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Electron Detachment from Negative Ions in a Short Laser Pulse
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We present an efficient and accurate model to study electron detachment from

negative ions by a few-cycle linear laser pulse. In our calculations we modify the

adiabatic model of Gribakin and Kuchiev [Phys Rev A 55, 3760 (1997)] to cal-

culate the transition amplitude of ionization for a short laser pulse. Application of

the method of Gribakin and Kuchiev modified for a time-dependent short laser pulse

with N optical cycles produces 2(N+1) saddle point contributions to the amplitude.

Our calculations show that the inner N roots account for dominant contribution to

the transition amplitude. We consider three intensities in our calculations, namely

1010 W/cm2, 5× 1010 W/cm2 and 1011 W/cm2. Detachment probabilities are con-

sidered for a range of intensities as well as phases. The dependence of the electron

angular distribution on different initial phase shifts for different intensities are also

considered, thus providing a new method for measuring the absolute phase of the

pulse. An interference structure in the electron angular distributions is observed and

accounted for correctly within our theory. Additionally our calculations predict that

the behaviour of the energy spectra is both oscillatory and phase dependent. Finally

results for the total detachment probability are also calculated.

PACS numbers: 32.80. Rm, 32.80.Gc, 32.80.Wr 32.80 Fb

I. INTRODUCTION

In this paper we extend the theory of Gribakin and Kuchiev [1] to describe the multi-

∗Electronic address: f.shearer@qub.ac.uk
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photon detachment of electrons from atomic negative ions for a short linear polarized laser

pulse based on the Keldysh approximation [2]. The original theory of [1] formulated within

the length gauge was developed to describe electron detachment in a periodic laser pulse from

negative ions. In this approach the quantum mechanical transition amplitude of tunneling

of a bound electron is given analytically by the contributions of two complex moments of

time per period, calculated using the saddle point theory. One of the major outcomes of this

work demonstrated that proper application of the Keldysh [2] approach to photodetachment

allows one to make reliable quantitative predictions for total rates, energy spectra and

angular distributions. The theory of Gribakin and Kuchiev [1] is now widely used by other

researchers in the field. Application of the theory by [1] has been considered by Kuchiev

and Ostrovosky [3] to consider negative ion detachment in a bichromatic laser field. Reichle

et al [4] have experimentally verified that the theory of [1] successfully accounts for the

predicted effect of quantum interference of electron trajectories in electron resolved angular

distributions for the negative hydrogen ion. Further experimental evidence [5] supporting

the strong field approximation of [1] is provided by a study of photodetachment of F− in

a strong linearly polarized pulse. This shows that [1] is qualitatively able to reproduce

the energy and angle resolved spectrum without needing to incorporate the rescattering

mechanism.

Recently in the literature there has been some disagreement between [6], and [7] over

whether the length or velocity gauge is best adopted within the strong field approximation

theory. However it has been demonstrated experimentally by Bergues et al [8] and that

the length gauge should be used in the description of the electron interaction with the

laser field as used in the strong field approximation of [1]. Bergues et al [8] shows the

velocity gauge predicts a different interference structure in the electron energy and angular

distributions compared with the length gauge. Direct comparison of his measurements with

the length gauge theory of [1] and the velocity gauge theory of [6] demonstrates that only the

length gauge approximation within the strong field approximation correctly reproduces the

experimental data. Previous studies in the literature also show that when only the leading

order of the transition amplitude is retained the model within the length gauge give a more

accurate description of strong field ionization [9], [10].

Recently there is growing interest in the study of strong-field ionization by a few-cycle

laser pulses. Martiny and Madsen [11] considered the photodetachment of atomic hydrogen
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using the theory of [1] to study the ellipicity dependence of the validity of the saddle point

method in a short laser pulse. The aim of the present paper is to adapt the formalism of

[1] to short pulses and investigate the dependence of the total probability rates, electron

angular and energy distributions on the phase providing a new method for measuring the

absolute phase of the pulse [12].

