (E).
)

(v) If T is a unitary graded involution on E, then SK1(E, T) is a torsion group of bounded exponent dividing
n = ind(E).

Proof.

(i) Let 7 be a graded involution on E. Then ¢(E) = E®7¢(T) = E®T (T ®@7- ¢(T7)) = E®7- q(T7).
The unique extension of 7 to q(E) is 7 @ idy(tr), which we denote simply as 7. It then follows that
Sr(q(E)) = S-(E) @1~ ¢(T7). Since ¢(T7) = ¢(T)7, the assertion follows.

(ii) Note that for the map A in the sequence (2.5) we have 7(A(a)) = A(7(a)) for all a € Q*. Hence,
AM2-(Q)) € X,(E). Since A|g« is the identity, we have ¥,.(Q) NE* C X, (E).

(iii) The extension of the graded involution 7 to Q@ = ¢(E), also denoted 7, is of the first kind with
dimg(S-(Q)) = n(n+1)/2 by (i). Therefore ¥-(Q) = Q* (see §2.2.1). Using (ii) now, the assertion follows.

(iv) Since 7 is a unitary graded involution, its extension to ) = ¢(E) is also unitary, by (i). But
Q' C3,(Q), as noted in (2.10). From (2.5) it follows that @ N E* = FE. Hence, using (ii),
EFCENQ CE*NEA(Q) C =.(E).

(v) Setting N = X!/ (E), Remark 2.1(iv) above, coupled with the fact that E' C ¥.(E) (iv), implies
that SK;(E,7) is an n-torsion group. This assertion also follows by using (ii) which implies the natural
map SK;(E,7) — SK;(Q, 7) is injective and the fact that unitary SK; of a division algebra of index n is
n-torsion ([Y-, Cor. to 2.5]). O
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2.4. Generalized dihedral groups and field extensions. The nontrivial case of SK;(E,7) for 7 a
unitary graded involution turns out to be when T = Z(E) is unramified over R = T7 (see §4.2). When that
occurs, we will see in Lemma 4.6(ii) below that Z(Eg) is a so-called generalized dihedral extension over Ry.
We now give the definition and observe a few easy facts about generalized dihedral groups and extensions.

Definition 2.4.

(i) A group G is said to be generalized dihedral if G has a subgroup H such that [G : H] = 2 and every
T € G\ H satisfies 72 = id.

Note that if G is generalized dihedral and H the distinguished subgroup, then H is abelian and
(h7)? =id, for all 7 € G\H and h € H. Thus, 72 =id and Th7~! = h=! for all 7 € G\H,h € H.
Furthermore, every subgroup of H is normal in G. Clearly every dihedral group is generalized dihedral,
as is every elementary abelian 2-group. More generally, if H is any abelian group and y € Aut(H)
is the map h +— h~!, then the semi-direct product H x; (x) is a generalized dihedral group, where
i: (x) — Aut(H) is the inclusion map. It is easy to check that every generalized dihedral group is
isomorphic to such a semi-direct product.

(ii) Let FF C K C L be fields with [L : F| < co and [K : F| = 2. We say that L is generalized dihedral for
K/F if L is Galois over F' and every element of Gal(L/F)\ Gal(L/K) has order 2, i.e., Gal(L/F) is
a generalized dihedral group. Note that when this occurs, L is compositum of fields L; containing K
with each L; generalized dihedral for K/F with Gal(L;/K) cyclic, i.e., L; is Galois over F with
Gal(L;/F) dihedral (or a Klein 4-group). Conversely, if L and M are generalized dihedral for K/F
then so is their compositum.

Ezample 2.5. Let n € N, n > 3, and let FF C K be fields with [K : F|] = 2 and K = F(w), where w is
a primitive n-th root of unity (so char(F') { n). Suppose the non-identity element of Gal(X/F') maps w
to w™!. For any ci,...,c; € F*, if w & F(y/ci,..., ¢/c), then K(g/cy,..., {/ck) is generalized dihedral
for K/F.

3. HENSELIAN TO GRADED REDUCTION

The main goal of this section is to prove an isomorphism between the unitary SK; of a valued division
algebra with involution over a henselian field and the graded SK; of its associated graded division algebra.
We first recall how to associate a graded division algebra to a valued division algebra.

Let D be a division algebra finite dimensional over its center K, with a valuation v: D* — I'. So, I" is
a totally ordered abelian group, and v satisifies the conditions that for all a,b € D*,

(1) v(ab) = v(a) + v(b);
(2)  wla+b) = min{v(a),v(b)} (b# —a)
Let
Vb = {a€ D" |v(a) >0} U{0}, the valuation ring of v;
Mp = {a€ D" |v(a) >0} U{0}, the unique maximal left (and right) ideal of Vp;
D = Vp/Mp, the residue division ring of v on D; and
I'p = im(v), the value group of the valuation.

Now let K be a field with a valuation v, and suppose v is henselian; that is, v has a unique extension
to every algebraic field extension of K. Recall that a field extension L of K of degree n < oo is said
to be tamely ramified or tame over K if, with respect to the unique extension of v to L, the residue
field L is separable over K and char(K) { (n/[L : K]). Such an L is necessarily defectless over K,

ie, [L: K] =[L:K]|ls : T'kl|, by [EP, Th. 3.3.3] (applied to N/K and N/L, where N is a normal
closure of L over K). Along the same lines, let D be a division algebra with center K (so, by convention,
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[D : K] < 00); then the henselian valuation v on K extends uniquely to a valuation on D ([W]). With
respect to this valuation, D is said to be tamely ramified or tame if the center Z(D) is separable over K and
char(K) t [ind(D)/(ind(D)[Z(D) : K])]. Recall from [J\W, Prop. 1.7], that whenever the field extension
Z(D)/K is separable, it is abelian Galois. It is known that D is tame if and only if D is split by the
maximal tamely ramified field extension of K, if and only if char(K) = 0 or char(K) = p # 0 and the
p-primary component of D is inertially split, i.e., split by the maximal unramified extension of K ([JW,
Lemma 6.1]). We say D is strongly tame if char(K) { ind(D). Note that strong tameness implies tameness.
This is clear from the last characterization of tameness, or from (3.1) below. Recall also from [Mor, Th. 3],
that for a valued division algebra D finite dimensional over its center K (here not necessarily henselian),
we have the “Ostrowski theorem”

[D:K] = ¢*[D:K]|l'p:T'kl, (3.1)
where ¢ = char(D) and k € Z with k > 0 (and ¢* = 1 if char(D) = 0). If ¢* = 1 in equation (3.1), then
D is said to be defectless over K. For background on valued division algebras, see [JW] or the survey

paper [Ws].

Remark 3.1. If a field K has a henselian valuation v and L is a subfield of K with [K : L] < oo, then
the restriction w = v|r, need not be henselian. But it is easy to see that w is then “semihenselian,” i.e.,
w has more than one but only finitely many different extensions to a separable closure Lgep, of L. See [F1]
for a thorough analysis of semihenselian valuations. Notably, Engler shows that w is semihenselian iff the
residue field L,, is algebraically closed but there is a henselian valuation u on L such that v is a proper
coarsening of w and the residue field L, is real closed. When this occurs, char(L) = 0, L is formally real,
w has exactly two extensions to Lgep,, the value group I'z ,, has a nontrivial divisible subgroup, and the
henselization of L re w is L(y/—1), which lies in K. For example, if we take any prime number p, let
wy, be the p-adic discrete valuation on Q, and let L = {r € R| r is algebraic over Q}; then any extension
of w, to L is a semihenselian valuation. Note that if v on K is discrete, ie., I'x = Z, then w on L
cannot be semihenselian, since I'z, has no nontrivial divisible subgroup; so, w on L must be henselian. This
preservation of the henselian property for discrete valuations was asserted in [Y-, Lemma, p. 195], but the
proof given there is invalid.

