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Unusual decoherence in qubit measurements with a Bose-Einstein condensate
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We consider an electrostatic qubit located near a Bose-Einstein condensate (BEC) of noninteracting bosons
in a double-well potential, which is used for qubit measurements. Tracing out the BEC variables we obtain a
simple analytical expression for the qubit’s density matrix. The qubit’s evolution exhibits a slow (<1/v7)
damping of the qubit’s coherence term, which however turns to be a Gaussian one in the case of static qubit.
This is in contrast to the exponential damping produced by most classical detectors. The decoherence is, in

general, incomplete and strongly depends on the initial state of the qubit.
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I. INTRODUCTION

Recent progress in quantum information technology has
lead to significant technological and theoretical advances in
measuring and controlling the state of a two-level quantum
system (qubit). Devices used for this purpose include point-
contact detectors and single electron transistors [ 1-3] where
the magnitude of electron current is used to determine the
qubit’s state. Recently, more sophisticated hybrid systems
which combine a charged qubit with microwave resonators
or ensembles cold polar molecules were proposed [4,5]. In
addition to technological benefits such hybrids offer an in-
sight into fundamental physical phenomena such as decoher-
ence. The decoherence is present for any microscopic system
(e.g., a qubit) interacting with a macroscopic device, charac-
terized by a large number of degrees of freedom and a dense
distribution of energy levels. As a result, an initial state of a
qubit is expected to be rapidly (exponentially in time) con-
verted into a statistical mixture, so that the information
stored in the qubit is erased [6]. For example, this has been
explicitly demonstrated for qubit measurements with a point-
contact detector shown in Fig. 1(a), where a macroscopic
current flowing into the right reservoir across the potential
barrier is modulated by the qubit’s electron [7].

In this paper we study measurements in a hybrid system
consisting of an electrostatic qubit placed in closed proxim-
ity to a noninteracting Bose-Einstein condensate (BEC)
trapped in a symmetric double-well potential. The qubit is
represented by an electron in coupled quantum dots [Fig.
1(b)], while confinement of the BEC can be realized, for
example, by means of a quasielectrostatic optical dipole trap
produced by two crossed laser beams [8]. Since the trapping
occurs due the interaction of the induced atomic dipole mo-
ment of neutral atoms and the far-detuned optical field [9],
additional electric field induced by the electron would
change the barrier height. This, in turn, would modulate the
atomic current just as the presence of an electron in one of
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the dots modifies the current of the point-contact detector
shown in Fig. 1(a). There is, however, an important differ-
ence as only a single level (zero-width band) is available for
the tunneling atoms, which raises the question of what type
of decoherence, if any, would experience the measured qu-
bit?

With the number of carriers macroscopically large, but
only one level existing in each of the reservoirs, the question
cannot be answered without a detailed analysis. On one
hand, the bosons are moving independently, and one could
expect their effect to be similar to that of a single boson
which, as is easy to show, does not produce decoherence. On
the other hand, it is not clear whether the large number of
uncorrelated degrees of freedom in the detector will not have
an averaging effect on the qubit thus causing the off-diagonal
elements of its density matrix to disappear.

In the following we will show that the density matrix of a
qubit coupled to a BEC will undergo an evolution which is
not described by Bloch-type equations similar to those aris-
ing in the case of a point-contact detector [7]. However, the
BEC model shown in Fig. 1(b) can be solved exactly. We
will demonstrate that the rate of decoherence is extremely
(nonexponentially) slow and, unlike in the case of the point
contact, its amount strongly depends on the choice of the
qubit’s initial state.

Point-contact BEC
o0Q ... o0Q ...
= |1 Y~
P 4 S= E
N-n n 0

(@) %a (b) %
E> Qubit

FIG. 1. (Color online) (a) Point contact in which electrons, ini-
tially in the left reservoir, tunnel across a potential barrier modu-
lated by the presence of an electron in one of the two coupled
quantum dots (qubit). (b) Atoms of a BE condensate tunnel across a
barrier of a symmetric double-well potential modulated by a qubit.
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II. QUANTUM GATEKEEPER MODEL

Consider an electrostatic qubit interacting with a BEC
consisting of N atoms initially trapped in the left well of a
symmetric the double-well structure [Fig. 1(b)]. The entire
system can be described by the tunneling Hamiltonian H
=H_.+H,+H,, where the three terms correspond to the con-
densate, the qubit and the interaction, respectively, and

HC=E0(cch+c;QcR) —Q(cch+ c;cL), (1a)
H,=Ed{d, + Exdid, - wy(d|d, + did,), (1b)
Hiy = 5Qd2d2(chR + CRCL) (Ic)

Here cz  1s a boson creation operator in the left (right) res-
ervoir and d1 , 1s the fermionic creation operator for the qu-
bit. Tunnehng between the reservoirs is suppressed when the
electron is in the dot nearest to the barrier, so that Q=)
-0’ >0; see Fig. 1(b).

