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Velocity distribution functions with an excess of superthermal particles are commonly observed in
space plasmas, and are effectively modeled by a kappa distribution. They are also found in some
laboratory experiments. In this paper we obtain existence conditions for and some characteristics of
ion-acoustic solitary waves in a plasma composed of cold ions and �-distributed electrons, where
��3 /2 represents the spectral index. As is the case for the usual Maxwell–Boltzmann electrons,
only positive potential solitons are found, and, as expected, in the limit of large � one recovers the
usual range of possible soliton Mach numbers, viz., 1�M �1.58. For lower values of �, modeling
the presence of a greater superthermal component, the range of accessible Mach numbers is reduced.
It is found that the amplitude of the largest possible solitons that may be generated in a given plasma
�corresponding to the highest allowed Mach number for the given plasma composition� falls off with
decreasing �, i.e., an increasing superthermal component. On the other hand, at fixed Mach number,
both soliton amplitude and profile steepness increase as � is decreased. These changes are seen to
be important particularly for ��4, i.e., when the electrons have a “hard” spectrum. © 2009
American Institute of Physics. �DOI: 10.1063/1.3143036�

I. INTRODUCTION

The scope of the article at hand embraces the nonlinear
dynamics of ion-acoustic �IA� waves under the effect of a
non-Maxwellian electron velocity distribution with excess
superthermal particles, represented by a � distribution. The
basic prerequisites of our study are outlined in the following
paragraphs.

Plasmas are often characterized by a particle distribution
function with a high energy tail and they may thus deviate
significantly from a Maxwellian.1–3 Both space and labora-
tory plasma environments may have such an excess super-
thermal electron population due to velocity space diffusion,
which may lead to an inverse power-law distribution at a
velocity much higher than the electron thermal speed.4–6

Such behavior is effectively modeled by a kappa �or gener-
alized Lorentzian� distribution function,1,6–8 which appears
to be more appropriate than a thermal �Maxwellian� distribu-
tion in a wide range of plasma situations.

The commonly used three-dimensional, isotropic kappa
��� distribution is given by6,8

f��v� =
n0

����2�3/2
��� + 1�
��� − 1

2��1 +
v2

��2�−��+1�

, �1�

where n0 is the species equilibrium number density, �2= ���
−3 /2� /���2kBT /m� is the effective thermal speed, modified
by the spectral index �, with T the kinetic temperature and m
the species mass, and ��x� is the gamma function. Here v2

=vx
2+vy

2+vz
2 obviously denotes the square norm of the veloc-

ity v. Clearly, for a physically realistic thermal speed, one
requires ��3 /2. At very large values of the spectral index �,
the velocity distribution function approaches a Maxwellian
distribution. Low values of � represent distributions with a
relatively large component of particles with speed greater
than the thermal speed �“superthermal particles”� and an as-
sociated reduction in “thermal” particles, as one observes in
a “hard” spectrum.

First applied by Vasyliunas1 to model observations of
particle energy distributions in space-based experiments, the
� distribution is widely used to fit velocity distributions ob-
served in space plasmas, often with 2���6. Examples in-
clude measurements of plasma sheet electron and ion distri-
butions ��i=4.7 and �e=5.5�,9 and observations in the earth’s
foreshock �3��e�6�.10 Modelers have also used � distribu-
tions with low values of �, e.g., Pierrard and co-workers11,12

developed a Lorentzian ion exosphere model and associated
solar wind model with coronal electrons satisfying 2��e

�6. Although there is no completely satisfactory theory for
the persistence and apparent ubiquity of � distributions in
space, works by Treumann and co-workers,13,14 Leubner,4

and Collier,15 provided heuristic explanations or pointers to-
ward a full explanation.

It has been argued that a combination of kappa distribu-
tions models multicomponent plasmas more effectively than
a superposition of Maxwellians.16,17 Indeed, recent observa-
tions of the electron velocity distribution function in Saturn’s
magnetosphere appear to confirm this view.5

By integrating the kappa distribution function over ve-
locity space, one can obtain the number density of the cor-
responding plasma constituent�s�, which affects the charge
balance via Poisson’s equation. An important characteristic
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of the kappa distribution function is that the dependence of
the density on the electrostatic potential differs from the fa-
miliar exponential form obtained from the Maxwell–
Boltzmann distribution. The consequences will be obvious in
our analysis below, both from an analytical and a numerical
point of view.