One associates to a valued division algebra D a graded division algebra as follows: For each v € I'p, let
D=7 = {d € D*|v(d) >~} U {0}, an additive subgroup of D:;
D>7 = {d € D*|v(d) >~} U{0}, asubgroup of D=7; and
gr(D), = D=7/D>7.
Then define

&(D) = @ gD

Because D>7D>% + DZ7D> C D>(719) for all 4,6 € T'p, the multiplication on gr(D) induced by multi-
plication on D is well-defined, giving that gr(D) is a graded ring, called the associated graded ring of D.
The multiplicative property (1) of the valuation v implies that gr(D) is a graded division ring. Clearly, we
have gr(D), = D and Leepy = I'p. For d € D*, we write d for the image d + D> of d in gr(D)y(a)-
Thus, the map given by d — disa group epimorphism p : D* — gr(D)* with kernel 1+ Mp, giving us the
short exact sequence

1 —1+Mp — D" — gr(D)" — 1, (3.2)
which will be used throughout. For a detailed study of the associated graded algebra of a valued division
algebra refer to [ , §4]. As shown in | , Cor. 4.4], the reduced norm maps for D and gr(D) are

related by

Nrdp(a) = Nrdg(py(a) foralla € D" (3.3)
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Now let K be a field with a henselian valuation v and, as before, let D be a division algebra with
center K. Then v extends uniquely to a valuation on D, also denoted v, and one obtains associated
to D the graded division algebra gr(D) = ®76FD D.,. Further, suppose D is tame with respect to v.
This implies that [gr(D) : gr(K)] = [D : K], gr(K) = Z(gr(D)) and D has a maximal subfield L with
L tamely ramified over K (] , Prop. 4.3]). We can then associate to an involution 7 on D, a graded
involution 7 on gr(D). First, suppose 7 is of the first kind on D. Then v o 7 is also a valuation on D
which restricts to v on K; then, vo7 = v since v has a unique extension to D. So, 7 induces a well-defined
map 7: gr(D) — gr(D), defined on homogeneous elements by 7(a) = 7(a) for all a € D*. Clearly, T is a
well-defined graded involution on gr(D); it is of the first kind, as it leaves Z(gr(D)) = gr(K) invariant.

If 7 is a unitary involution on D, let F' = K. In this case, we need to assume that the restriction of the
valuation v from K to F' induces a henselian valuation on F', and that K is tamely ramified over F'. Since
(voT)|F = v|p, an argument similar to the one above shows that v o 7 coincides with v on K and thus
on D, and the induced map 7 on gr(D) as above is a graded involution. That K is tamely ramified over F
means that [K : F] = [gr(K) : gr(F)], K is separable over F, and char(F) { |Tx : T'p|. Since [K : F] = 2,
K is always tamely ramified over F' if char(F) # 2. But if char(F) = 2, K is tamely ramified over F' if
and only if [K : F] =2, 'y = I'p, and K is separable (so Galois) over F. Since K is Galois over F, the
canonical map Gal(K/F) — Gal(K /F) is surjective, by [2]°, pp. 123124, proof of Lemma 5.2.6(1)]. Hence,
7 induces the nonidentity F-automorphism 7 of K. Also 7 is unitary, i.e., Tlgr(x) # id. This is obvious if

char(F) # 2, since then K = F(y/c) for some ¢ € F*, and ?(%) = T/(_\\//E) = —% # \% If char(F) = 2,
then K is unramified over F and 7|g(x), = 7 (the automorphism of K induced by 7|x) which is nontrivial
as Gal(K/F) maps onto Gal(K/F); so again T|g ) # id. Thus, 7 is a unitary graded involution in
any characteristic. Moreover, for the graded fixed field gr(K)” we have gr(F) C gr(K)™ & gr(K) and
lgr(K) : gr(F)] = 2, so gr(K)" = gr(F).

Theorem 3.2. Let (D,v) be a tame valued division algebra over a henselian field K, with char(K) # 2.
If 7 is an involution of the first kind on D, then

Kl(DvT) = Kl(gr(D)v%/)’
and if T is symplectic, then

K, Spin(D, 1) = K; Spin(gr(D),T).

Proof. Let p: D* — gr(D)* be the group epimorphism given in (3.2). Clearly p(S-(D)) C Sz(gr(D)), so
p(2-(D)) C ¥x(gr(D)). Consider the following diagram where the vertical maps are inclusions:

1 —= (1+ Mp) N 8 (D)D' —= 5,(D)D' —*= $x(gr(D)) gr(D)' > 1

| |

1 (14 Mp) D* gr(D)* 1.

The top row of the diagram is exact. To see this, note that p(D’) = gr(D)’. Thus, it suffices to
show that p maps S;(D) N D* onto Sz(gr(D)) Ngr(D)*. For this, take any d € D* with d = 7(d). Let
b= i(d+7(d)) € S-(D). Since v(b) = v(7(b)) and d + 7(d) = 2d # 0, b= L(d + 7(d)) = L(d + 7(d)) = d.
Since 7 on D is an involution of the first kind, the index of D is a power of 2 ([, Th. 1, §16]). As

char(K) # 2, it follows that the valuation is strongly tame, and by [Ha, Lemma 2.1],
1+Mp = (1 + MK)[D*, 1+ MD] C ET(D)D,

Therefore, the left vertical map is the identity map. It follows (for example using the snake lemma) that
Ki(D,7) = Ky(gr(D), 7). The proof for K Spin when 7 is of symplectic type is similar. O
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The key to proving the corresponding result for unitary involutions is the Congruence Theorem:

Theorem 3.3 (Congruence Theorem). Let D be a tame division algebra over a field K with henselian
valuation v. Let DY) = {a € D* | Nrdp(a) = 1}. Then,

DY N 1+ Mp) C [D*,DY].

This theorem was proved by Platonov in [I’5] for v a complete discrete valuation, and it was an essential
tool in all his calculations of SK; for division rings. The Congruence Theorem was asserted by Ershov in
[E)] in the generality given here. A full proof is given in | , Th. B.1].

Proposition 3.4 (Unitary Congruence Theorem). Let D be a tame division algebra over a field K with
henselian valuation v, and let 7 be a unitary involution on D. Let F' = K7. If F is henselian with respect
to v|p and K is tamely ramified over F, then

(14+ Mp) N ¥L(D) C %.(D).

Proof. The only published proof of this we know is [V, Th. 4.9], which is just for the case v discrete rank 1;
that proof is rather hard to follow, and appears to apply for other valuations only if D is inertially split.
Here we provide another proof, in full generality.

We use the well-known facts that
Nrdp(1+ Mp) = 14+ Mg and NK/F(l—I—MK) = 1+ Mp. (3.5)

(The second equation holds as K is tamely ramified over F.) See [I, Prop. 2] or | , Prop. 4.6, Cor. 4.7]
for a proof.

Now, take m € Mp with Nrdp(1+m) € F. Then Nrdp(1+m) € FN(1+ Mg) =1+ Mp. By (3.5)
there is ¢ € 1 + Mk with Nrdp(1 +m) = Ng,p(c) = cr(c), and there is b € 1 + Mp with Nrdp(b) = c.
Then,

Nrdp(br(b)) = cr(c) = Ngyp(c) = Nrdp(l+m).
Let s = (1 4+ m)(br(b))~t € 1 + Mp. Since Nrdp(s) = 1, by the Congruence Theorem for SK;, Th. 3.3
above, s € [D*, D*] C ¥£.(D), (recall (2.10)) . Since br(b) € S;(D), we have 1+m = s(br(b)) € £.(D). O

Theorem 3.5. Let D be a tame division algebra over a field K with henselian valuation v. Let T be a
unitary involution on D, and let F = K7. If F is henselian with respect to v|p and K is tamely ramified
over F, then T induces a unitary graded involution T of gr(D) with gr(F) = gr(K)", and

SKy(D,7) = SKi(gr(D),7).

Proof. That 7 is a unitary graded involution on gr(D) and gr(F) = gr(K)T was already observed (see the
discussion before Th. 3.2). For the canonical epimorphism p: D* — gr(D)*, a — a, it follows from (3.3)
that p(X. (D) C X(gr(D)). Also, clearly p(S-(D)) C Sz(gr(D)), so p(3+(D)) C Xx(gr(D)). Thus, there is
a commutative diagram

1—— (1+ Mp)NS.(D) —= S.(D) —> S=(gr(D)) > 1

T

1 — (1+ Mp) N %, (D) — ¥ (D) —2> SL(gr(D)) > 1,

where the vertical maps are inclusions, and the left vertical map is bijective, by Prop. 3.4 above.

To see that the bottom row of diagram (3.6) is exact at ¥%(gr(D)), take b € D with Nrdg,(p)(b) € gr(F).
Let ¢ = Nrdp(b) € K*. Then ¢ = Nrdgr(D)(g) € gr(F),so ¢ =t for some t € F*. Let u = ¢~ 't € 1 + Mx.
By (3.5) above, there is d € 1 + Mp with Nrdp(d) = u. So, Nrdp(bd) = cu =t € F*. Thus, bd € ¥.(D)
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and p(bd) = bd = b. This gives the claimed exactness, and shows that the bottom row of diagram (3.6) is
exact.

