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Oblique electrostatic excitations in a magnetized plasma
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The nonlinear propagation of ion-acoustic waves is considered in a magnetized plasma, composed
of kappa distributed electrons and an inertial ion fluid. The fluid-dynamical system of equations
governing the dynamics of ion-acoustic waves is reduced to a pseudoenergy-balance equation. The
properties of arbitrary amplitude, obliquely propagating ion-acoustic solitary waves are thus
investigated via a mechanical-motion analog �Sagdeev potential� approach. The presence of excess
superthermal electrons is shown to influence the nature of magnetized ion-acoustic solitons. The
influence on the soliton characteristics of relevant physical parameters such as obliqueness �the
angle between soliton propagation direction and magnetic field�, the electron deviation from a
Maxwellian �“superthermality”� and the soliton speed is investigated. © 2010 American Institute of
Physics. �doi:10.1063/1.3322895�

I. INTRODUCTION

Excess energetic electrons are often present in labora-
tory, space, and astrophysical plasma environments, viz., the
ionosphere, auroral zones, mesosphere, lower thermosphere,
etc.1–11 Plasmas with an excess of superthermal �non-
Maxwellian� electrons are generally characterized by a long
tail in the high energy region. The particle distribution there-
fore deviates significantly from a Maxwellian.1,4,12 This type
of behavior is often modeled by a kappa ��� type �or gener-
alized Lorentzian� distribution function �df�,1,13–15 which ap-
pears to be more appropriate than a thermal �Maxwellian�
distribution in a wide range of plasma situations. The � dis-
tribution was first suggested by Vasyliunas1 to model space
plasmas, and was later adopted by many authors in various
physical contexts. A brief review of its physical setting and
history can be found in Ref. 16. Noteworthy applications of
the �-df include, e.g., an interpretation of observations in the
Earth’s foreshock �for 3��e�6�17 and solar wind models
with coronal electrons satisfying 2��e�6.18,19 “Superther-
mal” plasma behavior was also observed in various experi-
mental plasma contexts, such as laser matter interactions or
plasma turbulence.20 This seems to be a growing area of
study in plasma physics.

It may be pointed out that different forms of the � dis-
tribution have appeared in the past, implying different physi-
cal scenarios; we refer the reader to the discussion in Ref. 16.
Works by Treumann21,22 and Collier23 have marked the way
toward a possible explanation of the apparent ubiquity of
kappa distributions, although there is at this stage no com-
prehensive theory relating this family of distributions to the
fundamental underlying physics. However, a very recent

study24 appears to establish a rigorous link between the �
family of distributions and the Tsallis �“q-Gaussian”�
distribution,25 which is intimately linked to the foundations
of nonextensive thermodynamics. This association is, how-
ever, certainly not algebraically straightforward, and still ap-
pears to be a controversial topic.

The analytical expression for the isotropic kappa ��� dis-
tribution is given in Refs. 14 and 15, among others. Our
analysis in what follows relies on those definitions, so they
are not repeated here. The minimum information needed to
follow our analysis is provided below. Low values of � rep-
resent distributions with a large component of “superthermal
particles” �i.e., faster than the thermal speed�, which is gen-
erally identified as a “hard” spectrum. In what follows we
shall use the term “superthermality” as a shorthand descrip-
tion of the properties of such a plasma. At very large values
of the spectral index �, the velocity df approaches a Max-
wellian distribution. It should therefore be noted that earlier
results �for thermalized plasma particles� are readily recov-
ered in the algebra, in the infinite � limit. One requires
��3 /2 for physical reasons, since the effective thermal ve-
locity is defined as �= ���−3 /2� /��1/2�2kBT /m�1/2; here T is
the kinetic temperature and m the mass of a given particle
species.16 The deviation of the kappa family of distributions
from the Maxwell–Boltzmann distribution is reflected in the
analytical expression for the species number density,15 a fact
which affects the charge balance and yields consequences
which will be made obvious in our analysis below.

A comprehensive nonlinear theory for arbitrary ampli-
tude ion-acoustic �IA� solitary waves was suggested by
Sagdeev and co-workers26,27 a few decades ago. That method
relied on a mechanical-motion analog, associating solitary
waves in unmagnetized plasmas with a fictitious problem of
a point mass motion in a pseudopotential �often referred to as
the Sagdeev potential�. Other work using this approach has
considered various plasma compositions beyond the standard
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electron-ion �e-i� model,28–31 and also, for instance, a super-
thermal background.32 This last paper,32 in particular, ex-
plored the effect of excess superthermal particles �through
the parameter �� on the behavior and characteristics of IA
solitons in an unmagnetized plasma. The Sagdeev theory was
later extended to cover oblique pulse propagation with re-
spect to an ambient magnetic field,33–37 but that required the
assumption of quasineutrality.

The scope of our investigation is to analyze the effect of
electron superthermality, modeled by a kappa distribution, on
the oblique propagation characteristics of nonlinear IA exci-
tations in an electron-ion plasma in the presence of a uniform
external magnetic field. We shall use the pseudopotential
method to investigate the occurrence and characteristics of
oblique arbitrary amplitude IA waves. The range of permit-
ted Mach number values for the existence of solitary IA
waves in a magnetized kappa plasma will be determined, and
in particular we will demonstrate their dependence on super-
thermality �via ��. We shall also investigate the effect of
obliqueness on the Mach number and on the soliton charac-
teristics. A comparison to the case of a thermal �Maxwellian�
plasma will be carried out at all stages.