In our paper, we apply our theory to consider the photodetachment of the negative

hydrogen ion by three different intense (1010 W/cm2, 5 × 1010 W/cm2 and 1011 W/cm2)

few-cycle 10.6 µm laser pulses. The plan of this paper is as follows. We begin in Sec. II with

the presentation of the general theory for multiphoton electron detachment of negative ions

in a short laser pulse. Sec. III we present our numerical calculations for electron detachment

of H− at 10.6 µm, for three field intensities, namely 1010 W/cm2, 5× 1010 W/cm2 and 1011

W/cm2. In this section we also discuss our results. Finally in Sec IV we give our conclusions.

Atomic units are used throughout, unless otherwise stated.

II. THEORY

A. Basic equations

We now consider the detachment of valence electron from an atom or negative ion due

to a few-cycle laser pulse. The laser field of the short pulse may be defined as

F(t) = −dA

dt
. (1)

where

A(t) =
F

ω
sin2

(
ωt

2N

)
sin(ωt+ α). (2)

Here N is the number of optical cycles, ω is the frequency of the laser pulse and α is the

phase. A short laser pulse lasts for a finite, and considerably small amount of time and thus

to gain an understanding of ionization process we consider the detachment probability. This

contains all the information about the electron and is defined as,

dw = |Ap|2
d3p

(2π)3
. (3)
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where Ap is the amplitude of ionization of the n photon detachment process. The amplitude

is given by,

Ap = −i
∫ τ

0

∫ ∞
0

ΨpVF (t)Ψ0drdt. (4)

where τ = 2π
N
ω is the length of the laser pulse. Ψ0(t) = e−iE0tΦ0(r) is the initial wave

function of the initial electron state in the atomic potential U(r)[
p2

2
+ U(r)

]
Φ0(r) = E0Φ0(r). (5)

The potential energy of the electron interaction with the laser field, VF (t), is,

VF (t) = r · F(t), (6)

in the length gauge interation operator of the electron. Neglecting the influence of the atomic

potential U(r) on the detached electron the final state is represented by the Volkov state,

given by

ψp = exp

[
i(p + kt) · r−

i

2

∫ t

(p + kt′)
2dt′
]
, (7)

where kt is the classical electron momentum due to the field,

kt = −
∫ t

F(t′)dt′. (8)

It is assumed that the lower limit contribution in the integral is zero as if the integration is

performed from −∞ and the integrand is switched on adiabatically. Also, the minus here

is present due to the fact that the electron charge is −1 in atomic units. The Volkov wave

function satisfies the Schrodinger equation

i
∂Ψp

∂t
=

[
−p

2

2
+ VF (t)

]
Ψp. (9)

Taking the complex conjugates of equations (7) and (9) and i∂Ψ0

∂t
= E0Ψ0 the amplitude in

equation (3) becomes

Ap =

∫ τ

0

[
E0 −

1

2
(p + kt)

2

]
Φ̃(p + kt) exp

[
i

2

∫ t

(p + kt′)
2dt′ − iE0t

]
dt, (10)

where Φ̃(p + kt) is the Fourier transform of Φ0(r) and

Φ̃(p + kt) =

∫
e−i(p+kt)·rΦ0(r)dr. (11)
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An analytic form of equation (11) may be found by considering the general asymptotic form

of Φ0(r) which is valid since ionization primarily occurs at large distances from the nucleus.

This is given by,

Φ0(r) = Brν−1eκrYlm(θ, φ). (12)

where ν = Z
κ

is the charge of the atomic residue and B is an asymptotic parameter associated

with the particular ion being studied. For the particular case of the negative hydrogen ion

where ν = Z = 0 equation 12 becomes

Φ0(r) = B
eκr

r
√

4π
. (13)

Substituting this back into equation (11) yields

Φ̃(p + kt) = B

∫
e−i(p+kt)·reκr

r
√

4π
dr. (14)

and integrating gives,

Φ̃(p + kt) =
2
√
πB

[(p + kt)2 + κ2]
.