The linear properties of plasmas in the presence of a
kappa distribution with excess superthermal particles have
been investigated rather extensively. A modified plasma dis-
persion function for such a “superthermal” plasma was intro-
duced in Ref. 16 for integer �, and was extended to a gen-
eralized plasma dispersion function for arbitrary real �.18,19

The usual plasma dispersion function �derived for the Max-
wellian case� is obtained by both these approaches in the
limit of infinite �, as expected. It has been shown20 that the
generalized plasma dispersion function, Z� could provide a
plasma diagnostic in space, in that wave data recorded in the
magnetosphere could be used to find the appropriate � value
characterizing the electron distribution function, clearly dif-
ferentiating it from results calculated using a Maxwellian
assumption. Similarly, it was found that wave experiments
can act as a diagnostic for the distribution function in a labo-
ratory plasma when use is made of the Z� plasma dispersion
function.6

The effect of superthermal electrons on linear IA waves
propagating in a magnetized plasma was studied in Ref. 19
Interestingly, the presence of a high energy tail leads to a
significant variation in the damping rate of electrostatic
plasma waves, as compared to Maxwellian plasmas,21 so ex-
cess superthermality was found in that case to enhance Lan-
dau damping.

The founding blocks of a nonlinear theory for IA plasma
excitations were provided four decades ago, with a study of
small-amplitude nonlinear excitations,22 and an arbitrary am-
plitude theory for IA solitary waves.23,24 A model was pro-
posed to study the dynamics of solitary waves in an electron-
ion plasma,23 and a domain for the Mach number �M
� �1,1.58�� was found for the existence of solitary waves.
The pseudopotential method developed by Sagdeev23 for
nonlinear IA excitations �later extended to describe magne-
tized plasmas25� predicted that only positive potential distur-
bances may occur in simple electron-ion plasmas. Neverthe-
less, negative potential solitary structures have later been
shown to exist in the presence of two electron
populations,26,27 and/or in multi-ion plasma compositions or
dusty plasmas.28–31

It may be added for completeness that another approach
to velocity space nonthermality is provided by the so called
Tsallis distribution.32 Like the kappa distribution, the Tsallis
distribution represents a family of distribution functions,
governed by a single parameter �q, in this case�, and possess-
ing a power-law structure �the power is given by 1 / �1−q��,
with the Maxwellian as a limiting case, when q→1. Unfor-
tunately, although there are similarities, there is no simple
transformation between the Tsallis and kappa distribution
�1�, as the forms of the argument and the power do not both
fit the same transformation. However, one may wish to use
an approximate relationship given by �→1 / �q−1�, in that,
for q�1, an increase in q increases the fraction of superther-

mal electrons relative to that of the Maxwellian, which is
equivalent to a decrease in �. Recently, existence conditions
have been found for IA solitons in a plasma composed of
cold ions and electrons modeled by a Tsallis distribution.33

The main results were that �i� as for the conventional IA
solitons based on a Maxwellian distribution, only positive
solitons were found, and �ii� the accessible range in Mach
number found for a Maxwellian, �1,1.58�, is reduced as q is
increased beyond q=1, i.e., increasing the superthermal ex-
cess reduces the range of propagation speeds available to the
solitary structure. These results are qualitatively recovered
by our analysis here.

The aim of our investigation is to elucidate the effect of
electron superthermality, as manifested through the com-
monly observed kappa distribution, on the propagation char-
acteristics of nonlinear IA excitations in a simple electron-
ion plasma. We rely on a pseudopotential method to
investigate the occurrence and characteristics of arbitrary
amplitude IA waves. We shall determine the range of permit-
ted Mach number values for the existence of solitary IA
waves in a plasma with excess superthermal electrons, and
will, in particular, demonstrate their dependence on “super-
thermality” �via ��. Recall that the limit �→� leads to the
Maxwellian case, so that the known Mach number domain
�1,1.58� �Ref. 23� is recovered in this case �see Fig. 1�.

The layout of the paper is as follows. The analytical
model equations are presented in Sec. II. In Sec. III, we
develop a pseudopotential theory and determine the range of
permitted velocity values for the existence of solitary struc-
tures. We proceed by numerically evaluating and discussing
the propagation velocity range and the effects of superther-
mality in Secs. IV and V, respectively. Our results are then
summarized in Sec. VI.

k

M

FIG. 1. �Color online� IA soliton existence domain in the parameter space of
� and Mach number, M. Solitons may be supported in the region between
the two curves. The lower, dashed curve represents the minimum �soliton�
condition, M1, and the upper, solid curve the infinite compression limit, M2.
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II. GOVERNING MODEL EQUATIONS

We consider a two-component plasma consisting of

• cold ions �charge qi=+Ze, mass mi�, described by the
fluid-moment equations, and

• electrons �qe=−e, mass me�, assumed to obey a kappa ve-
locity distribution.