Importantly, recent results suggest that the pseudopoten-
tial formalism may fail to describe large-amplitude structures
propagating at large angles to the field; in particular, the
stronger the obliquity the lower the amplitude has to be, in
respect for Maxwell’s laws.38 “Weak” �finite, yet not too sig-
nificant� obliqueness is therefore implicitly assumed every-
where below.

This paper is organized as follows. In Sec. II, we present
the governing model equations. In Sec. III, the characteristics
of linear waves are briefly summarized, focusing on the in-
fluence of � and obliqueness in comparison to earlier results.
In Sec. IV, we explain the method for arbitrary amplitude
solitary wave theory and derive a Sagdeev type pseudopo-
tential. We determine the permitted velocity range for soli-
tary structures in Sec. V. A parametric investigation in terms
of various relevant parameters follows in Sec. VI. Finally, we
summarize our results in the concluding Sec. VII.

II. GOVERNING MODEL EQUATIONS

We consider a two-component collisionless plasma em-
bedded in a uniform magnetic field, composed of the follow-
ing:

�1� cold ions �charge qi=+Ze, mass mi�, described by the
fluid-moment equations and

�2� electrons �qe=−e, mass me�, assumed to obey an isotro-
pic kappa velocity distribution.

A. The model

We take the ambient magnetic field B0=B0ẑ to lie along
the z-axis �unit vector ẑ�. To simplify the analysis, we as-
sume that propagation occurs in the x−z plane �hence setting
� /�y=0 below�; see Fig. 1.

The fluid continuity and momentum equation�s� for the
ions, ignoring thermal pressure effects, read

�ni

�t
+ � · �niui� = 0, �1�

�ui

�t
+ �ui · ��ui = −

qi

mi
� � +

qi

mi
�ui � B0ẑ� , �2�

where ni, ui, and � are the ion number density, the ion mean
velocity, and the electrostatic potential, respectively.

We adopt a kappa distribution for the electrons15

ne = ne0�1 −
e�

�� − 3
2�kBTe

�−�+1/2
. �3�

The real parameter � measures the deviation from the
Maxwell–Boltzmann equilibrium �which is recovered in the
limit �→��. The rigorous way to close the system of evo-
lution equations, for electrostatic perturbations, would be to
couple the species through Poisson’s Equation

�2� = − 4�e�Zni − ne� . �4�

Charge neutrality at equilibrium implies ni0Z−ne0=0, where
the index “0” denotes the unperturbed �equilibrium� number
density values.

Instead of using Eq. �4�, we shall, for analytical tracta-
bility in the nonlinear algebraic manipulation to follow,
adopt the plasma approximation or charge neutrality hypoth-
esis, namely, Zni�ne, i.e., assuming that the right-hand side
�rhs� of Eq. �4� vanishes. This implies the physical assump-
tion that spatial variation in the electric potential is slow,
essentially occurring on a scale far beyond the Debye
sphere.27

B. Scaling

The normalized ion continuity and momentum equations
take the form of a system of �scalar� equations,

�n

�t
+

��nux�
�x

+
��nuz�

�z
= 0, �5�

�ux

�t
+ �ux

�

�x
+ uz

�

�z
	ux = −

�	

�x
+


i

�pi
uy , �6�

�

FIG. 1. �Color online� All fluid variables depend on a traveling stationary
frame, where B� = �0,0 ,B�, k� = �kx ,0 ,kz�, and the direction cosines �=kx /k
=sin � and =kz /k=cos �.
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�uy

�t
+ �ux

�

�x
+ uz

�

�z
	uy = −


i

�pi
ux, �7�

�uz

�t
+ �ux

�

�x
+ uz

�

�z
	uz = −

�	

�z
, �8�

where ui, ni, and � are scaled as follows: u=ui /cs, n
=ni /ni0, and 	=� /�0, respectively. Here, ni0 is the equilib-
rium ion density and 
i the ion-cyclotron frequency. Space
and time variables are scaled by the Debye length �De

= �kBTe /4�ne0e2�1/2= �kBTe /4�Zni0e2�1/2, and the inverse ion
plasma frequency �pi

−1= �4�ni0Z2e2 /mi�−1/2, respectively.
Finally, the potential scale reads �0=kBTe /e. The character-
istic speed scale used for velocity normalization is then
cs
�ZkBTe /mi�1/2.

The normalized form of Poisson’s equation �Eq. �4�� is

�2	

�x2 +
�2	

�z2 = �1 −
	

� − 3
2
	−�+1/2

− n . �9�

As indicated above, we shall normally adopt here the plasma
approximation which consists in considering a vanishing rhs
in Eq. �9�, viz.,

n � �1 −
	

� − 3
2
	−�+1/2

. �10�

Although this physically reduces our scope to perturbations
on a length-scale greater than the order of magnitude of the
Debye length,27 this choice is imposed by analytical tracta-
bility constraints, once obliqueness in the propagation direc-
tion is considered. We note, in passing, that the scaled form
of our analytical model is independent of the value of the ion
charge state Z. This would no longer be true if a third species
were present in the background �Z would then appear in the
charge balance via the rhs of Eq. �9��.