For a static qubit trapped in one of the quantum dots,
(wy=0), each boson of the condensate oscillates between the
reservoirs with the Rabi frequency () or ’. Thus, the prob-
ability of finding n bosons in the right reservoir at the time ¢
is given by

P,(1) = (N ) cos?M(Qr)sin® (1), (2)

if the qubit’s electron occupies the level E, of the nearer dot
(or by the same expression with ) — )’ when it occupies
the level E,). In the interesting case when the tunneling rate
for each atom is small but the number of atoms is large, we
put N— oo, while VNQ — k=const, thus maintaining a finite
current into the right reservoir. For small times, r=Ar<(Q)!
Eq. (2) yields P,,(At)z(KAt)z"e‘("A’)z/ n! and, in particular,
Py(Af)=1-(kA1)?. Such a non-Markovian behavior of the
BEC is in contrast with large fermion reservoirs [Fig. 1(a)],
where one finds 1—Py(Ar) = (Ar), which is typical for a Mar-
kovian process [10].

Consider now the behavior of a dynamic qubit, wy# 0,
subjected to a measurement with such a non-Markovian
(BEC) detector. The wave function of the entire system can
be written as |W(1))=2, ,#,,()|q)|b,) where

(CDN_n(C;re)n|0>cond

V(N=n) ! n!

) b, = d}]0)qud (3)

is the state corresponding the qubit localized in one of the
quantum dots, g=1,2, and n=0,1,2,... is a number of
bosons contained in the right well. For the corresponding
probability amplitude ¢, (1) we write ,,(1)={(g|{¢,|exp(
—H1)|qo)| o) state from which the reduced density matrix of
the qubit is obtained by tracing out the BEC states,

T (1) = 22 (1) lﬂ,jrn(t). (4)

Putting, for convenience, E,=0 one easily finds from Eq. (1)
that H,+H;, commutes with H. and the evolution operator
U(r)=exp(—Ht) can be factorized,
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U(t) = e MeleHtHind! = U (1) Ui (1). (5)

Operators U, (t) and Uyg,(#) can be written in a simple form
in basis of the eigenstates of the BEC Hamiltonian,

(cp +cp)" (e — c)"[0)

V2NN =n) I n!

such that H/|d,)=(N-2n)Q|d,). Indeed we
(4, BlUDg" , ) =expl=i(N=2n)Q1]8,,

(KBl UginDlg" ) Burd = (q| U(t,£,)|q" Y8, (7)

|6, = ; (6)

have
o and also

where &,=(2n—N)8Q. It is readily seen that U(z,e,)=exp[
—i(H,+ e,d}d,)1] represents the evolution operator of an iso-
lated asymmetric qubit with the level displacement &) =¢,
+E,-E, (asymmetry parameter), whose matrix elements are
easily found to be
e } ~

i—sin(wr) |e ",

2w

(1)0(t,e,)|1) = {cos(wt) -

A~ 8, .
Q2|U(t,&,)[2) = {cos(wt) + iz—"sin(wt)} et
o

A 8, .
(1 U(t,,)|2) = = i—"sin(wt)e "2, (8)
w
where 0= w(e,)=(g]/2)>+w} is the qubit’s Rabi frequency
and (2{U(1.e,)[1)=(1|U(1.5,)|2).
For the reduced density matrix of the qubit in Eq. (4),
with the help of Egs. (4)-(8) we find

qq (t) E qq’ (t 8n)|<¢0|¢n > (9)

where

O-qq’(t’sn) = <q| 00’ 8n)|¢]0><¢]0|l}_l(l, 8n)|q,> (10)

is the density matrix corresponding to the unitary evolution
of an isolated asymmetric_qubit. With the initial state of the
BEC given by |¢o)=(1/VN!)(c})"|0) we then find

~ N! 2 2
2 _ ~ —(N = 2n)“/12N
= = e 11
(ol 2%V (N=n)! 27N (
where  we have wused the Sterling formula K!