The fluid equations for the ions �in the absence of pressure
effects� read

�ni

�t
+

��niui�
�x

= 0, �2�

�ui

�t
+ ui

�ui

�x
= −

qi

mi

��

�x
, �3�

and the two fluids are coupled through Poisson’s equation,

�2�

�x2 = − 4�e�niZ − ne� , �4�

where ni, ui, and � are the ion number density, the ion mean
velocity, and the electrostatic potential, respectively. The as-
sumption of charge neutrality at equilibrium yields

ni0Z − ne0 = 0, �5�

where the index “0” denotes the unperturbed �equilibrium�
number density values.

We adopt a kappa distribution for the electrons, and by
integrating over velocity space obtain the electron number
density,8

ne = ne0�1 −
e�

�� − 3
2�kBTe

�−�+1/2
, �6�

where the real parameter � measures the deviation from
Maxwellian equilibrium. We stress that the latter is recovered
in the limit of infinite � at every step.

Normalizing by appropriate scaling quantities, the num-
ber density for the electrons may be written in dimensionless
form as

ne = �1 −
	

� − 3/2�
−�+1/2

. �7�

The normalized ion continuity and momentum equations,
and Poisson’s equation are

�n

�t
+

��nu�
�x

= 0, �8�

�u

�t
+ u

�u

�x
= −

�	

�x
, �9�

�2	

�x2 = − n + �1 −
	

� − 3/2�
−�+1/2

, �10�

where the fluid velocity ui, the particle density ni, and the
electrostatic potential � are scaled as u=ui /cs, n=ni /ni0, and
	=� /�0, respectively. Here, ni0 is the equilibrium ion den-
sity. We have made use of the quasineutrality relation �5�
above. Space and time variables are scaled by the Debye

length 
D,e= �kBTe /4�ne0e2�1/2= �kBTe /4�Zni0e2�1/2, and the
inverse ion plasma frequency �p,i

−1 = �4�ni0Z2e2 /mi�−1/2. Fi-
nally, the potential scale reads �0=kBTe /e. The characteristic
IA sound speed used for velocity normalization is then cs

	�ZkBTe /mi�1/2.
However, we should note that this expression for the

sound speed is applicable to an electron-ion plasma in which
the electron density satisfies a Boltzmann distribution. Debye
shielding is altered in a plasma with a � distribution, and
thus an effective �-dependent Debye length is found.34–37

Hence, the true sound speed in the plasma model under con-
sideration, with electron density as given by Eq. �6�, is kappa
dependent and differs from cs, as will be seen later.

We should like to emphasize that the normalization used
does not contain � at all, and thus the full dependence on �
of all variables is exhibited in the normalized expressions,
and will be reflected in the numerical work that follows, as is
the case for the true sound speed. We note that we have
substituted explicitly for � as given in the clarification fol-
lowing Eq. �1�, and hence the potential is written in terms of
the kinetic temperature Te based on a Maxwellian of equal
number density and average kinetic energy.1,16,18,34–36

III. ARBITRARY AMPLITUDE SOLITARY
WAVE THEORY

Anticipating the existence of arbitrary amplitude travel-
ing solitary waves, we assume that all fluid variables in the
evolution equations depend on a single variable �=x−Mt
�where M is the Mach number, i.e., the pulse propagation
velocity normalized by the sound speed, here taken to be the
normalization value, cs�. This is the well-known pseudopo-
tential �so-called “Sagdeev”� method, leading to a number of
ordinary differential equations in a variable of �; details can
be found, e.g., in Refs. 38 and 39. Using the above transfor-
mation in Eqs. �8�–�10�, the fluid equations become

− M
�n

��
+

��nu�
��

= 0, �11�

− M
�u

��
+ u

�u

��
+

�	

��
= 0, �12�

�2	

��2 = − n + �1 −
	

� − 3/2�
−�+1/2

. �13�

After integrating Eqs. �11� and �12� and applying appro-
priate boundary conditions for localized perturbations, viz.,
n→1, u→0, and 	→0 at �→ 
�, we write

− Mn + nu = − M , �14�

i.e.,

u = M�1 −
1

n
� , �15�

and
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− Mu +
u2

2
= − 	 . �16�

From Eqs. �15� and �16�, we obtain

n =
1


1 −
2	

M2

. �17�

The reality condition M2�2	 is then imposed; note that this
requirement of a physically realistic density limits positive
potential values only.