We shall now proceed by considering the system of Eqs.
�5�–�8� and �10� �i.e., using the plasma approximation� in the
nonlinear analysis in Sec. IV and beyond. However, as a
special case we shall first use Poisson’s equation �Eq. �9��
rather than the quasineutrality assumption �10� when dealing
with the linear dynamics in Sec. III.

III. LINEAR DISPERSION CHARACTERISTICS

The linear dispersion relation �DR� for wave propagation
can be obtained from the linearized Eqs. �5�–�9�. After a
short algebraic manipulation, this may be cast in the form

��
2 =

1

2
�r +

k2

� + k2	 �
1

2
��r +

k2

� + k2	2

− 4r
kz

2

� + k2�1/2

, �11�

where �= ��−1 /2� / ��−3 /2�, r= �
i /�pi�2, and kz=k cos �.
Note the explicit dependence of Eq. �11� on the following:

�i� the electron superthermality via � �Maxwellian behav-
ior is recovered for �→1, i.e., �→��,

�ii� the magnetic field via the frequency ratio r, and
�iii� the propagation direction �obliqueness� via kz and,

hence, �.

Two distinct dispersion curves are obtained, for the
plus/minus sign. The lower curve �− represents obliquely
propagating magnetized IA waves. We note that �−=0 at
k=0, and for k�1, �−�k cos � /��. Furthermore, one can
show that the phase speed vph

�−� falls off for larger k, thus
suggesting that it possesses an upper boundary at vph,max

�−�

=cos � /�� for small k.
The upper curve �+ represents obliquely propagating

ion-cyclotron waves, as one can easily see from the fact that
�+→r �in normalized units� as k→0, i.e., the frequency
tends to the ion-cyclotron frequency. For k�1, this mode
behaves as �+

2 �r+ �sin2 � /��k2 from which one sees that
vph

�+�→� as k→0. We also note that at k=0 there is a fre-
quency gap between �+ and �− equal to r.

In the absence of a magnetic field �r→0� Eq. �11� be-
comes

�+
2 =

k2

� + k2 , �12�

which is the usual DR for unmagnetized IA waves. The same
result is obtained for parallel propagation �setting �→0�. In-
terestingly, the phase speed of this acoustic mode near zero is
reduced by a factor 1 /�� as compared with its equivalent in
Maxwellian plasmas, i.e., limk→0��+ /k�=1 /���1.

As expected, earlier results on linear waves in superther-
mal plasmas are recovered from the above expressions. The
�-dependent plasma dispersion function was investigated in
full detail from first principles in Refs. 39 and 40 �and re-
cently revisited in Ref. 41�. As an application of the theory,
electrostatic modes were investigated in those papers, in par-
ticular focusing on Langmuir39 and obliquely propagating IA
modes.40 We note here that, upon restoring dimensions in Eq.
�11�, one recovers exactly the DR, which appears as Eq. �68�
in Ref. 40 �noting that our �-dependent screening factor �
defined above is incorporated in the definition of ��,e appear-
ing in �69� therein�; cf. Fig. 1�a� therein.

Figure 2 depicts the linear DR obtained for the acoustic
mode �− from Eq. �11�, for a weakly magnetized plasma
�r=0.05�. The solid curve corresponds to �+ in the quasi-
Maxwellian limit �large �=15� for r=0, and is provided for
reference. As expected, the ion-cyclotron wave behaves like
an IA wave for r=0. The wave frequency �and phase veloc-
ity� decreases with an increasing superthermal component

0.00 0.05 0.10 0.15 0.20k0.00

0.05

0.10

0.15

0.20
Ω

FIG. 2. �Color online� Examples of the linear DR of obliquely propagating
IA waves. From top to bottom: Solid curve for �=15 and r=0; dashed curve
for �=15, cos �=0.95, and r=0.05; dotted curve for �=3, cos �=0.95, and
r=0.05; and dot-dashed curve for �=2, cos �=0.95, and r=0.05.
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�i.e., � decreasing� for fixed obliqueness and magnetization.
The same effect �lower phase speed� is found for increased
obliqueness �i.e., reducing cos ��, and for stronger magneti-
zation.

In Fig. 3, the upper three curves represent the ion-
cyclotron mode, while the lower three are for the IA branch.
We see that the phase speed of the IA wave decreases with
increasing obliqueness, while the effect on the ion-cyclotron
wave is the reverse, namely, higher phase speed for increased
obliqueness, thus leading to an increased overall separation
between the two modes. Finally, the effect of excess super-
thermality �stronger for lower �� is depicted in Fig. 4. We
note that an increase in the superthermal electron component
causes the phase speed of both the ion-cyclotron and IA
waves to decrease. In both of the latter Figures, the fre-
quency cutoff at k=0, for the upper mode, is left intact, since
it depends only on the strength of the magnetic field.