= \2wKKK exp(—K) to evaluate the factorials.

Now we assume that the qubit’s coupling with each indi-
vidual atom of the condensate (8)) is weak, but its interac-
tion with the entire condensate is considerable, and so is the
variation of the BEC current (< N&(), induced by the qubit.
Then taking the limit

N — oo, with \Wéﬂ — a = const (12)

we replace the sum over n in Eq. (9) by an integral, ¥,
— [de/(28Q)). This yields
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“ de
7,y (1,8)exp(- °/20%) — (13)
V2ma

Oy (1) =

—o0

where &,,/(t,€)=[0,,/(t,€)+0,,(t,-€)]/2.

In the following we will consider only the case of a sym-
metric qubit, E,=E, [11]. Then for an initial qubit’s state
|q0)=(ad] +bd})|0),, we obtain from Eq. (10)

F11(t,8) = |al* + (|b]> = |a/*)[1 = coswn) |(w]/2 %)

—Im(ab*)sin(2wit)(wy w), (14a)

G1o(t,e) = i(|a)* = |b|?)sin(Rw) (wy/2w) + ab* cos(2wt)
+Re(ab™)[1 - cosQwt)|(wy/w)?, (14b)

with o=w(e)=\(e/2)>+w] and G,()=1-&(1), &y(2)
=a,(1).

III. DECOHERENCE OF A QUBIT DUE TO ITS
INTERACTION WITH THE BEC

The simple form of Egs. (13) and (14) allows for an easy
analysis of limiting cases. Indeed, the strength of interaction
with the BEC, a, enters Eq. (13) only via the Gaussian cutoff
factor exp(—&?/2a?). The factor determines the number of
asymmetric configurations contributing of the qubit’s evolu-
tion and, therefore the perturbation incurred upon the qubit
by the BEC. (Note that when the interaction vanishes, «
— 0, the Gaussian becomes narrow, and we recover the un-
perturbed evolution of the isolated qubit.)

It is readily seen that in the large time limit t—oc the
contributions for the rapidly oscillating terms in Egs. (14a)
and (14b) vanish. Evaluating the remaining integrals analyti-
cally shows that as t— % the density matrix of a qubit tends
to a steady state o*' given by

o = la]? + (Vm12)z exp(Derfe(2) (b2 - |a]),

ol = \r’;z exp(z?)erfc(z)Re(ab”), (15)

where z= \Ewo/ a and erfc(z)= é I :’exp(—tz)dt is the comple-
mentary error function.

To evaluate the speed with which this steady state is at-
tained we note that at large ¢ the phase of the sines and
cosines in Eq. (14) develops a stationary region of the width
Ae=(4wy/1)""* centered at £=0. Once Ae becomes small
compared to the width of the Gaussian in Eq. (13), i.e., for
t> w,/ a?, the contribution from the stationary region be-
comes proportional to Ae causing the time-dependent part of
0, in Eq. (14) to decay as 1/\t. (For a recent discussion of
nonexponential decoherence behavior expected in other sys-
tems see, for example, Refs. [12,13].) Explicitly, for w,# 0,
the stationary phase method yields

. [0} a
o) = o4y gzt[W— cos( 20+ 7

-2 Im(ab*)sin<2wot + :{) ] , (16a)
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FIG. 2. (Color online) (a) The qubit’s density matrix element
o1 vs time 7 for |go)=[(1+1)|1)+i[2)]/\3, a=1, N—=, Eq. (13),
(solid), N=100, Eq. (9), (dashed) and the stationary phase approxi-
mation, Eq. (16) (dash-dot). Horizontal line shows the large time
asymptote (15); (b) same as (a) but for oy,.

o) = o +iv %[(Mz - |b|2)sin(2w0t+ g)

+2 Irn(ab*)sin<2w0t+ ;—T” (16b)

where ¢* is given by Eq. (15). Figure 2 demonstrates that
Eq. (16) (dot-dashed curve) coincides to graphical accuracy
with the exact result (13) (solid curve) except at very short
times.