To see that the top row of diagram (3.6) is exact at Xz(gr(D)), it suffices to show that p maps

S:(D) N D* onto Sz(gr(D)) Ngr(D)*. For this, take any d € D* with d = 7(d). If char(F) # 2, as
in the proof of Th. 3.2, let b= 3(d + 7(d)) € S;(D). Since v(b) = v(7(b)) and d + 7(d) = 2d # 0, we have
b= H(d+7(d) = %(J—i— TA(Jd)) = d. If char(F) = 2, then K is unramified over F, so K is Galois over F
with [K : F] = 2, and the map 7: K — K induced by 7 is the nonidentity F-automorphism of K. Of
course, K = gr(K)g and 7 = ﬂgr( K),- Because K is separable over F, the trace triz /P is surjective, so

there is r € Vi with 7+ 7(7) = 1 € gr(F)o. Let ¢ = rd + r(rd) € S-(D). We have rd = 7d and

r(rd) = 7(rd) = 7(7d) = F(A)7F(F) = 7(7)d.

Since v(rd) = v(7(rd)) and rd + % =7d +7(F)d = d # 0, we have ¢ = rd + T/(;/d) = d. So, in all cases
p(S-(D) N D*) = Sz(gr(D)) Ngr(D)*, from which it follows that the top row of diagram (3.6) is exact.
Since each row of (3.6) is exact, we have a right exact sequence of cokernels of the vertical maps, which
yields the isomorphism of the theorem. O

Having established the bridge between the unitary K-groups in the graded setting and the non-graded
henselian case (Th. 3.2, Th. 3.5), we can deduce known formulas in the literature for the unitary Whitehead
group of certain valued division algebras, by passing to the graded setting. The proofs are much easier
than those previously available. We will do this systematically for unitary involutions in Section 4. Before
we turn to that, here is an example with an involution of the first kind:

FEzample 3.6. Let E be a graded division algebra over its center T with an involution 7 of the first kind. If
E is unramified over T, then, by using E* = EjT*, it follows easily that

Kl(EyT) = KI(E()aT’Eo)a (37)
and, if char(E) # 2 and 7 is symplectic,
K, Spin(E, 7) = K, Spin(Eo, 7|g,). (3.8)

Now if D is a tame and unramified division algebra over a henselian valued field and D has an involution 7
of the first kind, then the associated graded division ring gr(D) is also unramified with the corresponding
graded involution 7 of the first kind; then Th. 3.2 and (3.7) above show that

Kl(DvT) = Kl(gr(D)a?) = Kl(gr(D)OvT‘gr(D)o) = Kl(ﬁa?)v

yielding a theorem of Platonov-Yanchevskii [PY, Th. 5.11] (that K;(D,7) = K1(D,7) when D is unram-

ified over K and the valuation is henselian and discrete rank 1.) Similarly, when char(D) # 2 and 7 is
symplectic,

K1 Spin(D,7) = K;Spin(gr(D),7) = KiSpin(gr(D)o, Tlgr(p),) = K1 Spin(D, 7).

Remark 3.7. We have the following commutative diagram connecting unitary SK; to non-unitary SKj,
where SH°(D, 7) and SHY(D) are the cokernels of Nrd o (1 — 7) and Nrd respectively (see diagram (2.8)).

Nrdo(1—7
1 ——= SK{(D,7) — D*/%(D) U e SHY(D,7) —1

e

1 —— SKi(D) D*/D' K* SHY(D) —— 1.
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Now, let D be a tame valued division algebra with center K and with a unitary involution 7, such that
the valuation restricts to a henselian valuation on F' = K7. By Th. 3.5, SKy(D, 1) = SK;(gr(D),7) and
by | , Th. 4.8, Th. 4.12], SK;(D) = SK;(gr(D)) and SH°(D) = SH°(gr(D)). However, SH(D, 1) is
not stable under “valued filtration”, i.e., SHY(D,7) % SH®(gr(D),7). In fact using (3.2), we can build a
commutative diagram with exact rows,

1 — (1 + Mg) N Nrd(D*)' =" —= Nid(D*)'~7 — Nrd (gr(D)*)' 7 —=1

| | J

1 1+ Mg K* gr(K)*

which induces the exact sequence
1 — (1+ Mg)/((1+ Mg) NNed(D*)"") — SH(D, 7) — SH(gr(D),7) — L.

By considering the norm Ny, p: K* — F*, we clearly have Nrd(D*)'~7 C ker Ng,p. However, by (3.5),
Ngp: 1+ Mg — 1+ Mp is surjective, which shows that 1+ Mg /((1+ Mg) N Nrd(D*)!~7) is not trivial
and thus SH(D, ) 2 SH(gr(D), 7).

4. GRADED UNITARY SK; CALCULUS

Let E be a graded division algebra over its center T with a unitary graded involution 7, and let R ="T7.
Since [T : R] =2 = [Ty : Ro] |I't : I'r|, there are just two possible cases:

e T is totally ramified over R, i.e., |I'r : I'g| = 2
e T is unramfied over R, i.e., [['7: 'g| = 1.

We will consider SK;(E, 7) in these two cases separately in §4.1 and §4.2.

The following notation will be used throughout this section and the next: Let 7" be another involution
on E. We write 7/ ~ 7 if 7'|;g) = T|z@E). For t € E*, let ¢; denote the map from E to E given by
conjugation by t, i.e., pi(z) = tat~L. Let 9 = X, NE; and ¥ = ¥/ NE},.

We first collect some facts which will be used below. They all follow by easy calculations.

Remarks 4.1.

i) We have 7" ~ 7 if and only if there is a t € E* with 7(¢) =t and 7/ = 7¢;. (The proof is analogous
P

to the ungraded version given, e.g. in | , Prop. 2.18].)

(ii) If 7/ ~ 7, then ¥ = ¥; and ¥/, = X7; thus SKy(E,7") = SKi(E, 7). (See [Y|, Lemma 1] for the
analogous ungraded result.)

(iii) For any s € E*, we have 75 = ¢, (,)-17. Hence, Ty, is an involution (necessarily ~ 7) if and only if
Ts = pg—17 if and only if 7(s)/s € T.

(iv) If s € E} and 7(s) = s, then X7 NE, = sX{ and S; NE, = s(S7, N Eg) where 75 = T¢s.

4.1. T/R totally ramified. Let E be a graded division algebra with a unitary graded involution 7 such
that T = Z(E) is totally ramified over R = T". In this section we will show that SK;(E, ) = 1. Note that
the assumption that T/R is totally ramified implies that char(T) # 2. For, if char(T) =2 and T is totally
ramified over a graded subfield R with [T : R] = 2, then for any z € T*\R*, we have deg(z?) € T'g, so 22 € R;
thus, T is purely inseparable over R. That cannot happen here, as 7|t is a nontrivial R-automorphism of T.

Lemma 4.2. If T is totally ramified over R, then T ~ 7' for some graded involution 7', where 7'|g, is of
the first kind.
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Proof. Let Zy = Z(Eyp). Since T is totally ramified over R, To = Ry, so 7|z, € Gal(Zy/To). Since the map
Oe: I'e — Gal(Zy/Ty) is surjective (see (2.3)), there is v € T'g with ©g(y) = 7|z,. Choose y € E% with
7(y) = £y. Then set 7" =79, 1. O

FEzxample 4.3. Here is a construction of examples of graded division algebras E with unitary graded invo-
lution 7 with E totally ramified over Z(E)”. We will see below that these are all such examples. Let R be
any graded field with char(R) # 2, and let A be a graded division algebra with center R, such that A is
totally ramified over R with exp(I'a/T'r) = 2. Let T be a graded field extension of R with [T : R] = 2,
T totally ramified over R, and 't N I'a = 'r. Let E = A ®g T, which is a graded central simple al-
gebra over T, as A is graded central simple over R, by | , Prop. 1.1]. But because I't N T'p = Ty,
we have Eg = Ag ®r, To = Ro ®Rr, Ro = Ro. Since E is a division ring, E must be a graded division
ring, which is totally ramified over R, as Ey = Ry. Now, because A is totally ramified over R, we have
exp(A) = exp(Fa/Tr) =2, and A = Q1 ®R . .. ®r Qum, where each Q; is a graded symbol algebra of degree
at most 2, i.e., a graded quaternion algebra. Let o; be a graded involution of the first kind on Q; (e.g.,
the canonical symplectic graded involution), and let p be the nonidentity R-automorphism of T. Then,
0c=018®...Q0, is a graded involution of the first kind on A, so o ® p is a unitary graded involution on E,
with TT = R.