As pointed out earlier, we shall be using the quasineu-
trality assumption when dealing with the nonlinear behavior
and hence we turn next to the DR obtained from the system
of Eqs. �5�–�8� if closed by Eq. �10�, namely,

��
2 =

1

2
�r +

k2

�
	 �

1

2
��r +

k2

�
	2

− 4r
kz

2

�
�1/2

. �13�

We note the disappearance of the screening term present in
Eq. �11�; specifically, the latter equation leads to Eq. �13�
upon formally substituting k2 / ��+k2�→k2 /�. The DR given
in Eq. �13� differs from that obtained in Refs. 34 and 36 only
due to the presence of superthermal electrons �viz., those are

recovered for �→1�. In particular, setting �→1 in Eq. �13�
one recovers exactly Eq. �12� in Ref. 34, which also matches
Eq. �11� in Ref. 36 �ignoring thermal pressure therein�.

Exploring the limiting behavior of the DR found in Eq.
�13�, one can easily show that for k→0, the wave behavior is
the same as found above. In particular, the phase velocity of
the lower �acoustic� mode has a maximum value for k→0,
viz., vph

�−�=cos � /�� for k→0, and decreases with k. On the
other hand, for small k the phase velocity of the upper �cy-
clotron� mode is infinite, decreasing with k, to a minimum
value for the opposite limit, k→�, where it turns out that
�+�k cos � /��, yielding a minimum phase speed,
vph

�+���1 /�. For �→�, viz., �→1, these remarks agree with
the results in Ref. 34.

We note therefore that there is a region of phase speeds,
�vph,max

�−� ,vph,min
�+� � in which linear modes do not propagate, i.e.,

in the interval ��−1/2 cos � ,�−1/2�. We shall later see that, not
surprisingly, this is exactly the velocity region in which non-
linear excitations are allowed to occur.

Finally, we may add that our analysis of oblique linear
modes appears to be related to the Gould–Trivelpiece modes,
studied �for Maxwellian plasmas� in the 1960s.42 Interest-
ingly, when �=0, the two linear modes have the same phase
velocity, and the range of velocities available for nonlinear
excitations tends to zero. It is easy to show that in fact the
two modes then reduce to the standard IA wave �with un-
normalized �=kcs� and an upper mode with un-normalized
�=
i. Clearly the latter mode is spurious as the magnetic
field cannot affect a parallel propagating longitudinal wave.42

IV. ARBITRARY AMPLITUDE SOLITARY WAVE
THEORY

Anticipating the existence of arbitrary amplitude travel-
ing solitary waves, we shall assume that all fluid variables in
the evolution equations depend on a single traveling variable
�=�x+z−Mt �where M is the normalized pulse propaga-
tion velocity, and �,  are the direction cosines along the x
and z directions, respectively; thus, �2+2=1� shown in
Fig. 1. It must be added for rigor, that although the normal-
izing speed cs is the expression for the sound speed in an
electron-ion plasma with a Boltzmann electron distribution,
it does not correspond to the true sound speed in our case,
which is �-dependent. Indeed, Debye shielding is altered in a
plasma with a � distribution, and thus an effective
�-dependent Debye length is found, as pointed out in Refs.
43–46. Therefore, M is not truly the Mach number in our
case.

The above traveling wave ansatz generally leads to a set
of coupled ordinary differential equations in the moving co-
ordinate �; details can be found, e.g., in Refs. 29 and 30.
Applying the coordinate transformation to the system of Eqs.
�5�–�8�, the fluid equations become

− M
dn

d�
+ �

d�nux�
d�

+ 
d�nuz�

d�
= 0, �14�

�− M + �ux + uz�
dux

d�
+ �

d	

d�
−


i

�pi
uy = 0, �15�

0.0 0.1 0.2 0.3 0.4k0.0

0.1

0.2

0.3

0.4
Ω

FIG. 3. �Color online� The linear DR for electrostatic waves propagating
obliquely in a magnetized plasma for �=3 and r=0.05. Upper �three�
curves: �+ and lower �three� curves �−. Solid curves for cos �=0.98; dashed
for cos �=0.95; and dot-dashed for cos �=0.87.

0.0 0.1 0.2 0.3 0.4k0.0

0.1

0.2

0.3

0.4
Ω

FIG. 4. �Color online� The linear DR for electrostatic waves propagating
obliquely in a magnetized plasma for cos �=0.95 and r=0.05. Upper �three�
curves: �+ and lower �three� curves: �−. Solid curves for �=8; dashed for
�=3; and dot-dashed for �=2.
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�− M + �ux + uz�
duy

d�
+


i

�pi
ux = 0, �16�

�− M + �ux + uz�
duz

d�
+ 

d	

d�
= 0. �17�

We may now integrate Eqs. �14�–�17� by applying appropri-
ate boundary conditions for localized perturbations, viz.,
n→1, ux,z→0, and 	→0 at �→ ��. We thus obtain

n��ux + uz� = M�n − 1� , �18�

uz =


M
� nd	 − 1	 , �19�

ux =
M

�
�1 −

1

n
	 −

2

M�
� nd	 − 1	 , �20�

where we have taken quasineutrality, i.e., Eq. �10� into ac-
count. A tedious yet straightforward algebraic manipulation
leads to

d2S

d�2 

d2

d�2�	 +
M2

2 �1 −
	

�� − 3
2�	

2�−1� = F�	� , �21�

where S obviously denotes the quantity within square brack-
ets and

F�	� =

i

2

�pi
2 ��1 +

2

M2	�1 −
	

�� − 3
2�	

−�+1/2

− 1 −
2

M2�1 −
	

�� − 3
2�	

−2�+2� . �22�

Multiplying both sides of Eq. �21� by dS /d� and integrating
once, we obtain

1

2
�d	

d�
	2

+ ��	;M,�,� = 0, �23�

where the �Sagdeev-type� pseudopotential ��	 ;M ,� ,� is
given by

��	;M,�,�

=

i

2

�pi
2 �1 −

M2�� − 1
2�

�� − 3
2� �1 −

	