Equations (15) and (16) which describe the qubit’s deco-
herence generated by the BEC employed as a measurement
device represent our main result. The qubit’s behavior is very
different from that of a qubit interacting with electronic res-
ervoirs [7], Fig. 1, or in a general with any Markovian envi-
ronment, whose effect can be described by Bloch-type equa-
tions [14-16]. Indeed, it follows from Eq. (16) that the
relaxation to the ﬁnarl steady state is extremely slow, obeying
the power law o 1/¢. One exception from this rule is a static
qubit (wy=0) for which the stationary region vanishes so that
from Egs. (13) and (14), one easily obtains o ,(¢)
=ab* exp(—a?t?/2). In contrast, in a Markovian environ-
ment, a static or dynamic qubit undergoes an exponential
relaxation to the final statistical mixture.

It also follows from Eq. (15) that, in general, the qubit’s
decoherence in the steady state is incomplete and its density
matrix is not converted into a statistical mixture, o™
#diag(1/2,1/2) as would be the case for a point-contact
detector. Rather, complete decoherence is achieved only in
the weak coupling limit (¢—0) [17] and only for the initial
conditions corresponding to Re(ab®)=0. For a weak cou-
pling, the dependence on the qubit’s initial state can be un-
derstood in the following way. A real part of the qubit’s
off-diagonal density-matrix element Re o,(¢) can be written
as Re o,(1)=(1/2)(W(1)|¢,|W (1)), where §,=d\d,+d}d,. If
the qubit’s levels are aligned (E,=E,), the operator ¢, com-
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mutes with the total Hamiltonian, Eq. (1), in the limit of
60 —0. As a result Re o,(f)=Re 7,(0). Therefore, the
subspace of the qubit’s states, corresponding to Im o,(0)
=0, is effectively decoherence free [18].

In strong coupling limit, @—o°, in Egs. (14a) and (14b)
we only need to retain the terms which do not vanish for
|| — 0, thus compensating for the factor o' in Eq. (13).
Accordingly, the off-diagonal density-matrix element would
disappear at all times for all initial qubit’s states, o,(f) — 0.
However, the result is not the statistical mixture, as in the
case of weak coupling, but o(¢)=diag(|a/?,|b|?). This corre-
sponds to the so-called pure dephasing for a static (w,=0)
qubit [19] whose diagonal density-matrix elements remain
constant while the off-diagonal elements vanish.

Finally, the finite-size effects for a condensate with a large
but finite number of atoms are shown Fig. 2. These manifest
themselves as an onset of irregular oscillations of the qubit’s
density matrix (dashed lines in Fig. 2). The oscillations ap-
pear at times comparable with the Rabi period of an indi-
vidual atom in the double well potential, t =278, prior to
which the qubit’s evolution agrees with that in the presence
of an infinite condensate. Mathematically, the effect occurs
when the period of ever faster oscillating terms in Egs. (14a)
and (14b) becomes comparable with the separation between
the energy levels of the condensate and Eq. (9) ceases to be
a valid Riemann sum for integral (13). Physically, the qubit
begins to be affected by the size of the condensate at times of
the order to the Poincaire recurrence time (Rabi period) of
the latter, i.e., when the escape of the atoms into the right
well can no longer be considered irreversible.

b}

IV. SUMMARY

In summary, we have demonstrated that continuous moni-
toring of a qubit by a BEC produces a slow state-selective
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decoherence which obeys a power, rather than exponential,
law in time (except for a static qubit, where the decoherence
is extremely fast). Although this result was obtained in the
limit N— o0, it can be confirmed by numerical evaluations of
the qubit’s density matrix, Eq. (9), for a large but finite N,
Fig. 2. It is this nonexponential relaxation and a strong de-
pendence on the qubit’s initial state that distinguished the
BEC model, with a single energy level in each of the reser-
voirs, from the exponential decoherence generated by a
(Markovian) environment with a continuum spectrum of
available states. Common to both environments is, however,
freezing of the qubit’s internal transitions in the strong inter-
action limit. This kind of Zeno effect [20-22] produced by
the unitary evolution in the presence of an environment is
somewhat different from its conventional prototype [23,24]
which arises from frequent observations of the evolving sys-
tem. One remarkable feature of a Markovian environment is
that the qubit’s evolution under such frequent observations is
practically indistinguishable from its unitary observation-free
evolution [25]. For a qubit-BEC hybrid system whose behav-
ior is explicitly non-Markovian, we expect the two types of
evolution to be drastically different. A detailed investigation
of this problem is, however, beyond the scope of the present

paper.
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