Thus the ionization amplitude in equation (10) reduces to yield,

Ap = 2
√
πB

∫ τ

0

exp

[
i

2

∫ t

(p + kt′)
2dt′ − iE0t

]
dt. (15)

B. Transition amplitude for a few-cycle laser pulse

By considering the phase in the exponent of the length-form amplitude equation (15) it

may be seen that the integral contains a rapidly oscillating phase factor exp(if(t)) where

f(t) =
1

2

∫ t

(p + kt)
2dt′ − E0t, (16)

is the classical action. The presence of this rapidly oscillating factor in the transition ampli-

tude prompts the use of the standard saddle point method so that the transition amplitude

may be approximated by

Ap =
−B
√

2π√
−if ′′(tN)

exp[if(tN)], (17)

where the saddle points tN are obtained by setting

f ′(t) =
1

2
(p + kt)

2 − E0 = 0. (18)
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Thus from equation (18) it it may be seen that for a short laser pulse the adiabatic electron

transition to the final state with a drift momentum p will occur when the condition

1

2

(
p +

F

ω
sin2

(
ωt

2N

)
sin(ωtN + α)

)2

= E0, (19)

is satisfied. Solution of this equation yields the saddle point positions in the complex plane.

By evaluating the classical electron momentum using equations (1), (2) and (8) and changing

the integration variable ωt to φµ the saddle point equation (19) may be given explicitly as

f ′(φµ) = p2 +
2pF cos θ

ω
sin2

(
φµ
2N

)
sin(φµ + α) +

F 2

ω2
sin4

(
φµ
2N

)
sin(φµ + α) + κ2 = 0,

(20)

where θ is the angle between the photoelectron momentum p and the field F. The solution

of this saddle point equation for a few cycle laser pulses necessitates a numerical approach.

In section 3 we show that numerical solution of equation (19) reveals 2(N + 1) complex

saddle points which physically represent the emission of photoelectrons at various complex

moments of time. This is a significant difference compared to the case of the long periodic

pulse considered by Gribakin and Kuchiev [1], in which the saddle point equation could be

solved anaytically. It is important to note that solutions to the saddle point equation are

normally complex because ionization is a classically forbidden process except in the case of

the over barrier regime. In [1] for the linearly polarized long pulse the saddle point equation

yielded two pairs of complex conjugate saddle points, two of which were in the upper half

complex plane and two in the lower half of the complex plane. However according to the

general theory of adiabatic transitions [13] the saddle points in the lower half of the complex

plane may be neglected. Thus the transition amplitude of ionization for a long periodic

pulse may be obtained by summing over the two saddle points in the upper half of the

complex plane. Physically the two saddle points describe complex moments of time per

period corresponding to the maximum electric field strength. In the case of the short pulse

however the number of saddle points depends on the number of optical cycles N and in

calculating the transition amplitude we take into account only those saddle points that lie

in the upper half of the complex plane. We show numerically in the next section that the

amplitude for an N cycle pulse is given by

Ap =

2(N+1)∑
N=1

−B
√

2π√
−if ′′(tN)

exp[if(tN)], (21)
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with f(tN) and f ′′(tN) evaluated for each of the 2(N + 1) saddle point solutions of equation

(20). To obtain the final form for the transition amplitude given by (21) we need explicit

expressions for f(tN) and f ′′(tN) for the short laser pulse as described by equations (1) and

(2). These are given in Appendix A.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we apply the formulae obtained within the adiabtic theory to consider

the photodetachment of H−. To apply our theory to the case of H− we require numerical

values for the asymptotic parameters B and κ of the corresponding initial bound-state wave

functions. The value of B is obtained from [15]. The values of κ are calculated from the

corresponding binding energies κ =
√

(2|E0|) using Ref. [16]. In our calculations we have

assumed a laser pulse with N = 5 optical cycles. We consider three short pulse intensities

of 1010 W/cm2, 5 × 1010 W/cm2 and 1011 W/cm2 each for phase shifts of α = 0, π/4 and

π/2. The saddle points in each case are initially obtained by considering the 3D surface

plots of 1√
|f ′(φ)|

so that the roots of the saddle point are visualized as ’infinities’ rather

than ’zeros’. The surface plots in each of the three intensities considered for each of the

phases α = 0, π/4, π/2 give twelve saddle points for the graphical solution of the saddle

point equation. Thus we note that for our N(= 5) cycle pulse we obtain 2(N + 1) saddle

points. This result is in agreement with [11].