�� − 3
2�	

2�−2�−2

� �1 +
2

2M2 + 2 +
M2

2
− �M2 + 2��1 −

	

�� − 3
2�	

�−1/2

+ �1 −
2�� − 1

2�
�� − 3

2� 		 − �1 +
2

M2	�1 −
	

�� − 3
2�	

−�+3/2

+
2

2M2�1 −
	

�� − 3
2�	

−2�+3

+
M2

2 �1 −
	

�� − 3
2�	

2�−1� .

�24�

The detailed derivation of the latter three relations can be
found in the Appendix.

Equation �23� can be regarded as the analog of an
energy-balance equation in mechanics for the mechanical

problem of motion of a unit mass located at “position” 	 and
evolving in “time” �, at a “speed” d	 /d�, in a potential
��	 ;M ,� ,�. We recall, in view of the forthcoming analy-
sis that the Maxwellian limit34 is recovered for �→�. So,
our findings �for finite �� are to be compared to the results in
Ref. 34.

In order for solitary solutions to exist,26,30 the following
requirements must be fulfilled:

�i� ��	=0�=d��	� /d	 �	=0=0 and d2��	� /d	2 �	=0

�0, so that the origin is a maximum of the function
�. Also, as imposed by the reality of 	, from
Eq. �23�,

�ii� ��	� must be negative in the region 0�	�	max;
here 	max denotes a positive root of �, for positive
potential excitations to exist �a similar relation should
hold on the negative semiaxis, for negative structures
to occur�. The nature of these requirements is clarified
in the figures provided below.

V. SOLITON SPEED RANGE

The origin at 	=0 defines the equilibrium state, which
should represent a local maximum of the pseudopotential
��	�. From Eq. �24�, it is clear that ��	=0�=d��	=0� /
d	=0 is satisfied. By imposing the convexity requirement of
the second derivative being negative at the origin, one de-
fines a region of velocity values where solitary excitations
may exist. This is therefore often referred to as the soliton
existence condition.30 In our case, we thus obtain the condi-
tion

�d2�

d	2 �
	=0

=

i

2

�pi
2

M2 − M1
2

�M2 − M2
2�M2 � 0, �25�

where

M1 = ���2� − 3

2� − 1
	1/2

� 1 �26�

and

M2 = �2� − 3

2� − 1
	1/2

= �−1/2. �27�

Equation �25� can also be written in the form

�d2�

d	2 �
	=0

=

i

2

�pi
2 � 2

M2 +
1 − 2

M2 − M2
2	 � 0. �28�

We draw the conclusion, from Eq. �25� �or Eq. �28�� that for
a fixed value of �, soliton solutions may exist only for values
of the Mach number in the interval

M1 � �M� � M2, �29�

i.e.,

cos � �
�M�
M2

� 1, �30�

which is the region of permitted M values for a given value
of the angle � between the propagation direction and the
magnetic field. We shall henceforth omit the absolute value,
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since positive velocity M values will be assumed everywhere
below. Recall that =cos ��1, since it is defined as a direc-
tion cosine.

A few comments are in order, regarding the physical
interpretation of the above soliton existence criterion. First of
all, it is straightforward to see that the �-dependent expres-
sion �27� for M2=�−1/2 is the true sound speed in an unmag-
netized two-component plasma with kappa-distributed elec-
trons, normalized with respect to the conventional IA speed,
cs
�ZkBTe /mi�1/2. Hence the expression in Eq. �30�, M /M2,
represents the Mach number of the soliton relative to the true
unmagnetized sound speed.

One normally expects solitons to exist only for “super-
acoustic speeds.” Thus it appears at first sight to be ex-
tremely surprising to find, as we may see from Eq. �29� that
M2 is the upper limit for soliton existence, and not the lower
limit. However, in this context, it is important to recognize
that M2 is not the phase speed of the magnetized IA wave,
which, as we have seen in Sec. III, is given �in our normal-
ization� by cos � /�� in the ultrashort-wavelength limit, i.e.,
by M1. In the Maxwellian limit, �→1, and the lower Mach
number limit becomes cos �. The correction factor �−1/2 in
the case of a kappa distribution was seen earlier to be the
factor by which the Debye length, say �D

��� �and hence the
unmagnetized sound speed �p,i�D

����, decreases due to excess
superthermality of the electrons �note the screening term � in
the denominator of Eqs. �11� and �12� above�; recall that this
quantity reduces to unity for infinite �. An important aspect
is that this lower Mach number limit for soliton existence
varies with the obliqueness through cos �. We therefore con-
clude that these obliquely propagating magnetized IA soli-
tary waves are indeed supersonic, a fact that appears to have
escaped the attention of the authors of Ref. 34.