Substituting Eq. �17� into Eq. �13�, multiplying the re-
sulting equation by d	 /d�, integrating, and applying the
boundary conditions, d	 /d�→0 at �→ 
�, we find that
Poisson’s equation takes the form

1

2
�d	

d�
�2

+ V�	� = 0, �18�

where the �Sagdeev-type� pseudopotential V�	� is given by

V�	� = M2�1 −
1 −
2	

M2� + 1 − �1 −
	

� − 3/2�
−�+3/2

.

�19�

Equation �18� can be regarded as the “pseudo-energy-
balance equation” for an oscillating particle of unit mass,
with position 	, time �, velocity d	 /d�, and potential V�	�.
We recall, in view of the forthcoming analysis that the Max-
wellian limit23 is recovered for �→�.

In order for solitary solutions to exist, the following re-
quirements must be fulfilled:

�i� V�	=0�=dV�	� /d	 �	=0=0 �at the origin�, which rep-
resents the requirement that both the electric field and
the charge density be zero far from the localized IA
solitary structures, and

�ii� d2V�	� /d	2 �	=0�0 �i.e., V�	� has a maximum at the
origin� so that the sign of the derivative of the charge
density is compatible with the sign of the electric field
at large distances. Finally, as imposed by the reality of
	, from Eq. �18�,

�iii� V�	��0 in the region 0� �	�� �	m�; here 	m denotes
the positive root �	max�, for positive potential excita-
tions �or conversely the negative root �	min�, for nega-
tive potential excitations�.

A. Soliton existence conditions

The origin at 	=0 defines the equilibrium state, which
should represent a local maximum of V�	�. From Eq. �19�, it
is clear that both V�	=0�=0 and dV�	=0� /d	=0 are satis-
fied at equilibrium. The requirement

� d2V

d	2�
	=0

=
1

M2 − 1 −
1

� − 3/2
� 0 �20�

constitutes the soliton �existence� condition to be fulfilled.
The root of d2V /d	2 �	=0 in terms of the Mach number M
defines a critical value as a lower limit for M, i.e.,

M1 	 �� − 3/2
� − 1/2�

1/2

� 1. �21�

For a fixed value of �, soliton solutions may exist only for
values of the Mach number satisfying M �M1. It may easily
be shown36 that this �-dependent expression for M1 is actu-
ally the IA speed in a two-component plasma with kappa-
distributed electrons, normalized with respect to the conven-
tional IA speed, cs	�ZkBTe /mi�1/2. Thus the existence
condition, M �M1 implies, as expected, that for solitary
waves to exist, they must be traveling at a speed exceeding
the true sound speed. Note that the simple value M1=1 is
recovered for the limit �→� �simply implying supersonic
excitations for IA waves in e-i plasmas with Maxwellian
electrons�. It is straightforward to see the influence of excess
superthermal electrons �via �� on this soliton velocity thresh-
old. In particular, M1 decreases monotonically with decreas-
ing � from the “conventional” value of M1=1 found for large
�, and as �→3 /2, M1→0.

A second �upper� velocity limit for the existence of posi-
tive potential solitons arises from the physical requirement of
a real ion number density, as expressed by Eq. �17�. For 	
→M2 /2, the density n becomes infinite �and so would the
pressure 
n� in a warm ion model with polytropic index ��.
Accessible values of the Mach number are those for which
the Sagdeev well yields a root 	m before this infinite com-
pression limit is reached, and hence we find the largest pos-
sible value of M by imposing the requirement V�	=M2 /2�
�0. The upper limit on the speed of the solitary waves �say,
M2�, expressed in terms of the Mach number, is thus ob-
tained by solving the associated equation,

M2
2 + 1 − �1 −

M2
2

2� − 3
�−�+3/2

= 0, �22�

for M2. As �→�, the last term tends to an exponential form,
and hence the upper Mach number limit will then take on the
conventional value of 1.58. At the opposite extreme, it can
easily be shown that as �→3 /2, M2→0.