The approximate roots found from the graphical solution can be improved to yield more

accurate approximations to the actual roots by using the Newton Raphson method for

complex roots. The numerical calculation involves refining each root in turn, simultanaeously

over a range of the angles θ between the direction of the laser field and the momentum p of

the detached electron. In the present calculations the range used for θ is 0 < θ < 1800 taking

a stepsize of 10. The range of values used for the momentum is determined from the total

energy of the detached electron assumed to be 10 ω. In our calculations we use a 10.6 µm

CO2 laser pulse which corresponds to a laser frequency ω = 0.0043. Thus the momentum

values of p range from 0.021 to 0.29 a.u. obtained by considering p =
√

(2ω) with equally

spaced energy points εj = ωj/20 and in our calculations we have taken j=1,2,...200.
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A. Saddle point smiles

Figure 1 illustrates the twelve roots of the saddle point equation for three field intensities

I = 1010, 5×1010 and 1011 W/cm2 and phases of α = 0, π/4 and π/2. For each root in each

of the nine panels in Figure 1 a change in momentum p and angle θ is illustrated. Each

root of the saddle point equation is represented by a ’cluster’ of stars. where each ’cluster’

of stars includes a root for the range of θ = 0,45, 90,135 and 180 and momenta p = ωj/20

for j = 0, 50, 100, 150, 200. Here θ is represented horiztonlly within each ’cluster’ of stars

and momenta is by the varying colours of stars, for each root. In the first row of Figure 1

the saddle points for each of the three intensities have been calculated with a phase of α

=0, in the second row with α = π/4 and in the third row with α = π/2 respectively. It

may also be observed that for each intensity and phase considered here that the clusters

distribute themselves qualitatively in the shape of a smile with the first cluster of stars on

the left handside of each smile being the first root and the last cluster on the right hand

side being the twelfth root respectively. The twelve saddle points which lie in the comple

plane of t, corresponds to the twelve instants at which electron detachment takes place. In

each of the three rows of Figure 1 we see that as the intensity of the laser field increases

the saddle points move closer towards the real axis. Additional calculations carried out

(not shown here) to make a comparison with the long laser pulse considered in [1] depict

a similiar pattern of saddle point behaviour versus laser field intensity observed in Figure

1. Our results in Figure 1 also show that the saddle points in each of the cases considered

move away from the real axis with increasing momentum. This indicates it is more difficult

for the short laser pulse to kick out the electron at higher momentum.

Having found the twelve saddle points for the short laser pulse for the case of N = 5

optical cycles we now need to obtain the final expression for the transition amplitude for the

short laser pulse. This involves substituting these roots back equation (21) and summing

over all twelve saddle points.

B. Contribution of different saddle points to the detachment probability

In this section we calculate the probability distributions using the equation,

dw =

∫ π

0

∫ ∞
0

|Ap|2
pdεdΩ

(2π)3
, (22)
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FIG. 1: Saddle points for the 12 twelve roots. Rows show increasing intensity 1010, 5 × 1010 and

1011W/cm2. Columns show increasing phase shifts, 0, α = π
4 and π

2 .
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where,
dw

dεdΩ
=
|Ap|2p
(2π)3

. (23)

In [1] detachment rates were considered since a long laser pulse is both regular and

periodic. In a long pulse the behaviour of the system is evaluated over one cycle and

applied to the rest of the pulse. However in a short laser pulse, there are few cycles and

so each cycle must be considered separately. Hence here we need to consider detachment

probabilities instead of detachment rates.