On the other hand, M2 is the minimum phase speed of
the upper mode �cyclotron wave� in the magnetized model,
as we have seen in Sec. III. This acts as the upper limit of
accessible soliton speeds. Again, we note that for the Max-
wellian case ��→� ; �→1�, it follows that M2→1.

In the light of the above, one overcomes one’s first sur-
prise at finding that M �M2 everywhere, a fact which ap-
pears to contradict the known result for supersonic parallel
propagation.26,32 In fact, it was pointed out and briefly dis-
cussed years ago for Maxwellian plasmas in Ref. 34 that the
region �cos ��M �1� was determined to be the existence
condition for obliquely propagating solitons in e-i plasmas
with Maxwellian electrons, where, as here, M was normal-
ized with respect to the standard IA speed in a Maxwellian
e-i plasma. As we have seen, this result is indeed readily
recovered from our Eq. �29� above for infinite �.

One observes, therefore that in a plasma with kappa dis-
tributed electrons, the range of permitted Mach number val-
ues �M1 ,M2�= ��−1/2 cos � ,�−1/2� for obliquely propagating
IA solitons coincides with the range of values which is for-
bidden for linear wave phase speeds; cf. the discussion in
Sec. III above. Clearly, when cos �→1 �parallel propaga-
tion�, the model, which is based on propagation at an angle
to a magnetic field, breaks down, as the range of accessible
Mach numbers tends to zero.

The variation in M1 and M2 �solid line in Fig. 5� with �

�for fixed � and also with  �for fixed �� are shown in Figs.
5 and 6, respectively. We see that M1 is reduced as propaga-
tion goes more oblique, thus extending the region of permit-
ted M values as the angle � between magnetic field and
propagation direction is increased. We may add for com-
pleteness, that an extra constraint on the values of M could
be expected to come from the requirement that the density
should be real, thus 	 must not exceed some maximum
value, say 	m=�−3 /2 �see Eq. �10��. We have checked, by
solving the equation ���−3 /2,M ,� ,�=0 that ��	m� is
always positive �thus the limit is never reached; remember
that ��	��0 is imposed physically�, so this constraint is not
of relevance here.

Concluding, the positive potential obliquely propagating
solitary wave solutions of the ion fluid system of equations
exist for values of the Mach number M in the range
M � �M1 ,M2�= ��−1/2 cos � ,�−1/2�. Recalling the definition
�−1/2= ��2�−3� / �2�−1��1/2, we see that both upper and
lower limits vary with �, while only the lower limit varies
with obliqueness.

2 4 6 8 10 12 14 16
0.2

0.4

0.6

0.8

1.0

Κ

M

FIG. 5. �Color online� The velocity threshold for the existence of solitary
structures is obtained by imposing the condition ���	=0��0. The varia-
tion in the critical Mach number M1 with �. From top to bottom: Solid
curve: =1 �corresponding to M2 in Eq. �28��; dot-dashed curve: =0.95;
dotted curve: =0.9; and dashed curve: =0.85.
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FIG. 6. �Color online� Variation in the Mach number threshold, M1 with .
From top to bottom: Solid curve: �=15; dashed curve: �=8; and dot-dashed
curve: �=3.
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VI. PARAMETRIC INVESTIGATION

We recall that the pseudopotential function
��	 ;M ,� ,� depends on the electric potential 	 and thus
also has a parametric dependence on the relevant physical
parameters: the excitation speed M, the electron nonthermal-
ity �via the parameter ��, and the obliqueness of propagation
�via =cos ��. We shall now investigate the effect of each of
these parameters separately. We need to remember that the
form of the pseudopotential �, in fact, predicts the shape of
the potential pulse: the value of its root �where the curve
crosses the axis� corresponds to the pulse amplitude, while
the depth of the pseudopotential, as expressed by Eq. �24�, is
associated with the maximum value of the slope of potential
curve 	���.

A. Velocity dependence

By plotting the pseudopotential � for fixed values of
plasma parameters, we see in Fig. 7 that the amplitude in-
creases as M is increased. It is also found that the depth of

the Sagdeev potential well �and hence the steepness of the
soliton profile� increases as the Mach number is increased
within the range M1�M �M2. This is in agreement with the
earlier result of Ref. 32 for unmagnetized plasma, which also
holds for parallel propagation.

B. Superthermality effect „via �…

The effect of an increase in superthermal electrons on
linear IA waves propagating in a magnetized plasma was
studied in Ref. 40. It may be noted that Landau damping of
electrostatic plasma waves is often enhanced in the presence
of a superthermal electron population, as compared with
Maxwellian plasmas.47

In the framework of our model, we have investigated the
superthermality effect for a fixed soliton propagation speed
�M� within the accessible range. It is found that the soliton
amplitude increases with decreasing �, which agrees with the
results of Ref. 32. Also, the soliton profile becomes steeper
for a greater excess of superthermal electrons; see Fig. 8.

FIG. 7. �Color online� �a� Variation in the pseudopotential ��	� with 	 for
�=2, =0.9, 
i=0.5, �pi=1.4, and different values of Mach number, M.
From top to bottom: Solid curve: M =0.53; dashed curve: M =0.54; dot-
dashed curve: M =0.55; dotted curve: M =0.56. �b� The corresponding elec-
trostatic potential perturbations and �c� the resulting electric field, obtained
numerically.