Summarizing, assuming the kappa-dependent electron
density function given by Eq. �6�, positive potential solitary
wave solutions of the ion fluid system of equations exist for
values of the Mach number M in the range M1�M �M2.
Clearly, both of these limits vary with kappa, and we need to
investigate their dependence on physical parameters.

Relying on the analytical toolbox outlined above, we
have performed a parametric investigation, in order to study
the properties of arbitrary amplitude solitary waves, as de-
duced from the pseudopotential V�	� given by Eq. �19�. Our
findings are presented and discussed in the following.

IV. PROPAGATION VELOCITY
OF LOCALIZED EXCITATIONS

Let us first consider the dependence of the critical Mach
number values M1 and M2 on the presence of excess super-
thermal electrons �superthermality� via �, and hence explore
the range of accessible Mach numbers as a function of �. For
the lower velocity threshold, M1, this can be inferred analyti-
cally upon simple inspection of Eq. �21�, as commented on
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in Sec. III A. Recalling the fact that this soliton existence
condition represents the requirement of superacoustic propa-
gation speed �i.e., M1 is the true IA speed�, we see that the
true sound speed in this kappa distribution plasma has a
lower value than in a Maxwellian plasma, i.e., an increase in
superthermal �and the associated reduction in thermal� elec-
trons causes the linear IA wave to propagate at lower speed.
This has been shown in a rigorous manner in Ref. 36.

Unlike the lower limit, the variation of the upper veloc-
ity limit imposed by infinite compression of the ions, viz.,
M2, the root of Eq. �22�, can only be studied numerically. It
is found that M2 decreases monotonically as � decreases. In
Fig. 1 we have plotted the lower and upper limits, M1 and
M2, respectively, over the range 3 /2���20, and hence
show the permitted range of Mach numbers, which satisfy
M1�M �M2 and thus support IA solitons in such kappa
plasmas. We see that as � is decreased, the available range of
Mach numbers over which positive potential IA solitons may
exist is reduced.

A few comments are in order, regarding the physical
interpretation of Fig. 1. First we note that both curves show
an asymptotic behavior as � is increased. As expected, the
two limiting Mach numbers tend to 1 and 1.58, respectively,
as is well known for the Maxwell–Boltzmann case.23,24 That
these values are already closely approached from ��10
agrees with earlier studies, where linear wave behavior in
plasmas with values of � above �10 �roughly� was found to
be practically equivalent to that in a Maxwellian plasma.19

In this figure, one sees that as expected, both the lower
and the upper Mach number limits tend to zero as �→3 /2,
the limiting value of �. Recalling that a decrease in � mea-
sures the deviation from the Maxwellian behavior through an
increase in the superthermal electron component and a con-
comitant decrease in the thermal part of the electron velocity
distribution function, we note that higher superthermality re-
sults in the shrinking of the permitted region for soliton ve-
locities, compared to what is found for a Maxwellian plasma.

V. ROLE OF SUPERTHERMALITY

We wish to study the effect of superthermality on the
solitary wave characteristics. First, we consider two values of
�, viz., �=16, which is pseudo-Maxwellian �Fig. 2�, and �
=4, which is strongly non-Maxwellian, with a large super-
thermal component, and has been found to occur in space
plasmas �Fig. 3�. In each case we present Sagdeev potential
plots which represent positive potential solitary wave struc-
tures, calculated for a range of values of the Mach number,
M, lying in the range, M1�M �M2. The amplitude of the
solitary electrostatic potential structures �measured by the
magnitude of the root, 	m� is seen in both figures to increase
monotonically as the Mach number is increased, thus show-
ing that behavior of this kind, known for the Maxwell–
Boltzmann case, applies to low kappa also. Specifically, as
M is increased from its lowest value to the largest soliton
propagation speed plotted, the normalized electrostatic po-
tential amplitude increases from effectively zero to �1.13
for the pseudo-Maxwellian case �Fig. 2�, but to a somewhat
lower value, viz., �0.77 for the low-� case �Fig. 3�. These

figures thus indicate that the presence of additional super-
thermal particles appears to reduce the maximum soliton
amplitude.