The rows of Figure 2 show the total detachment probabilities obtained by including

different numbers of contributory saddle points in the transition amplitude. The columns

in Figure 2 show the detachment probabilities for the three increasing field intensities 1010

W/cm2, 5×1010 W2 and 1011 W/cm2. Each panel also depicts a range of θ and energy ε

of the detached electron for the same phase shift of α = 0. Also, it should be noted that

this detachment probability must again be multiplied by 2 in order to take into account the

two electrons in the Hydrogen negative ion. Considering the first row of Figure 1 with the

lowest intensity of I = 1010 W/cm2 it is clear that there is a very small probability that the

electron will be detached with a high energy. This may be noted from the large flat area

in each of the frames of row 1. Next considering row 2 and 3 we see that the probability

of the electron detaching at a high energy increases with increasing field intensity. This

result indicates that at higher intensities it is easier for the laser pulse to detach an electron

with a higher energy. We also note that by comparing the first panel in each column

with the second panel in each column that the main contribution to total detachment

probability comes from the middle five saddle points, which are the fifth, sixth, seventh,

eighth and ninth saddle points. That is neglecting the contributions of the seven outer

saddle points (i.e the first, second, third, located on the lefthand side of the smiles as shown

in Figure 1 and the fourth, tenth, eleventh and twelfth, located on the righthand side of the

smiles as shown in Figure 1 respectively) does not affect the magnitude of the detachment

probability. This result is true for each of the intensities considered. By considering each

panel in the second column with each panel in the third column we see that the fifth

and ninth saddle points make a dominant contribution to the detachment probability.

That is the saddle points which are closest to the real axis influence the behaviour of the

ionisation amplitude. These results also indicate that it is more difficult for the short
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laser pulse to kick the electron out at higher and this is supported by our simulations

in 2 and table 1 below which show that the probability of electron detachment occuring

at the first, second, third, fourth, tenth, eleventh and twelfth saddle points is extremely low.

Table 1 shows the total detachment probabilities obtained by including various saddle

point contributions with a phase shift α = 0 for the three field intensities. For I = 1010

W/cm2 it may be seen that the contributions from the fifth-ninth saddle points gives a

larger ionization probability than the contribution from all twelve roots. This suggests that

there are some interference effects at this intensity and phase corssponding to the coherent

detachment of electrons at different instants of time. We also observe that the contribution

from the sixth to the eighth saddle point contribute 94.65% of the detachment probability.

In the case of I = 5×1010 W/cm2 it can be seen that roots fifth to the ninth saddle points

give a 99.84% contribution to the final detachment pronbability and we note an interefence

effect for the saddle point contribution from the sixth to the eight roots. Finally in the case

of I = 1011 W/cm2 it may be seen that the contribution from the fifth-ninth saddle points

make up to 94% of the ionisation probability. Again we note an interference effect caused

due to the contribution of the sixth to the eight saddle points. These results confirm our

graphical results that it is the saddle points closest to the real axis that contribute most

to the ionisation amplitude. Our results suggest the crude result that for an N cycle pulse

the N middle saddle point roots closest to the real axis will yield the near total probability

of detachment. Furthermore our results in this section also show that the adiabatic theory

described for the short laser pulse accurately predicts the nature of the structure of the

detachment probabilities as a result of interference caused by the electrons being detached

at different instants of time.

Our simulations in Figure 2 show the detachment probabilities calculated with the

inclusion of all twelve saddle points for the three sets of intensities varying intensities and

phases α = 0, π/4 and π/2. For the case of I = 1010 W/cm2 in the first row of Figure 3 we

can see that the first peak at 1800 gives a smaller value of detachment probability as the

phase shift is increased in frames 2 and 3.Considering I = 5× 1010 w/cm2 and I = 1011 we

observe that the distributions for α = π/4 and π/2 become asymmetric. It can be seen from

the all the frames in Figure 3 that as the intensity increases the probability of detachment
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FIG. 2: Detachment Probabilities dω/dΩdε for phase shift α = 0. Rows show detachment prob-

abilities calculated with contribution from all 12 saddle points, the middle five (5,6,7,8,9) saddle

points and the middle three (6,7,8) saddle points respectively. The columns show the detachment

probabilities calculated for increasing intensities of I = 1010W/cm2, I = 5 × 1010W/cm2 and