FIG. 8. �Color online� �a� Increased superthermality effect �via �� for
=0.8, M =0.8, 
i=0.2, and �pi=1.3. From top to bottom: Solid curve:
�=10; dashed curve: �=7; dot-dashed curve: �=5; dotted curve: �=3.5.
�b� The corresponding electrostatic potential perturbations and �c� the result-
ing electric field, obtained numerically.
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This behavior arises due to the fact that the threshold
Mach number decreases in the presence of more superther-
mal electrons �decreasing ��; hence a given M is increas-
ingly greater than the lower limit, and thus larger amplitude
solitary waves are generated. These considerations are in full
agreement with Ref. 32.

C. Obliqueness effect

The effect of the obliqueness of the propagation direc-
tion, as expressed via  �=cos ��, has been analyzed for
highly superthermal electrons, taking �=3, and also for a
large �quasi-Maxwellian� value �=15. In both cases, as the
obliqueness, i.e., the angle ��� between the directions of
wave propagation and the external magnetic field, B0, in-
creases, the amplitude of the solitary waves increases. This
can be interpreted via a simple argument, in fact borrowing
insight from earlier knowledge for the unmagnetized case32

and hence for parallel propagation. As the obliqueness in-
creases �hence cos � decreases�, the critical Mach number
threshold M1 decreases �see Fig. 6�. Therefore, it follows that
a given M value exceeds the lower critical value by a larger
amount, and thus the amplitude of the solitary structure
increases.

It is seen from Figs. 9 and 10 that a more nearly parallel
situation �smaller propagation angle� leads to smaller excita-
tions. It should be pointed out, for rigor that for large angles
the assumptions that the waves are electrostatic is no longer
valid, and we should look for fully electromagnetic struc-
tures. This was emphasized in recent criticism of oblique
models for arbitrary amplitude excitations;38 in fact, the

larger the angle �, the smaller the excitation should be, in
order for the electrostatic approximation to be respected.

D. Effect of magnetic field „via Ωi…

We have investigated the effect of the magnetic field on
the solitary structure characteristics, as manifested via the
appearance of the gyrofrequency 
i. We find that the mag-
nitude of the external magnetic field B0 has no direct effect
on the amplitude of the solitary waves �notice the fixed roots
of � in Fig. 11�. However, it does affect the width of the
solitary waves. In fact, as 
i is increased, the depth of the
pseudopotential well increases, i.e., a stronger magnetic field
leads to steeper and thus narrower soliton profiles, as shown
in Fig. 11. Finally, we note that the magnetic field has no
effect on the velocity range, �M1 ,M2�, which is independent
of 
i, as we may see from Eq. �29�.

FIG. 9. �Color online� �a� Effect of obliqueness �via � on the pseudopo-
tential ��	� for �=3, M =0.76, 
i=0.5, and �pi=1.5. From top to bottom:
Solid curve: =0.97; dashed curve: =0.96; dot-dashed curve: =0.95;
dotted curve: =0.94. �b� The corresponding electrostatic potential
perturbations.

FIG. 10. �Color online� �a� Effect of obliqueness �via � on the pseudopo-
tential ��	� for �=15, M =0.95, 
i=0.5, and �pi=1.5. From top to bottom:
Solid curve: =0.97; dashed curve: =0.96; dot-dashed curve: =0.95;
dotted curve: =0.94. �b� The corresponding electrostatic potential
perturbations.
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�0.0008
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0.0002
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FIG. 11. �Color online� Magnetic field effect �via 
i� for �=3, M =0.72,
=0.8, �pi=1.3. From top to bottom: Solid curve: 
i=0.2; dashed curve:

i=0.3; dot-dashed curve: 
i=0.4; dotted curve: 
i=0.5.
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VII. CONCLUSIONS

In this paper we have studied the nonlinear properties of
arbitrary amplitude IA solitary waves propagating in a mag-
netized plasma of cold fluid ions and electrons with a kappa
velocity distribution, i.e., for low values of �, the electron
distribution has an excess of superthermal particles com-
pared with a Maxwellian distribution.

In the linear regime, we have obtained two dispersion
curves, corresponding to the magnetized IA and ion-
cyclotron modes �modified on account of nonthermality and
obliqueness of the propagation direction�. We have shown
that the frequency of the IA �ion-cyclotron� wave decreases
�increases� with increasing obliqueness of propagation and
the frequency of both waves decreases for an increased en-
hancement of superthermal electrons, i.e., lower values of �.

It is found here that only positive potential IA solitary
structures are observed in such a plasma, as is the case for a
conventional electron-ion plasma in which the electrons are
Maxwellian. Thus the excess superthermal electrons do not
have a significant qualitative effect on the soliton behavior.
In all soliton aspects, the typical characteristics associated
with IA solitons in a plasma with a Maxwellian electron
distribution26 are recovered for the limit, �→�.