We also see that in both figures the well depth of the
Sagdeev potential curve increases monotonically and dra-
matically, as the Mach number is increased from close to the
lower limit to just below the upper limit. Whereas for the
pseudo-Maxwellian case the maximum well depth reaches a
normalized value of 0.3, in the presence of stronger super-
thermality it is reduced to �0.2. The actual numbers in-
volved in this well depth have less physical significance than
the changes in well depth. It follows from Eq. �18� that the
well depth is proportional to the square of the maximum
electric field, i.e., it is related to the maximum slope of the
electrostatic potential profile representing the solitary wave
structure. From these two figures we thus deduce that the
addition of superthermal particles associated with a lower
value of � gives rise to a reduction in the steepness of the

V(f)

f�0.5 0.5 1.0

�0.3

�0.2

�0.1

FIG. 2. �Color online� Variation of V�	� for �=16 and different values of
Mach number, M. From top to bottom: Dotted curve: M =0.97; dashed
curve: M =1.10; dotted-dashed curve: M =1.23; long-dashed curve: M
=1.36; and solid curve: M =1.50.

V(f)

f�0.4 �0.2 0.2 0.4 0.6 0.8

�0.20

�0.15

�0.10

�0.05

0.05

FIG. 3. �Color online� Variation of V�	� for �=4 and different values of
Mach number, M. From top to bottom: Dotted curve: M =0.85; dashed
curve: M =0.95; dotted-dashed curve: M =1.05; long-dashed curve: M
=1.15; and solid curve: M =1.24.
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soliton profile. These aspects are explored further in Figs. 4
and 5.

In Fig. 4 we present a set of curves that show the solitary
wave amplitude as a function of the increment in Mach num-
ber over the soliton existence condition, M1 �i.e., M −M1�,
for a wide range of values of the parameter �, running from
a true Maxwellian ��=50� to a strongly non-Maxwellian
form ��=3�. A widely cited qualitative aspect of the weakly
supersonic, small-amplitude, Korteweg–de Vries soliton
theory is that larger excitations propagate at higher speeds
and are narrower �i.e., “taller is faster and thinner”�. Consid-
ering first the Maxwellian curve, we note that the potential
increases monotonically with M −M1 from zero up to the ion
compression cutoff at M =1.58 �M −M1=0.58� that the rate
of increase is effectively linear for smaller amplitude soli-
tons, relatively close to the lower Mach number limit, and

that the slope of the curve gradually decreases as the Mach
number is increased.

Not only do we see in Fig. 4 that the monotonic behavior
is exhibited well beyond the small-amplitude range, but also
that it applies whether one has the usual Maxwell–
Boltzmann plasma or a kappa distribution that is highly non-
Maxwellian. For smaller � one finds that at fixed values of
M −M1 the associated solitary wave potential is lower, i.e.,
superthermality reduces the amplitude of the solitons. In ad-
dition, as we have already seen, the upper Mach number
cutoff, M2, decreases with increasing superthermality �de-
creasing �� and the accessible range for solitons, M2−M1,
also decreases. These effects are most dramatic as � is re-
duced from 5 to 3.

It should be noted that this monotonic behavior is not
found universally for arbitrary amplitude acoustic solitons,
but appears to relate specifically to solitary waves whose
existence domain is restricted by the linear wave speed and
an infinite compression or rarefaction, as is the case here. It
has, for instance, been observed that in some cases where the
upper cutoff in the existence domain arises from the exis-
tence of a double layer, the amplitude does not increase
monotonically over the full range of accessible Mach
numbers.29,40

In Fig. 5 we have plotted Sagdeev potential curves for a
set of values of � in the range �16,3�, i.e., scanning the range
from effectively Maxwellian to strongly non-Maxwellian,
but this time choosing Mach numbers that are very close to
�in fact, within 0.0015 of� the relevant upper limit, M2, for
the value of � under consideration. As the pseudopotential
curve breaks down �ends� at the upper cutoff, the curves in
this figure only just cross the axis �yield a root�, and as a
result graphical representation clearly showing the root is
difficult. It will be noted that some of the curves obviously
cross the axis, while the others “touch” the axis. Careful
numerical evaluation confirms that they too do yield roots.
Bearing in mind the fact that we have seen that the amplitude
increases monotonically with M at fixed �, it follows that we
are effectively exploring the largest soliton amplitudes that
can be supported by a plasma with a given value of �. As
found in Fig. 4, we observe that as the superthermal compo-
nent increases with decreasing � from the pseudo-
Maxwellian case ��=16�, the largest soliton amplitudes that
may be achieved decrease monotonically, the normalized po-
tentials dropping from about 1.13 to 0.62, the value found for
�=3. The well depth, and thus the steepness of the profile of
these “largest” solitons, is also found to fall off monotoni-
cally as the superthermal component of the distribution func-
tion increases with falling �. Having established what occurs
when kappa is kept constant, we turn next to a set of calcu-
lations for which the Mach number M is kept constant, and �
varied.