Proposition 4.4. IfE is totally ramified over R, and E # T, then X, = E*, so SKy(E, 7) = 1. Furthermore,
E and 7 are as described in Ex. 4.5.

Proof. We have Eg = Tg = Rg. For any v € I'g, there is a nonzero a € E, with 7(a) = ea where € = %1.
Then, for any b € E,, b = ra for some r € Eg = Rg. Since r is central and symmetric, 7(b) = €b. Thus,
every element of E* is symmetric or skew-symmetric. Indeed, fix any ¢t € T* \ R*. Then 7(t) # t, as
t ¢ R*. Hence, 7(t) = —t. Since t is central and skew-symmetric, every a € E* is symmetric iff ta is skew-
symmetric. Thus, E* = S¥ U tS?. To see that X, = E*, it suffices to show that ¢ € ;. To see this, take
any ¢,d € E* with dc # cd. (They exist, as E # T.) By replacing ¢ (resp. d) if necessary by tc (resp. td),
we may assume that 7(c) = ¢ and 7(d) = d. Then, dc = 7(cd) = ecd, where e = +1; since dc # cd, e = —1;
hence 7(tcd) = ted. Thus, t = (ted)c 'd=! € B (E), completing the proof that ¥, (E) = E*.

For v € T'g, let ¥ = v+ T't € I'g/T't. To see the structure of E, recall that as E is totally ramified over T
there is a well-defined nondegenerate Z-bilinear symplectic pairing 3: (I'e/T't) x I'e/T't) — Ej given by
B(7,0) = (M 1y(;1 for any nonzero y, € E,, ys € Es. The computation above for ¢ and d shows that
im(5) = {£1}. Since the pairing 3 is nondegenerate by | , Prop. 2.1] there is a symplectic base of
[g/Tr, ie., asubset {71,01, ..., %, 0m} of Tg/T7 such that 3(7;,6;) = —1 while 8(%;,7;) = 4(8;,0;) =1
for all 4,7, and B(%;,6;) = 1 whenever i # j, and T'e = (y1,01,...,%m,0m) + I't. Choose any nonzero
i, € E,, and j; € Es,. The properties of the 72-,& under § translate to: i;j; = —j;i; while i;i; = i;i; and
jijj = jjji for all i, 5, and 1;j; = j;i; whenever i # j. Since 8(2v;,7) = 1 for all i and all 5 € T'g, each i?
is central in E. But also 7(if) = i?, as 7(i;) = %i;. So, each i} € R*, and likewise each j? € R*. Let
Q; = R-span{1,i;, j;,1;j;} in E. The relations on the i;, j; show that each Q; is a graded quaternion algebra
over R, and the distinct Q; centralize each other in E. Since each Q; is graded central simple over R,
Q1 ®R - .. ®r Qi is graded central simple over R by [ , Prop. 1.1]. Let A= Q1 ...Qy C E. The graded
R-algebra epimorphism Qi ®g ... ®r Qn — A must be an isomorphism, as the domain is graded simple.
If 't C T'a, then T C A, since E is totally ramified over R. But this cannot occur, as T centralizes A but
T 2 R = Z(A). Hence, as |I't : I'r| = 2, we must have I'tNI'a = I'r. The graded R-algebra homomorphism
A ®r T — E is injective since its domain is graded simple, by [ , Prop. 1.1]; it is also surjective, since
Eo =Ro CA®r T and Caget 2 (71,01, - -+, Yms Om) + 't =Tg. Clearly, 7 = 7|a @ 7]7. O

Proposition 4.5. IfE # T and T is totally ramified over R, then ¥, = E*, so SKy(E, 7) = 1.

Proof. The case where Eg = Tg was covered by Prop. 4.4. Thus, we may assume that Eg 2 To. By
Lemma 4.2 and Remark 4.1(ii), we can assume that 7|g, is of the first kind. Further, we can assume that
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ES = X7y, (Eo). For, if 7[g, is symplectic, take any a € Ef with 7(a) = —a, and let 7' =7pe. Then, 7/ ~ 1
(see Remark 4.1(iii)). Also, 7'|z(g,) = T|z(g,), @ a € Eo and 50 @a|z&,) = id. Therefore, 7'|g, is of the
first kind. But as 7(a) = —a, 7'|g, is orthogonal. Thus Efj = e, (Ep), as noted at the beginning of §2.2.1.
Now replace 7 by 7’

We consider two cases.

Case I. Suppose for each v € T'g there is 2, € EJ such that 7(z,) = . Then, E* = J
as desired.

Case II. Suppose there is v € I'e with E, NSy = 0. Then 7(d) = —d for each d € E,. Fix t € E}. For
any a € Eg, we have ta € E; so, —ta = 7(ta) = 7(a)7(t) = —7(a)t. That is,

T(a) = ¢i(a) for all a € Ey. (4.1)

ere B3ty € 5(E),

Let 7" = T¢;, which is a unitary involution on E with 77 ~ 7 (see Remark 4.1(iii)). But, 7”(a) = a for all
a € Ep, ie., 7"|g, = id. This implies that Ey is a field. Replace 7 by 7”. The rest of the argument uses
this new 7. So 7|g, = id. If we are now in Case I for this 7, then we are done by Case I. So, assume we
are in Case II. Take any v € I'e with E, N'S; = 0. For any nonzero ¢t € E,, equation (4.1) applies to t,
showing ¢;(a) = 7(a) = a for all a € Ep; hence for the map O of (2.3), Og(y) = idg,. But recall that Eg is
Galois over Ty and Og: I'e — Gal(Eg/Typ) is surjective. Since Eg # Ty, there is § € I'g with ©g(d) # id.
Hence, there must be some s € Ef N S;. Likewise, since Og(y — &) = Og(y)Oe(d) ! # id, there is some
r e thé NS7. Then, as rs € EY, we have EY, = Ejrs C X7. This is true for every v with E, N S; = 0. But
for any other v € I'g, there is an z in Ei; N S;; then Ef; = Ejzy € Xr. Thus, E* = U%FE Efy c X, O

4.2. T/R unramified. Let E be a graded division algebra with a unitary involution 7 such that T = Z(E)
is unramified over R = T7. In this subsection, we will give a general formula for SK; (E, 7) in terms of data
in Eo.

Lemma 4.6. Suppose T is unramified over R. Then,

(i) Every E, contains both nonzero symmetric and skew symmetric elements.
(ii) Z(Eo) is a generalized dihedral extension for Tg over Ry (see Def. 2.4).
(i) If T is unramified over R, then SKi(E,7) = X{/Xo.

Proof.

(i) If char(E) = 2, it is easy to see that every E, contains a symmetric element (which is also skew
symmetric) regardless of any assumption on T/R. Let char(E) # 2. Since [T : Ro] = 2 and Ry = T{, there
is ¢ € Tg with 7(c) = —c. Now there is t € E,, t # 0, with 7(¢) = et where e = £1. Then 7(ct) = —ect.

(ii) Let G = Gal(Z(Ep)/Ro) and H = Gal(Z(Eo)/To). Note that [G : H|] = 2. Since 7 is unitary,
Tlz(ey) € G\ H. We will denote 7|z, by 7 and will show that for any h € H, (Th)* = 1. By (2.3),
Ok: I'e — Gal(Z(Eo)/To) is onto, so there is v € I'g, such that ©g(y) = h. Also by (i), there is an x € E},
with 7(x) = x. Then 7y, is an involution, where ¢, is conjugation by x; therefore, Tgox|Z(E0) € G has
order 2. But ¢q|z(g,) = ©e(y) = h. Thus (7h)* = 1.

(iii) By (i), for each v € I'g, there is s, € E,, s, # 0, with 7(s,) = s,. By Remark 4.1(iv),

Y7 = U, ere 87 X0- Since each s, € S; C X, the injective map /Yo — X7 /3, is an isomorphism. O

To simplify notation in the next theorem, let 7 = 7| (g,) € Gal(Z(Eo)/Ro), and for any h € Gal(Z(Eo)/To),
write Yp7(Eo) for X,(Eo) for any unitary involution p on Eg such that p|;g,) = h7. This is well-defined,
independent of the choice of p, by the ungraded analogue of Remark(4.1)(ii).