I = 1011W/cm2 respectively. The Y axis shows energy in step sizes of ω
20 .
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FIG. 3: Detachment Probabilities dω/dΩdε calculated with contribution from all tweleve saddle

points. Rows show detachment probabilities calculated with increasing phase shift α = 0, α = π/4

and α = π/2 respectively. The columns show the detachment probabilities calculated for increasing

intensities of I = 1010W/cm2, I = 5 × 1010W/cm2 and I = 1011W/cm2 respectively. The Y axis

shows energy in step sizes of ω
20 .
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Number of roots Total detachment probabilities calculated for α=0

Roots I = 1010 I = 5× 1010 I = 1011

1− 12 1.1901× 10−14 6.9278× 10−8 1.3084× 10−5

5− 9 1.1903× 10−14 6.9167× 10−8 1.2309× 10−5

6− 8 1.1266× 10−14 7.6491× 10−8 1.6890× 10−5

TABLE I: Multiphoton detachment spectra of H− in the strong C02 laser field with ω=0.0043.

The total detachment probabilities are calulated by equation (26) with B = 0.75 and κ = 0.235 for

intensities 1010W/cm2, 5×1010W/cm2 and 1011W/cm2 with a phase shift α = 0. The total detach-

ment probabilities have been calculated considering the contribution from all twelve saddle points,

the middle five (5,6,7,8,9) saddle points and the middle three (6,7,8) saddle points respectively.

increases. These results are confimed in Table 2.

The absolute values of the 5 cycle laser pulse detachment cross sections are shown in

Table 2 for the three field intensitiea calculated at the phase shifts α = 0, π/4 and π/2.

We note that for each intensity the detachment probability increases as the phase shift α is

increased. This suggests that the detachment probability is phase dependent. This phase

dependence may be caused by the imaginary parts of the transition amplitude resulting from

from saddle point contributions.

C. Angular Dependance on Initial Phases

The angular dependence of the electron detachment due to the different initial phase

shifts is shown in Figure 4. Here a slice of the 3d graphs from Figure 3 were taken as these

surface plots include the contribution of all twelve saddle points in the evaluation of the

transition amplitude. For each intensity, the detachment energy was chosen to correspond
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Phase shift Total detachment probabilities

α I = 1010 I = 5× 1010 I = 1011

0 1.1901× 10−14 6.9278× 10−8 1.3084× 10−5

π/4 1.2038× 10−14 9.7566× 10−8 1.3276× 10−5

π/2 1.2175× 10−14 1.2722× 10−7 1.4337× 10−5

TABLE II: Multiphoton detachment spectra of H− in the strong C02 laser field with ω=0.0043.

The total detachment probabilities are calulated by equation (26) with B = 0.75 and κ = 0.235

for intensities 1010W/cm2, 5 × 1010W/cm2 and 1011W/cm2 with phase shifts α = 0, α = π/4

and α = π/2 respectively. The total detachment probabilities in each case have been calculated

considering the contribution from all twelve saddle points.

with the most likely probability of ionisation, and the detachment probbaility plotted

against θ.

From the graphs it is evident that at the lowest intensity altering the phase shift has very

little effect on the detachment probability. Here the detachment energy in units of ω/20

was 20. In the second frame of Figure 4 we see that as the intensity is increased to 5×

1010 W/cm2 that increasing the phase shift has a more marked effect of the magnitude of

the detachment probability. In this case it appears that the trend is the lower the phase

shift the higher the detachment probability for angles up to about 1100 degrees and for

angles between 1100 and 1800 the trend reverses. Here the detachment energy was 25 in

units of ω/20. In the third case where I=1011 W/cm2 with a detachment energy chosen

at 20 in units of ω/20, we observe that the lower phase shifts result in higher detachment

probabilities over a wide range of angles. It is also noted that the detachment probability

is clearly symmetric over all angles for all intensities considered. We also observe that the

likelihood of detachment is also increased with increasing intensity.
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D. Energy Spectrum