Figure 6 depicts the variation of the pseudopotential
V�	� with 	 for fixed Mach number, M =1.1, and different
values of � ranging from 10 down to 3. It will be recalled
that for �=10 we observed an accessible range of Mach
numbers that was approaching that for a Maxwellian distri-
bution. We now see that as we introduce a higher proportion
of superthermal electrons �i.e., for decreasing ��, the ampli-
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FIG. 4. �Color online� Variation of 	m with M −M1 for different values of �.
The dotted curve corresponds to �=3, the dashed curve to �=5, the dotted-
dashed curve to �=7, the dotted-dotted dashed curve to �=10, the short-
dashed curve to �=16, and the solid curve to �=50.

�1.0 �0.5 0.5 1.0

�0.3

�0.2

�0.1

0.1

V(�)

�

FIG. 5. �Color online� Variation of V�	� for different values of �, and values
of Mach number, M, given by M =M2−0.0015. The dotted curve corre-
sponds to �=3, the dashed curve to �=5, the dotted-dashed curve to �=7,
the long-dashed curve to �=10, and the solid curve to �=16.
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tude of the solitary electrostatic potential structures increases
from a normalized value of 0.4 for �=10, to 0.6 for �=3.
This increase in amplitude is indirectly associated with the
increase of the superthermal electron component.

We recall that the Mach number is measured relative to a
fixed “sound speed,” which does not take account of the fact
that the true sound speed decreases with decreasing �. It is
not unusual to normalize with respect to such a fixed char-
acteristic speed when different parameters are being varied.
However in this case it follows that as we decrease � at fixed
M, we are actually increasing the value of �M −M1�. More-
over we have, of course, earlier shown that 	m increases as
�M −M1� increases. Thus, for fixed M, a decrease in � causes
an increase in the amount by which the chosen value of
Mach number exceeds the local threshold �the true sound
speed�. Hence it follows that decreasing � yields larger soli-
tons, and as found in this figure, it is thus associated with
increasing soliton amplitude over the range 3���10.

We also see that the depth of the Sagdeev pseudopoten-
tial well increases dramatically from 0.01 to 0.14 over this
range. Thus the maximum slope of the soliton profile in-
creases with decreasing � over this range, i.e., as the super-
thermal component is increased, the amplitude increases and
the soliton profile also becomes steeper.

It is of interest to see whether this effect applies even for
very strongly non-Maxwellian plasmas. In Fig. 7, we present
some examples of the pseudopotential V�	� for a couple of
cases with a very strong superthermal component, with �
ranging from 1.8 to 2.0, and M =0.62. Such a very hard
spectrum, with an extreme accelerated superthermal compo-
nent, may be found near very strong shocks associated with
Fermi acceleration.18 We see that both the amplitude of the
soliton and the maximum slope of the soliton profile are
larger for the lower values �e.g., �=1.8� than for the higher
value, �=2. Thus over this narrow range, too, the increase in
superthermality gives rise to an increase in soliton amplitude
and steepness, at fixed M. We have found analogous results
even for values of � a little above 1.6.

Finally, we take this discussion a step further with Fig. 8,

showing plots of amplitude against � at four fixed values of
Mach number, M, ranging from 1.0 to 1.3. In each case we
observe that as � is decreased, the potential at fixed M rises.
There are cutoffs at lower values of � for the higher values of
M, as M2 falls below the Mach number under consideration.
It is noticeable that the lowest curve, for M =1.0, rises much
more steeply than the others. This is presumably associated
with the rapid fall-off of M1 with decreasing � below about
5, and the resulting rapid rise in �M −M1� in that range �see
Fig. 1�, which is associated with a rise in amplitude, 	m �see
Fig. 4�.