Theorem 4.7. Let E be a graded division algebra with center T, with a unitary graded involution T, such
that T is unramified over R = T7. For each~y € I'e choose a nonzero x, € S;NE,. Let H = Gal(Z(Eg)/Ty).
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Then,
SKi(E,7) = (3, NEy)/(E; NEy),
with
S NEy = {acE| ]\7Z(|;0)/-|-0N1rdE0(a)8 €Ro}, where 0 = ind(E)/(ind(Eo)[Z(Eo): To]) (4.2)
and
Y:NEh = P-X, where P = [[cgZns(Eo) and X = <m7x5x;}r5 |v,0 €Teg) C E).  (4.3)
Furthermore, if H = (h1,...,hm), then P = T, . efo1ym Ehilu.h%n?(Eo).

Before proving the theorem, we record the following:

Lemma 4.8. Let A be a central simple algebra over a field K, with an involution T and an automorphism
or anti-automorphism o. Then,

Lis an involution of A of the same kind as T, and

Sorg—1 = 0(S7), s0 Y,p-1 = 0(X;).

(i) oTo™

(i1) Suppose A is a division ring. If o and T are each unitary involutions, then (writing S¥ = S; N A*),

SrC S o(SY) = 858 s0 ¥, C By %

oro—1» oro~1-

Proof.

(i) This follows by easy calculations.

(ii) Observe that if a € Sf, then a = (ac(a))o(a™t) with ac(a) € Si and o(a™') € o(SF) = S*___,
by (i). Thus, (ii) follows from (i) and the fact that A’ C X, N%, (see (2.10)). O

Proof of Theorem 4.7. First note that by Lemma 4.6(iii) the canonical map

(. NEy) /(- NEy) — XL/%; = SKy(E, 1)
is an isomorphism. The description of ¥, N Ep in (4.2) is immediate from the fact that for a € Ej,
Nrdg(a) = NZ(EO)/TONrdEO(a)‘9 € Ty (see Remark 2.1(iii)).

For 3, N Ep, note that for each v € I'g, if a € Eg, then az, € S; if and only if wa(a):vgl = a. That is,
Sr NEy = S(¢z,7;Eo)xy, where S(p, 7;Eq) denotes the set of symmetric elements in Eq for the unitary
involution ¢, 7|g,. Therefore,

YrNEy = <S((p$,y7'; E())*x7 ‘ S FE> N Eg.
Take a product a1z ... agzy in ¥, NEg where each z; = x,, for some v; € I'e and a; € S(p,7;Eo)*. Then,

ATl ... 0% = 1Pz, (a2) o Quyowi 1 (A6) oo Quy oy ()T 2 € Eyiq 4q, (4.4)

So, 71+ ...+ = 0. Now, as a; € S(p,7;Ep) and Tcp;jl = g, 7 for all j, by Lemma 4.8(i) we obtain

Spﬁtlnﬂfi—l(a’i) € S((pm s @Iifl(ﬁpxiT)@;il_l s 90;11; EO)* = S(Spitlnﬂfiflxixifl~~~x1T; EO)* - Z/ﬁ(EO) C P,
(4.5)

where h = @uy .z, yzei .01 |7(Ey) € H. Note also that if k = 1, then z; € S; N Ej C ¥7(Eg) C P.

If £ > 1, then
L1 Tk = Ty Ty = (x71x72x;11+~/2)(m“/1+”/2xvs - 'w’Yk)v

with (v1 +792) + 73+ ... + 9 = 0. It follows by induction on k that x;...x; € X. With this and (4.4)

and (4.5), we have a1z ...axx, € P- X (which is a group, as Ej; C ¥=(Eg) C P by (2.10)), showing that

>y NEg C P-X. For the reverse inclusion, take any h € H and choose v € I'g with SOCCW‘Z(EO) = h. Then,

Ty S S;k - ET and S(g@zﬁ/’r; Eo)*(L'«/ = S;_k N E7 - ET, SO Eh?(EO) = ZLP%/T(E()) = <S((P:C,y7_§ E0>*> C ZT N E(].

Thus, P C > N Ep, and clearly also X C ¥, N Eg. Hence, X NEy =P - X.
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The final equality for P in the Theorem follows from Lemma 4.9 below by taking U = Ejj, A = H, and
Wy, = Zp7(Ep) for h € H. To see that the lemma applies, note that each ¥,7(Eg) contains Ef, by (2.10).
Furthermore, take any h,¢ € H, and choose z,y € E* N S; with @]k, = h and ¢y|zE,) = ¢. Then,

(SOZ/T)(QOZ’T)(QOyT)il = ‘PyTSOxSO;l = SpyxflyTv
and py,-1y]7(E,) = ¢h=1¢ = 2h~1. Hence, by Lemma 4.8(ii), ¥,7(Eo) € X=(Eq)X2j-17(Eg). This shows
that hypothesis (4.6) of Lemma 4.9 below is satisfied here. O

Lemma 4.9. Let U be a group, A an abelian group, and {W, | a € A} a family of subgroups of U with
each W, 2 [U,U]. Suppose

W, C WyWop_o for all a,b € A. (4.6)
If A= {(ay,...,an), then
[TWa = [1 Weiar+..Aemam-
acA (e1,.-em)€{0,1}™

Proof. Since each W, D [U, U], we have W,W;, = W;,W,, and this is a subgroup of U, for all a,b € A. Let
Q = H W51a1+~--+5mam'
(e1,-.em)€{0,1}™

We prove by induction on m that each W, C Q). The lemma then follows, as @) is a subgroup of U. Note
that condition (4.6) can be conveniently restated,

if a+b=2de€ A, then W, C WyW,. (4.7)
Take any ¢ € A. Then, (4.7) shows that W_. C WyW,. Take any i € Z, and suppose W;. C WyW.. Then by
(4.7) W_je € WoW;e € WoWe. So, by (4.7) again, W; 10y, € WeW_je € WoW.and W(;_g). € W_W_;c € WoWe.
Hence, by induction (starting with j = 0 and j = 1), W;. C WyW, for every j € Z. This proves the lemma
when m = 1.
Now assume m > 1 and let B = (ay,...,am-1) € A. By induction, for all b € B,
Wb g H Ws1a1+.,.+6m_1am_1 g Q
(61,...,6»,,171)6{0,1}”71
Also, by the cyclic case done above, Wj,,, € WoW,,, C @ for all j € Z. So, for any b € B,j € Z,
using (4.7),
Wartjam S WoW_ja,, C Q, (4.8)
and
Wii2jam € Wia, W-b C Q. (4.9)
Let d = a;, + ...+ a;, for any indices 1 <71 < iz < ... <14y < m — 1. Since Wy,,,, € @ by hypothesis,
from (4.7) and (4.9) it follows that
Wd+3am c Wd+2ade+am - Q (410)

Now, take any element of A; it has the form b + ja,, for some b € B and j € Z. If b € 2B or if j is even,
then (4.8) and (4.9) show that Wy, j,,, € Q. The remaining case is that j is odd and b & 2B, so b = 2¢+d,
where c € B and d = a;; + ... + a;, for some indices with 1 <11 <112 < ... <4y <m —1. Set ¢ = 1if
j=3 (mod 4) and ¢ =3 if j =1 (mod 4). Then, Wy 4q4,, C @ by definition if ¢ = 1 or by (4.10) if ¢ = 3.
Hence, by (4.7),

Witiam = Weerd)+jam S Wierd)+((+q)/2)am Watqam S @, (4.11)
using (4.9) as c+d € B and (j + q)/2 is even. Thus, W, C @, for all a € A. O

Corollary 4.10. If E is unramified over R, then SK;(E, 7) = SK; (Eo, 7|g,)-
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Proof. Since E is unramified over R, we have T is unramified over R, Z(Eg) = Ty, and I'r = I'r, so we can

choose all the z,’s to lie in R. The assertion thus follows immediately from Th. 4.7, as P = Y. (Ep) and

X C R} C P. (Alternatively, more directly, one can observe that ¥f = X! B (Ep) and X = ET|EO(E0) and
0

so deduce the Corollary by Lemma 4.6(iii).) O

Corollary 4.11. If T is unramified over R and E has a maximal graded subfield M unramified over T
and another maximal graded subfield L totally ramified over T with 7(L) = L, then E is semiramified with
Eo = My (a field) and Tg =T, and