Here we consider the energy spectrum which is given by the equation

dw

dε
=

∫ π

0

|Ap|2

(2π)2

√
2ε sin θdθ. (24)

The energy spectra are shown in Figure 5 and 6. In Figure 5 we show the behaviour of

the energy spectra with various contributions of the saddle points considered within the

transition amplitude. It can be seen from all three graphs that it is the central fifth, sixth,

seventh, eighth and ninth saddle ponts that dominate the behavior of the energy spectra for

all three intensities considered. This confirms our earlier results from the 3d surface plots

considered in Figure 3. The graphs also show that the fifth and ninth saddle points make

a significant contribution to the spectra giving indistinguishable results from including all

twelve saddle points in the calculation.

In Figure 6 one of the most noticeable features of each of the figures is the presence of

the peaks. These may result from the emission of the electron following the absorption of

different number of photons. Since the photons in the short pulse are not mono-energetic,

(that is, their energies are not certain, ∆ω ∼ 1
τ

= ω
N

), the peaks are broadened in comparison

with the long pulse table 1 of [1], which illustrates the detachment probability for the

absorption of ‘n′ photons. We also observe that these peaks are also a signature of Figure

6. In order to fully explain the energy spectrum of the electron detachment due the initial

phase shift, it is useful to illustrate the graphs showing the electric field for the two main

initial phases. Recalling that the field is given by equations (1) and (2) we illustrate the

field for the two cases of α = 0 and α = π/2 in Figure III D.

Here it may be seen that the initial phase α = 0 has one maximal cycle in the middle of

the pulse. In the graph for the initial phase α = π
2
, it appears that the graph has a maximum

and minimum cycle of equal size in the middle of the pulse, yet both these cycles are slightly

smaller than the maximal cycle of the α = 0 pulse. This can help explain the difference

observed in Figure 6. Our results show that in general, α = π
2

gives a smaller overall

detachment probability than α = 0. This may be related to the fact that the maximum field

strength for α = π
2

is smaller than for α = 0, as illustrated in Figure 2. This observation is

in agreement with the results reported for varying the phase shift to examine trends in the

behaviour of angular dependence plotted against the overall detachment probabilities in the

last section.
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E. Total Detachment Probability

IV. CONCLUSION

In conclusion we have extended the adiabatic model of Gribakin and Kuchiev [1] to

describe electron detachment from negative ions for a short pulse. In this approach we

our calculations we have found that for a linear polarized pulse with N cycles we obtain

2(N + 1) sadddle point contributions to the transition amplitude. Our theory also shows

that the N inner saddle points dominates the behaviour of the transition amplitude. The

detachment probabilities show three main features. Firstly they have a strong dependence

on the dominant saddle point contributions, secondly they are highly asymmetric and thirdly

they are influenced significantly by the phase shift between the pulse envelope and its carrier

frequency. Our theory predicts an interference structure and a phase dependence in both the

photoelectron angular distributions and energy spectra. In particular we can predict with

accuracy the actual saddle points that cause the interference between the electrons emitted

at various complex moments of time. The dependence of the electron angular distribution

on the phase shift provides a new method for measuring the absolute phase of the pulse.

Finally the findings of this work allow a qualitative and quantitative physical analysis of the

problem of electron detachment from negative ions in a short laser pulse and may be of use

to experimentalists.

Acknowledgments

APPENDIX: CALCULATION OF THE TRANSITION AMPLITUDE FOR

A SHORT LASER PULSE

The transition amplitude for the short laser pulse may be calulated using the using the

theory of Section II as

Ap =
−B
√

2π√
−if ′′(t)

exp[if(t)], (25)

For multiphoton processes the integral over time in the transition amplitude contains the

coordinate independent part of the classical action given by

f(t) =
1

2

∫ t

(p + kt)
2dt′ − E0t, (26)

where p is the photoelectron momentum and the classical electron momentum kt due to the
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few-cycle pulse is given as

kt =
F

ω
sin2

(
ωt

2N

)
sin(ωt+ α). (27)

After some routine but heavy algebra the explicit form of the classical action for the short

laser pulse is where θ is the angle between the photoelectron momentum p and the field F.

