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The surface properties of the jellium model have been investigated by large supercell computations in the
density functional theory-local spin-density (DFT-LSD) approach for planar slabs with up to 1000 electrons. A
wide interval of densities has been explored, extending into the stability range of the Wigner crystal. Most
computations have been carried out on nominally paramagnetic samples with an equal number of spin-up and
spin-down electrons. The results show that within DFT-LSD spontaneous spin polarization and charge local-
ization start nearly simultaneously at the surface for r,~20, then, with decreasing density, they progress
toward the center of the slab. Electrons are fully localized and spin polarized at r;=30. At this density the
charge distribution is the superposition of disjoint charge blobs, each corresponding to one electron. The
distribution of blobs displays both regularities and disorder, the first being represented by well-defined planes
and simple in-plane geometries, and the latter by a variety of surface defects. The surface energy, surface
dipole, electric polarisability, and magnetization pattern have been determined as a function of density. All
these quantities display characteristic anomalies at the density of the localization transition. The analysis of the
low-frequency electric conductivity shows that in the fluid paramagnetic regime the in-plane current preferen-
tially flows in the central region of the slab and the two spin channels are equally conducting. In the charge
localized, spin-polarized regime, conductivity is primarily a surface effect, and an apparent asymmetry is

observed in the two spin currents.
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The one-component plasma (OCP) consisting of quantum
electrons in a fixed external potential is arguably one of the
most fundamental many-body models,"?> whose detailed un-
derstanding is a prerequisite for a broad spectrum of theoret-
ical and computational developments, ranging from density
functional theory? to electron dynamics and spectroscopy.*
The overall picture of the OCP phase diagrams includes a
paramagnetic fluid phase at high density, and a crystal phase
(Wigner crystal’) at low density, separated by a spin-
polarized fluid phase.®~® The density at which the phase tran-
sitions among these phases take place, however, are much
lower than those of valence electrons in simple metals, and
until recently the stability and properties of the Wigner crys-
tal have been considered primarily as a conceptual curiosity.

New experimental developments have made it possible to
approach the low densities at which the Wigner crystal is
expected to arise, providing tantalizing evidence of its
existence,’ especially for systems made of electrons or holes
confined in two-dimensional (2D) layers'® and in
nanowires.'"!> These results, in turn, provide motivations for
investigating Wigner crystal properties and to extend the
scope of research to all features that might affect experimen-
tal results. Surfaces, in particular, are a necessary component
of every real system and therefore understanding how a
Wigner crystal of finite dimension is terminated is now a
relevant issue.

The simplest and most popular version of OCP is repre-
sented by the so-called jellium model, in which the external
potential confining the electrons is due to the Coulomb inter-
action of the electrons with a rigid background of positive
charge, whose density is constant (p,) within a predefined
volume, and zero outside. The background density p, is often
expressed in terms of the so-called Wigner-Seitz radius ry,
which measures (in atomic units) the radius of the sphere
containing, on average, one electron, giving 1/ pb=47rr§/ 3.
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The surface properties of such a model have been exten-
sively investigated since the early days of the quantum-
mechanical theory of solids.!> More recent studies relied on
density functional theory (DFT),'4-!® on quantum Monte
Carlo,!”'8 and on a variety of other many-body techniques
(see, for instance, the Fermi hypernetted chain computations
of Ref. 19). To the best of our knowledge, however, surface
computations have been limited to fairly high densities, cor-
responding to the simple (alkali) metal range, i.e., 2<<r,
<6.

The surface properties of low-density jellium in the sta-
bility range of the Wigner crystal are virtually unexplored
but they might be expected to reflect the structure of the
underlying crystal phase. Even though the quantitative de-
tails of the low-density portion of the [extended three-
dimensional (3D)] OCP phase diagram are still (at least
partly) the subject of debate,”® the most recent quantum
Monte Carlo studies®! find the body-centered cubic (bcc) lat-
tice to be the ground-state structure over the entire density
range for which the Wigner crystal is stable. However, the
fcc lattice is very close in energy® and different spin configu-
rations are impossible to resolve in the crystal phase®” to
within the error bar of practical quantum Monte Carlo
(QMC) computations.>® Therefore, one might expect the
(100) surface of bce to dominate the picture,?* with perhaps
a subsidiary role for the fcc(111) surface, appearing either as
a metastable feature, or being stabilized by the anisotropy at
the background edge. Other structures, however, might also
appear as a consequence of finite size and of other geometric
factors such as the aspect ratio of the slab. For completeness,
and considering that our systems are somewhat in between
2D and 3D, we mention that several QMC computations of
the 2D electron gas ground-state properties have been carried
out in recent years.”> The results point to a transition from
the paramagnetic to the ferromagnetic fluid at r,=20 while
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Wigner crystallization takes place at r,=34 (see also Ref. 1,
page 53).