SKl(E,T) = {a € Ey ’ NEO/To(a) € RO}/ H Eéh?. (4.12)
hEGal(Eo/To)

Proof. Let n = ind(E). Since [Mg : To] = n and |[I'L : I't| = n, it follows from the Fundamental Equal-
ity (2.2) for E/T, M/T, and L/T that [Eg : To] = [['e : I't] = n, Eg = My, which is is a field, and I'e =T'..
Thus E is semiramified, so for the 9 of (2.6), 9 = 1. Now, L” is a graded subfield of L with [L : L"] = 2.
Since Ly = Ty while (L™)p = (Lo)” = Ro, L must be unramified over L”; hence, I'g = I'l = I' . Therefore,
one can choose all the z,’s in Th. 4.7 to lie in L™. Then each xwx(;x_lé € (L")§ = Ry = E;™. Hence,

Y+
X C P =[Ihecaie,/To) E;"7, so the formula for SK;(E, 7) in Th. 4.7 reduces to (4.12). O
Remark 4.12. In a sequel to this paper [\ 3], the following will be shown: With the hypotheses of Th. 4.7,

suppose E is semiramified with a graded maximal subfield L totally ramified over T such that 7(L) = L,
and suppose Gal(Ey/Ty) is bicyclic, say Eg = N @7, N’ with N and N’ each cyclic Galois over Ty. Then,

SK1(E,7) = Br(Eo/To;Ro)/(Br(N/To;Ro) + Br(N'/To; Ro)),

where Br(Eg/To) is the relative Brauer group ker ( Br(T¢) — Br(Ep)) and Br(Eo/To; Ro) is the kernel of
COrE,—R,: Br(Eo/To) — Br(Eo/Rp). (Compare this with [Y>, Th. 5.6].) A further formula will be given
assuming only that E is semiramified over T with Gal(Eq/Ty) bicyclic.

In his construction of division algebras D with nontrivial SK;, Platonov worked originally in [, §4]
with a division algebra D where Z(D) is a Laurent power series field; he gave an exact sequence relating
SK; (D) with SK;(D) and what he called the “group of projective conorms.” Yanchevskii gave in [Yo,
4.11] an analogous exact sequence in the unitary case. Their results and proofs are valid whenever Z (D)
has a henselian discrete (rank 1) valuation. We show here that their results hold more generally whenever
Z(D) has a henselian valuation with I'p /T’ z(p) cyclic. We work in the equivalent graded setting where the
arguments are more transparent.

As before, let E be a graded division algebra finite dimensional over its center T with a unitary graded
involution 7, and let R = T7. Assume that T is unramified over R and that I'g /T't is cyclic group. (This
cyclicity holds, e.g., whenever I't = Z.) It follows that the surjective map Og: I'e — Gal(Z(E()/To) has
kernel T't. (For, by [ , Prop. 2.1, (2.3), Remark 2.4(i)], ker(0®g)/I't has a nondegenerate symplectic
pairing, and hence has even rank as a finite abelian group. But here ker(©g)/T't is a cyclic group.) Hence,
0 =1 by Lemma 2.2, so E is inertially split. Invoking Lemma 4.6(i), choose any s € E* with deg(s) + I't
a generator of I'g /I'r, such that 7(s) = s. Let 0 = ¢5 € AutT(E); so o7 is another T/R-graded involution
of E, and 70 = 077 (see Remark 4.1(iii)). By the choice of s, o]z, is a generator of the cyclic group
Gal(Z(Eo)/To). Note that Gal(Z(Eo)/Ro) = (0| z(€y), T|z(E,)) is a dihedral group. Recall our convention
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that ¢ means o(7(c)). Let
8 = {(8,b) € Z(Eo)" x Ej | f77" = Nrdg, (b) };
N = mi(8) (projection into the first component)
{ﬂ e Z(Eo)* | g7t = Nrdg, (b) for some b € EE‘)};
W = T;- NrdEO(EO) C Z(Ey)%
P = N/W, which is Platonov’s group of projective conorms for E [P, §4].

8 = {(aa) € Z(Ep)* x B | "' = Nrdg, (a)' ™77 };
N, = m(8;) (projection into the first component)
= {a€ Z(Ey)* | a” ' = Nrdg,(a)' 7" for some a € Ej};

W, = Tg-Nrdg,(2,(Eo)) € Z(Eo)™;

PU, = N;/W;, which is Yanchevskii’s group of unitary projective conorms for (E,7) [V, 4.11].
Proposition 4.13. If T is unramified over R and I'g /Tt is cyclic, then for any generator o of the cyclic
group Gal(Z(Ep)/To), we have

(i) SKi(E) = {a € By | Nygy)m, (Nrde, (a >> 1/ ([E&E*] -{ e E).
(ii) SKi(E,7) = {a € Ej | Nyg,)/1,(Nrdg,(a)) € Ro} / (2+(Eo) - Zor(Eo))-
(iii) The following sequence is exact:

SK; (Eo, o) — SK4 (E, 7) -1 PU, — 1, (4.13)
where the map f: SKy(E,7) — PU; is the composition of a¥:(Eo) - ¥sr(Eo) — (a,a) € 8; and
(a,a) — aW, € PU..

(iv) There is a commutative diagram with exact rows:

SKl(EO,JT)—>SK1 E,7) >

: (
LIl

1 SKl(Eo) SK1
b b B
ll il 1
b b ﬁlJrT
SKl(EQ,UT) — SKl(E,T) —— TUT —1

where the map g: SKq(E) — P is the composition of b[ES, E5]{(c”~ 1) — (3,b) € 8 and (B,b) — W € P.
(v) If Eg is a field, then SKy1(E,7) = 1.

Proof.

(i) This formula was given by Suslin [S|, Prop. 1.7] for a division algebra over a field with a complete
discrete valuation. In order to prove it in the graded setting we need two exact sequences which were given
in | , Th. 3.4]:

Te/Tr ATg/TT — EW/[E}, E*] — SKi(E) — 1,
1 — ker N/[E}, E*] — EW /[E}, E*] — pa(To) N N(Ef) — 1,
where E®) = {a € E* | Nrdg(a) = 1} € Eg and N = Ny(gy)/T, © Nrdg, : E§ — T§. Since 9 = 1 (see the
paragraph prior to the Proposition) and the wedge product of a cyclic group with itself is trivial, these
exact sequences yield

SKi(E) = {a € Ej | Nz,)/T,(Nrdg,(a)) = 1} /[E5, E*].
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We are left to show that [Ej, E*] = [Ef, E5]-{c”~! | ¢ € E}}. This follows from the fact that E* /T*Ej; = I'g/T'1
is cyclic together with the following observation, which is easily verified using the standard commutator
identities: If G is a group and N is a normal subgroup of G such that G/Z(G)N is a cyclic group generated
by, say, *Z(G)N, then [N,G] = [N, N|[z, N] where [z, N] = {[z,n] | n € N}. (Here, take G = E*, N = Ej,
and for z take any s € E for any v € I'e such that Og(y +I'r) =0.)

(ii) By Th. 4.7, taking into account that 0 = 1 and Gal(Z(Ey)/To) = (o), we have,

SK1(E,T) = (E;_ N Eo)/(ZT N ED)
= {a € E§ | Ny(g,)/7oNrde, (a) € Ro} / (E-(Eo) - Zor(Eo) - (zyws52 L5 | 7,6 € TE)),

where for each v € I'g, 2 is chosen in E} with z, = 7(x,) and z,, # 0, using Lemma 4.6(i). Let L = R[s],

(4.14)

where s is chosen in E* with ¢(s)|g, = o, which is possible as ©Og: ' — Gal(Z(Ep)/To) is surjective (see
(2.3)). Moreover, s can be chosen with 7(s) = s. Since ker(Og) = I't = I'r, we have I'e = (deg(s)) + I'r.
Thus, L is a graded subfield of E with I'L = I'e and 7| = id. For each v € I'e we can choose z~ € Li;; then
for all 7,0 € T'g, we have :Eﬂ,x(;x;}r(; € Ly € ¥-(Ep). Thus, the (xvx(;x,;iﬁ term in (4.14) is redundant,
yielding the formula in (ii).