After some routine heavy algebra f(t) given by equation (26) gives,∫
(p2 + 2pkt′ + k2

t′) dt
′ − E0t =

1

2
p2t− pF

2ω
cos (ωt+ α) +

pFN

4(N + 1)ω
cos

(
N + 1

N
ωt+ α

)
+

pFN

4(N − 1)ω
cos

(
1−N
N

ωt− α
)

+
3tF 2

32ω2
− 4F 2N

32ω3
sin

(
ωt

N

)
+
F 2N

64ω3
sin

(
2ωt

N

)
− 3F 2

64ω3
sin(2ωt+ 2α) +

2NF 2

32(1− 2N)ω3
sin

(
(1− 2N)

N
ωt− 2α

)
+

2F 2N

32(1 + 2N)ω3
sin

(
(1 + 2N)

N
ωt+ 2α

)
− NF 2

128(1−N)ω3
sin

(
2(1−N)

N
ωt− 2α

)
− NF 2

128(1 +N)ω3
sin

(
2(1 +N)

N
ωt+ 2α

)
.

(28)

where θ is the angle between the photoelectron momentum p and the field F. In the above

expression we have neglected the lower limit in the integration as this only adds a common

phase factor to all saddle point contributions. Next we require f ′′(t) and this is evaluated

by considering

f ′′(t) = (p + kt)
d

dt
kt (29)

where
dkt
dt

= Fω sin2

(
ωt

2N

)
cos(ωt+ α) +

Fω

2N
sin(ωt+ α). (30)

and substitution of equation (30) into (29) yields,

f ′′(t) =
pF cos θ

2ωN
sin

(
ωt

N

)
sin(ωt+ α) +

pF cos θ

ω
sin2

(
ωt

2N

)
cos(ωt+ α)

+
f 2

2ω2N
sin

(
ωt

N

)
sin2

(
ωt

2N

)
sin(ωt+ α)2 +

f 2

ω2
sin4

(
ωt

2N

)
cos(ωt+ α) sin(ωt+ α).

(31)

Finally substitution of f(t) from equation (28) and f ′′(t) from equation (31) into equation

(25) gives the final expression for the transition amplitude.
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FIG. 4: Angular distributions calculated for the three intensities, I = 1010W/cm2, 5× 1010W/cm2

and 1011W/cm2. The angular distributions show the effect of the phase shift at α = 0, (solid line),

π/4, (long dashed line) and π/2, (short dashed line) has on the detachment probability calculated

at the peak in detachment energy in units of ω/20 at energies of 20, 25 and 20 corresponding to

intensities of 1010, 5× 1010 and 1011 W/cm2 respectively.
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FIG. 5: Energy spectra(a) I = 1010W/cm2 calculated with the contribution from the five cental

saddle points namely 5,6,7,8 and 9: shown by stars, the three inner saddle points, namely 6,7,8:

long dashed line and the 12 saddle points: short dashed line, (b) I = 5 × 1010W/cm2 calculated

with the contribution from the five cental saddle points namely 5,6,7,8 and 9: shown by stars, the

three inner saddle points, namely 6,7,8: long dashed line and the 12 saddle points: short dashed

line (c) I = 1011W/cm2 calculated with the contribution from the five cental saddle points namely

5,6,7,8 and 9: shown by stars, the three inner saddle points, namely 6,7,8: long dashed line and

the 12 saddle points: short dashed line.
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FIG. 6: Energy spectra(a) I = 1010W/cm2 calculated with the a phase shift α = 0: solid line and

α = π/2: long dashed line (b) I = 5 × 1010W/cm2 calculated with a phase shift of α = 0: solid

line and α = π/2: long dashed line (c) I = 1011W/cm2 calculated with a phase shift α = 0: solid

line and α = π/2: long dashed line.
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FIG. 7: Electric field for short pulse, with changing initial phase, α = 0: solid line and π
2

: long dashed line.