The lower Mach number limit is M1=cos ���2�−3� /
�2�−1��1/2, and it represents the true IA speed in the plasma
model under discussion, i.e., M1 is the speed of magnetized
IA waves. Hence, as would be expected from standard
theory, the solitons are indeed only found for superacoustic
speeds, a point that appears to have been missed in the
past.34

On the other hand, although M2= ��2�−3� / �2�−1��1/2 is
the IA speed in an unmagnetized kappa plasma, it represents
the upper limit for solitons, as it is the minimum value of the
“upper” linear mode found here, viz., the cyclotron mode.

As is the case for Maxwellian electrons,34 the lower limit
for the existence of IA solitons in a magnetized plasma with
kappa distributed electrons is seen to be proportional to
cos �, where � is the angle between the direction of propa-
gation and the magnetic field. It may be added, for complete-
ness that a recent study38 has, from first principles, drawn
attention to the fact that great care needs to be exercised in
the use of the pseudopotential method for oblique propaga-
tion. It was pointed out that only weakly oblique propagation
should be considered if large amplitude excitations are to be
modeled, in order that the electrostatic character of the exci-
tations not be violated.38 Those general findings are to be
respected and understood as the limits of our study.

We have shown that the lower soliton speed limit, M1,
decreases with an increase in excess superthermal compo-
nent, i.e., with decreasing �, and tends to zero as �→3 /2.
The upper limit �M2� also decreases with decreasing �, and,
as M1 /M2=cos ��1, it follows that the range of accessible
Mach numbers, �M1 ,M2� decreases for decreasing �, i.e., as
the excess of superthermal particles is increased. These re-
sults are analogous to those for unmagnetized IA solitons.32

Further, the range �M1 ,M2� also decreases with increasing
propagation angle � with respect to the magnetic field.

Both the amplitude and the profile steepness of solitons

increase monotonically with the Mach number, for a given
velocity distribution function, i.e., at fixed kappa, as was
found for the unmagnetized case.32

We have also shown that for fixed Mach number, soli-
tons in plasmas with a lower value of � have a larger ampli-
tude and steeper profile than would be the case for solitons
supported by a Maxwell–Boltzmann plasma. This is due to
the lower soliton threshold speed �M1� that pertains in a
low-� plasma containing increased excess superthermal
�“tail”� electrons. Hence M −M1 increases as � is decreased,
resulting in larger amplitude and steeper profile solitons.
These results agree qualitatively with those found for an un-
magnetized plasma.32

Finally, it is shown that the only effect of the magnetic
field strength on the soliton behavior is that the soliton pro-
file is steeper in a stronger magnetic field.

Our theoretical results on obliquely propagating IA
waves in magnetized plasma can contribute to understanding
localized electrostatic disturbances in space plasmas as well
as in laboratory plasmas where a kappa distributed electron
component is observed.
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APPENDIX: DERIVATION OF EQS. „21…–„23…

Substituting Eq. �18� into Eqs. �15� and �16�

−
M

n

dux

d�
+ �

d	

d�
−


i

�pi
uy = 0, �A1�

−
M

n

duy

d�
+


i

�pi
ux = 0. �A2�

Using the value of ux from Eq. �20�, Eq. �A2� can be written
as

duy

d�
=


i

�pi
� n

�
−

1

�
−

2

M2�
�n nd	 − n	� . �A3�

Differentiating Eq. �A1� with respect to � and substituting
the value of ux and duy /d�, we get
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3M2

n4 �dn

d�
	2

−
M2

n3

d2n

d�2 +
d2	

d�2

=

i

2

�pi
2 �n − 1 −

2n

M2 � nd	 − 1	�
⇒

3M2

n4 �dn

d�
	2

−
M2

n3

d2n

d�2 +
d2	

d�2 = F�	� . �A4�

Using Eq. �10�, one writes F�	� as a function of 	

F�	� =

i

2

�pi
2 ��1 +

2

M2	�1 −
	

� − 3
2
	−�+1/2

− 1 −
2

M2�1 −
	

� − 3
2
	−2�+2� .

Equation �A4� can be written in terms of electrostatic poten-
tial 	 instead of normalized number density n by using Eq.
�10�

M2�� − 1
2�

�� − 3
2�2 �2� − 2��1 −

	

� − 3
2
	2�−3�d	

d�
	2

+
M2�� − 1

2�
�� − 3

2� �1 −
	

� − 3
2
	2�−2d2	

d�2 +
d2	

d�2 = F�	� .

Differentiating twice with respect to �, above equation re-
duces to

M2

2

d2

d�2�1 −
	

� − 3
2
	2�−1

+
d2	

d�2 = F�	�

⇒
d2

d�2�	 +
M2

2 �1 −
	

� − 3
2
	2�−1� = F�	� ⇒

d2S

d�2 = F�	� ,

�A5�

where

S = 	 +
M2

2
�1 −

	

� − 3/2	
2�−1

.

Differentiating S with respect to � and squaring, we
write

�dS

d�
	2

= �G�	��2�d	

d�
	2

, �A6�

where G�	�=1−M2��−1 /2��1− 	
�−3/2

�2�−2 / ��−3 /2�. Multi-
plying both sides of Eq. �A6� by dS /d�, we can write

d

d�
�1

2
�G�	�

d	

d�
	2� = F�	�G�	�

d	

d�
. �A7�

Integrating this equation under the boundary conditions
	→0 and d	 /d�→0 at �→ ��, one can obtain Eq. �23�.
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