(iii) We first check that f is well-defined: Take any a € Ej with Nygy)/1,(Nrdg,(a)) € Rj. Let
c = NrdEO(a). Then, as Ry = Tg, 1 = NZ(EO)/TO(C)liT = NZ(EO)/TO(C)liaT = NZ(EO)/TO(CliaT). By
Hilbert 90, there is o € Z(Eg)* with a”~! = ¢!7°7 = Nrdg,(a)!7°". Hence (a,a) € 8-, so a € N, and
the choice of « is unique up to T € W,. Thus, the image of a in PU; is independent of the choice of .
Suppose further that a = pg for some p € ¥-(Ep), ¢ € X5-(Eop), say, p = s1...s, with each s; € S;(Ep).
Then,

Nrdg,(p)” = Nrdg,(s1)"...Nrdg,(sx)” = Nrdg,(s7)...Nrdg,(s})
= Nrdg,(s1)...Nrdg,(sg) = Nrdg,(p);
likewise, Nrdg,(¢q)°" = Nrdg,(q). So,

(4.15)

! = Nrde,(pg)' """ = Nrdg,(p)' " Nrde,(q)' ™7 = Nrdg,(p)' ™.

Hence, (aNrdg, (p))a_1 = 1, showing that aNrdg,(p) € To; Thus a € W,. This proves that f is well-
defined.

For the subjectivity of f, take any o € N;. Then, there is a € Ejj with a”~! = Nrdg,(a)'~77. So,
NZ(EO)/TO (NrdEo (a))lfUT = NZ(EO)/TO (agfl) = 1, which shows that NZ(EO)/TO (NrdEO (a)) S TgT = T6 = R(),
and hence a € ¥ (E) N Ej. Since f(aX-(Eo)Xor(Eo)) = aW;, f is surjective.

Finally, we determine ker(f): The image of SK;(Eg, o7) in SK1(E, 7) is 3/.(Eo)%-(Eo) /Zor (Eo) X+ (Eo).
An element in this image is represented by some a € X/ _(Ep). For such an a, Nrdg,(a)!=°" = 1. Then
(1,a) € 87, so that f maps the image of a to 1 in PU,. Conversely, suppose aX(Eo)¥,-(Eg) € ker(f).
That is, Nrdg,(a)!7°7 = a7, where o € W;, so @ = ¢Nrdg,(d) with ¢ € T§ and d € Z.(Eg). So,
Nrdg,(d) = Nrdg,(d)” by the argument of (4.15) above, and hence

Nrdg,(a)' ™77 = o' = (eNrdg,(d))7 " = Nrdg,(d)°~' = Nrdg,(d)°" .

Thus, Nrdg,(ad)'™7" = 1, i.e., ad € ¥/ _(Ep). Hence, a = (ad)d™' € ¥/ _(Eo)X,(Ep). This shows that
ker(f) coincides with the image of SKj(Egp,o7) in SK;(E,7), completing the proof of exactness of the
sequence.

(iv) Exactness of the middle row is proved by an analogous but easier argument to that for (iii).
Commutativity of the left rectangles of the diagram is evident. Commutativity of the top right rectangle is
clear from the definitions. Commutativity of the bottom right rectangle is easy to check using the identity

(1—071)o(c—1) = (6 —1)o(1+7), (4.16)
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which follows from (o7)? = id. Note that for each column of the diagram, the composition of the two maps
is the squaring map.

(v) For this part, the proof follows closely Yanchevskii’s proof in [Y,, 4.13]. (But our notational
convention for products of functions is fg = f o g, whereas his appears to be fg = go f.) Suppose Ey is a
field. For simplicity we denote 7 = 7|g, by 7. Take a € ¥’ (E)NEy. So, NEO/TO(al_T) = 1. We will show that
a € EJEJ™. It then follows by (ii) above that SK;(E,7) = 1. But since Eg is cyclic over Ty, by Hilbert 90
there is a b € Ej such that ™! = b°~! where (o) = Gal(Eo/To). So, 1 =a(TtDE=1 = p(r+)e=1)
Analogously to (4.16), we have (7 + 1)(c — 1) = (o0 — 1)(1 — 70). So bl=D0=79) — 1. Setting ¢ = b1 -77),
we have ¢! = 1, so ¢ € Ty. But, Nty /R, (€) = citro = p+70)(1=70) — 1 By Hilbert 90 we have
¢ =do ! for some d € T§. Let t = bd € Ej. Then, t'"7 = p(1=70)g(l=m0) = qlro=1)q1=70) — 1 je,,
t € El%. So, o(t) = 7(t) € E§". Thus, a™ t =01 = (t/d)° "t =771 =+""! as d € To. This shows that
(at(t))"" ! =1, ie., ar(t) € ET; hence a = (a7(t))7(t)"! € EJE]". O

5. TOTALLY RAMIFIED ALGEBRAS

For a graded division algebra E totally ramified over its center T with a unitary graded involution T,
two possible cases can arise: either T is totally ramified over R = T7, or T is unramified over R. In the
first case, we showed in Prop. 4.4 that SKj(E, 7) is trivial. We now obtain an easily computable explicit
formula for SK; (E, 7) in the second case. For a field K and for n € N, we write y, for the group of all n-th
roots of unity in an algebraic closure of K. Then set pu,(K) = pu, N K*.

Theorem 5.1. If E is totally ramified over T of index n and T is unramified over R, then
SKi(E,7) = {aeTy|a" €eRy}/{aeTs|a® €RE} (5.1)
{w € pn(To) [ T(w) = w ™"}/ pe, (5.2)

where e is the exponent of T'g/T'r. In particular,

Il

(i) The restriction of the map K1(E,7) — K1 (E) given by aX; — a'~"E’, induces an injective map
a: SKi(E,7) — SKi1(E) = pn(To)/pe-

(ii) If the exponent e of E is odd, then « is an isomorphism.

(iii) If e > 2 then To = Ro(ie), and T acts on pe by w +— w=!.

Proof. Since T is unramified over R and Eg = Ty, the formulas of Th. 4.7 for SK;(E, 7) reduce to 9 = n
and

SKi(E,7) = {aeTi|a” e R}/ (RG <a:7:c5x;i5 | 7,6 € Tg)), (5.3)
where each z, € E} with 7(z,) = z,. Recall that as E/T is totally ramified, the canonical pairing
E* X E* — pe(To) given by (s,t) — [s, 1] is surjective (| , Prop. 2.1]), and pe(To) = fe, i-€., To contains

all e-th roots of unity. Since each E, = Toz, with Ty central, it follows that {[zs, 2] | 7,0 € T} = L.
Now consider ¢ = wﬁ,x(;x;}ré for any 7,0 € I'e. Then, 7(c) = x;}réa?(;xw. Note that x5z, and x5 each lie
in E,45 = Tozy44, so they commute. Hence,

m(c)et = x;i6($5$7)$7+5$5113;1 = [z5, 4] (5.4)
Since [rs,24] € e, this shows that ¢ € {a € Tj | a® € RE‘)}. For the reverse inclusion, take any
d in T} such that d° € R;. So 7(d)d™' € pe. Thus, 7(d)d™' = [z5,2,], for some 7,5 € Te. Taking
c= xvm(;:v;}ré, we have 7(d)d~ = 7(c)c™! by (5.4), which implies that dc™! is 7-stable, so lies in R; thus,
d e R <x7x5x;i5 | 7,6 € T'g). Therefore, R} <$7x5x;i5 | 7,0 € Te) = {a € Tj | a® € Rj}. Inserting this
in (5.3) we obtain (5.1).
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(i) Consider the well-defined map a: SKj(E, 7) — SK;(E) given by a¥, — a'~"E’ (see diagram (3.9) for
the non-graded version). By [ , Cor. 3.6(ii)], SK1(E) = un(To)/pte. Taking into account formula (5.1)
for SK;(E, 7), it is easy to see that « is injective.

We now verify that
im(a) = {w € un(To) | T(w) = w_l} /,u,e7 (5.5)

and thus obtain (5.2). Indeed, since pe = {[zs,2,] | 7,0 € T}, by setting ¢ = x«,aﬁga:;}r(s we have
[z, 2] = T(c)c™! by (5.4). This shows that pe C {w € pn(To) | 7(w) = w™'}. Now for any w € 1y (To)
with 7(w) = w™!, we have Nty/R,(w) = 1, so Hilbert 90 guarantees that w = ¢!~ for some ¢ € T§. Then,
()T =w" =1, 50 " € R}. Thus, c € ¥/, and clearly a(cX,) = wp,. This shows D in (5.5); the reverse
inclusion is clear from the definition of a.