In summary, the results of our calculations show that the
answer to the question of how soliton amplitude varies with
� depends significantly on how the question is asked. From
Figs. 6–8 one may wish to argue that increased superther-
mality causes larger amplitude solitons. That is indeed the
case at fixed M, and thus at increasing values of �M −M1�,
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FIG. 6. �Color online� Variation of V�	� for fixed M =1.1 and different
values of �. Dotted curve: �=3; dashed curve: �=4; dotted-dashed curve:
�=6; and solid curve: �=10.
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FIG. 7. �Color online� Variation of V�	� for fixed M =0.62 and different
values of �. Dotted curve: �=1.8; dashed curve: �=1.85; dotted-dashed
curve: �=1.9; and solid curve: �=2.0.
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FIG. 8. �Color online� Variation of 	m with � for different values of the
Mach number, M. The dotted curve corresponds to M =1.0; the dashed curve
to M =1.1; the dotted-dashed curve to M =1.2; and the solid curve to
M =1.3.
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and its association with increasing 	m. On the other hand,
Figs. 2–5 clearly show that the largest possible values of
soliton amplitude for a given value of �, attainable for M
chosen so that �M2−M� is small, actually decrease with de-
creasing values of �.

Overall, our results show that superthermality �as mea-
sured by the value of the parameter �� plays a significant role
in the modification of solitary electrostatic IA structures and
their behavior, but that the resultant behavior depends on the
experiment that one is carrying out.

Finally we note that as is the case both for electrons with
a Maxwellian distribution and for a Tsallis distribution, only
positive solitons have been observed. A wide-ranging nu-
merical search did not reveal any negative potential solitons.

VI. CONCLUSIONS

In this paper we have studied the existence conditions
and the characteristics of IA solitary waves propagating in a
plasma composed of cold fluid ions and electrons whose ve-
locity distribution is modeled by a kappa distribution. First, it
is noted that only positive potential IA solitary structures are
observed in such a plasma, as is the case for a conventional
electron-ion plasma in which the electrons are Maxwellian. It
thus appears that the presence of additional superthermal par-
ticles does not make qualitative changes to this important
aspect of soliton behavior, unlike the addition of an addi-
tional species, and that the changes are essentially quantita-
tive only, as outlined above. This also agrees with the results
obtained for a Tsallis distribution.33

Second, the limiting case for the Maxwellian
distribution23 is recovered for �→�, as expected.

Third, we have shown that the lower Mach number limit
for the existence of IA solitons decreases with the presence
of a greater superthermal component, i.e., with decreasing �.
This lower threshold, which tends to zero as �→3 /2, repre-
sents the true IA speed in the plasma model under discussion.
The upper limit, associated with the ion infinite compression
limit, cannot be expressed in a simple closed form, but has to
be found numerically. It decreases more rapidly with de-
creasing � than the lower limit, and hence distributions that
may be modeled by lower values of � can support solitons
only over a narrower range of accessible Mach numbers. The
reduction in accessible solitary wave propagation speeds
agrees qualitatively with that found for the case in which the
electrons have a Tsallis distribution.33

At fixed kappa, that is, for a given velocity distribution
function, soliton amplitude and soliton profile steepness both
increase monotonically as the Mach number is increased
from the threshold value. An interesting result is that the
largest possible soliton that can be supported at a fixed value
of � is found to decrease as � decreases. This observation is
in line with the facts that as � is decreased, the range of
available Mach numbers �M1 to M2� decreases, and that soli-
ton amplitude and profile steepness increase monotonically
with Mach number �through �M −M1�� at fixed �.

On the other hand, for a fixed soliton propagation speed
�M� within the accessible range, greater superthermality
yields an increase in soliton amplitude, and more pronounced

steepness of the soliton profile. This behavior follows be-
cause as the threshold Mach number �where the amplitude
vanishes� decreases with decreasing �, fixed M is increas-
ingly greater than the lower limit, and hence larger soliton
amplitudes are generated. These quantitative changes are
seen to be particularly important for very low values of �,
such as ��4, i.e., in the presence of a hard spectrum.

Thus, in a plasma in which the electrons have a kappa
distribution with lower values of �, IA solitons of fixed Mach
number have a larger amplitude, and are steeper in their pro-
file, than is the case for conventional solitons occurring in a
plasma whose electrons satisfy a Maxwell–Boltzmann veloc-
ity distribution. This is because of the increased excess su-
perthermal �“tail”� electrons and associated decrease in the
thermal component, associated with lower �, which give rise
to a lower soliton threshold, the true IA speed for the plasma
model under discussion. However, the largest possible soli-
tons that may be generated in such a kappa plasma with a
specific velocity distribution are found to be smaller than
those found in a Maxwell–Boltzmann plasma.

The results reported in this paper may be of importance
in the interpretation of localized electrostatic disturbances
observed in space plasmas, where � distributions are very
common, as well as in laboratory plasmas, in which the pres-
ence of an acceleration mechanism may lead to electron ve-
locity distributions that are well modeled by a � distribution.
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