(ii) Suppose e is odd. Let m = |un(To)|. So, pn(To) = pim, with m|n. Also, e|m, as ue C To. Since
e and n have the same prime factors, this is also true for e and m. Recall that Aut(u,,) = (Z/mZ)*, the
multiplicative group of units of the ring Z/mZ; so, | Aut(um)| = ¢(m), where ¢ is Euler’s p-function. Since
e|m and e and m have the same prime factors (all odd), the canonical map 1: Aut(u;,) — Aut(ue) given
by restriction is surjective with kernel of order ¢(m)/p(e) = m/e, which is odd. Therefore, 9 induces an
isomorphism on the 2-torsion subgroups, sAut(m,) = 2Aut(u.). Now, 7|, € 2Aut(u,,) and we saw for (i)
that 7|, is the inverse map w +— w™!. The inverse map on f, also lies in sAut(u,,) and has the same
restriction to . as 7. Hence, 7,,, must be the inverse map. That is, {w € pn(To) | 7(w) = w™} = pn(To).
Therefore, (5.5) above shows that im(«) = ppn(To)/pte, which we noted above is isomorphic to SK;(E).

(iii) We saw in the proof of part (i) that 7 acts on p, by the inverse map. So, if e > 2, then u. Z Rp.
Since [T : Ro] = 2, it then follows that To = Ro(ue). O

Remark 5.2. The isomorphism SK; (E, 7) = SK; (E) of part (ii) of the above theorem can be obtained under
the milder condition that Eqg = ToE’ provided that the exponent of E is a prime power. The proof is similar.

Ezample 5.3. Let r1,...,ry, be integers with each r; > 2. Let e = lem(ry,...,7p), and let n = ry...1p,.
Let C be any field such that ye € C and C has an automorphism 6 of order 2 such that §(w) = w™!
for all w € pe. Let R be the fixed field C?. Let z1,...,x2, be 2m independent indeterminates, and let
K be the iterated Laurent power series field C((z1))...((z2m)). This K is equipped with its standard
valuation v: K* — Z>™ where Z*™ is given the right-to-left lexicographical ordering. With this valuation

K is henselian (see [Wo, p. 397]). Consider the tensor product of symbol algebras
X1,T2 T2m—1,L2m
D = (222) ey (Pmenm)
K w1 ®K ®K K Wm,

where for 1 < i < m, w; is a primitive 7;-th root of unity in C. Using the valuation theory developed for
division algebras, it is known that D is a division algebra, the valuation v extends to D, and D is totally

ramified over K (see [Wo, Ex. 4.4(ii)] and [T'W, Ex. 3.6]) with
I'p/Tk = 11(Z/riZ) x (Z]rZ),
i=1

and D = K = C. Extend 6 to an automorphism 6’ of order 2 on K in the obvious way, i.e., act-
ing by 0 on the coefficients of a Laurent series, and with ¢'(x;) = z; for 1 < ¢ < 2m. On each of

the symbol algebras <%) with its generators i; and j; such that ii* = w91, j;' = w2, and
w;

i;j; = w;jii;, define an involution 7; as follows: 7;(c 1f’.]ﬁ) = 9’(c)jéif’, where ¢ € K and 0 <[,k < r;. Clearly
K™ = K% = R((x1)) ... ((z2m)), and therefore 7; is a unitary involution. Since the 7; agree on K for
1 <i < m, they yield a unitary involution 7 = ®]*,7; on D. Now by Th. 3.5, SKq(D, 1) = SK;(gr(D), 7).
Since D is totally ramified over K, which is unramified over K7, we have correspondingly that gr(D)
is totally ramified over gr(K), which is unramified over gr(K)7. Also, gr(K)o = K = C. We have
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exp(gr(D)) = exp(D) = exp(I'p/T'x) = lem(ry,...,mn) = e and ind(gr(D)) = ind(D) =ry...7 = n. By
0.1

SKi(D,7) = SKi(gr(D),7) = {we€ un(C)|0(w) = w_l}/ue,
while by | , Th. 4.8, Cor. 3.6(ii)],

SK1(D) = SKi(gr(D)) = pn(C)/ pre-
Here are some more specific examples:

(i) Let C' = C, the complex numbers, and let § be complex conjugation, which maps every root of unity
to its inverse. So, R = C% = R. Then, SK;(D,7) = SK1(D) & py,/pe 2 Z/(n/e)Z.

(ii) Let 1y =1y =4, s0o e = 4 and n = 16. Let wig be a primitive sixteenth root of unity in C, and let
C = Q(w1p), the sixteenth cyclotomic extension of Q. Recall that Gal(C'/Q) = Aut(uie) = (Z/4Z) x (Z/27Z),
Let 0: C — C be the automorphism which maps wig — (w16)7. Then, §2 = id¢, as 7> = 1 (mod 16), and
{w e e | O(w) = w™} = pg. Thus, SKi(D,7) = us/ps = Z/27Z, while SKy(D) =2 py6/pa =2 Z/AZ. So,
here the injection SK;(D,7) — SK;(D) is not surjective.

(iii) Let r; = ... = 1y, = 2,80 e = 2 and n = 2™. Here, C could be any quadratic extension of any field R
with char(R) # 2. Take 0 to be the unique nonidentity R-automorphism of C. The resulting D is a tensor
product of m quaternion algebras over C((z1)) . .. ((z2m)), and SK1(D, 7) = {w € ppm (C) | §(w) = w1}/ pa,
while SK1 (D) = Hom (C)/,U,Q

Ex. 5.3 gives an indication how to use the graded approach to recover results in the literature on the
unitary SK; in a unified manner and to extend them from division algebras with discrete valued groups
to arbitrary valued groups. While SK;(D) has long been known for the D of Ex. 5.3, the formula for
SKi(D, 7) is new.

Here is a more complete statement of what the results in the preceding sections yield for SK; (D, 7) for
valued division algebras D.

Theorem 5.4. Let (D,v) be a tame valued division algebra over a field K with v|x henselian, with a
unitary involution 7; let F = K7, and suppose v|p is henselian and that K is tamely ramified over F. Let
7 be the involution on D induced by 7. Then,

(1) Suppose K is unramified over F.
(i) If D is unramified over K, then SKy(D, 1) = SKy(D, 7).

(ii) If D is totally ramified over K, let e = exp(D) and n = ind(D); then,
SK1(D,7) = {w € pn(K) | 7(w) = w™ '}/ pie,

while SK1(D) = pn(K)/ e

(iii) If D has a mazimal graded subfield M unramified over K and another mazimal graded subfield
L totally ramified over K, with 7(L) = L, then D is semiramified and

SKi(D.7) = {a€D" | Npgla)eF}/ T F™.
heGal(D/K)

(iv) Suppose I'p /T is cyclic. Let o be a generator of Gal(Z(D)/K). Then,
SKi(D,7) = {ac€ D | NZ(E)/F(NrdE(a)) € F}/ (Z?(E) ' Eo?(ﬁ))-
(v) If D is inertially split, D is a field and Gal(D/K) is cyclic, then SKy(D,7) = 1.
(2) If K is totally ramified over F, then SKi(D,7) = 1.
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Proof. Let gr(D) be the associated graded division algebra of D. The tameness assumptions assure that
gr(K) is the center of gr(D) with [gr(D) : gr(K)] = [D : K| and that the graded involution 7 on gr(D)
induced by 7 is unitary with gr(K)™ = gr(K™). In each case of Th. 5.4, the conditions on D yield analogous
conditions on gr(D). Since by Th. 3.5, SK; (D, 1) = SKi(gr(D),7), (2) and (1)(v) follow immediately from
Prop. 4.5 and Prop. 4.13(v), respectively. Part (1)(i), also follows from Th. 3.5, and Cor. 4.10 as follows:

SKl(D, 7') = SK1 (gr(D), 5:) = SK1 (gr(D)o, T|gr(D)0) = SKl(E, ?).
Parts (1)(ii), (1)(iii), and (1)(iv) follow similarly using Th. 5.1, Cor. 4.11, and Prop. 4.13(ii) respectively. O
In the special case that the henselian valuation on K is discrete (rank 1), Th. 5.4 (1)(i), (iii), (iv), (v)

and (2) were obtained by Yanchevskii [Y>]. In this discrete case, the assumption that v on K is henselian
already implies that v|p is henselian (see Remark 3.1).
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