Recently, Teraoka and co-workers?® carried out a series of
computations for quasi-2D jellium films, exposing two pla-
nar surfaces. All these studies were based on density func-
tional theory, in most cases relying on the local density ap-
proximation [density functional theory-local spin density
(DFT-LSD)].? Solutions have been obtained under simplify-
ing conditions, constraining the Kohn-Sham (KS) orbitals to
be plane waves in the directions (x,y) parallel to the surface.
These computations predict a broad and unexpected variety
of ground-state geometries and especially of spin configura-
tions for jellium slabs, suggesting a much richer picture than
considered until now. Computations by the same group?’ (see
also Ref. 28) for the extended 3D jellium model using a
similar approach have also predicted a variety of unexpected
phases, including sequences of alternating high-density and
low-density planes, rods, and finally, localized electron dots
arranged on the bcc lattice. We emphasize again that, both
for the quasi-2D and for the 3D cases, solutions have been
obtained under constraints imposed only for computational
convenience, and the proposed ground-state configurations
were identified by comparing a predefined and limited set of
different possibilities.

We present in this paper the results of an extensive set of
DFT-LSD computations for the same planar slab geometry,
using large supercells with up to 1000 electrons, expressing
Kohn-Sham orbitals on a large basis of plane waves and
minimizing the DFT-LSD functional without constraints. Our
objective is to characterize surface properties of the Wigner
crystal. To this aim, we explore a wide interval of densities
from r;=10 to r;=40, covering the range at which spin po-
larization and charge localization take place within DFT-
LSD. We investigate, in particular, the spin- and electron-
density distributions, we identify and characterize the charge
localization transition, and we compute properties such as
the surface energy, electron conductivity parallel to the sur-
face, and density of states for the Kohn-Sham eigenvalues.
Our results do not reflect the same sequence of successive
phase transitions and exotic structures suggested in Refs. 26
and 27, but confirm that, at least according to the DFT-LSD
approximation, the transformation from the liquid to the
crystal phase is a complex process taking place in stages.
According to our computations, spin polarization and local-
ization start virtually simultaneously at the surface, and then,
with decreasing density, they propagate inwards. Moreover,
and perhaps more interestingly, the ground-state structures
found by our simulations display a number of apparent de-
fects. In part, these might arise from the finite effort applied
to optimize the ground-state electron density. However, they
mainly reflect the near degeneracy of many different struc-
tures, a feature that is likely to be important also in real
systems.

In discussing these DFT-LSD results it is important to
bear in mind that the picture provided by this approach might
differ even qualitatively from the one (not available yet) that
would be provided by QMC, arguably representing the natu-
ral benchmark for this kind of systems. Quantum MC and
DFT-LSD already disagree on the phase diagram of the ex-
tended 3D jellium model. All transition densities predicted
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by DFT-LSD, for instance, are much higher (lower r,) than
those given by QMC computations.”” Even more impor-
tantly, the transitions described by DFT-LSD differ qualita-
tively from those predicted by QMC. For instance, while
QMC predicts two distinct transitions from the paramagnetic
to (partially spin polarized) ferromagnetic fluid, and then
from this last to the Wigner crystal, DFT-LSD predicts spin
polarization and charge localization to arise simultaneously,
and to proceed fairly gradually. A simultaneous charge local-
ization and (antiferromagnetic) spin-polarization transition is
predicted also by Hartree-Fock, which, however, locates this
combined phase change at r;=4.4 in 3D, and at r;=1.44 in
2D.%

These observations might suggest again that the DFT-
LSD results are simply a theoretical curiosity, without a close
relation with the exact result for the underlying model, not to
mention real systems. However, this conclusion is premature
since no QMC data for the 3D OCP is the result of an un-
constrained relaxation of the system toward its ground state.
Transition densities, in particular, have been determined by
comparing the energy of a small set of different solutions
that might not include the most relevant ones. In particular,
the types of partially spin-polarized and weakly localized
ground-state orbitals predicted by DFT-LSD have never been
considered in QMC computations. Moreover, it might be in-
teresting to note that going from LSD to gradient corrections,
supposedly a more refined exchange-correlation approxima-
tion, gives results even farther from the QMC ones.?!

For all the reasons listed in the last paragraph, we present
here the DFT-LSD results for the surface of the Wigner crys-
tal, aiming at stimulating computations by other methods,
and especially by QMC. Understanding Wigner crystal prop-
erties, and its surface properties, in particular, could provide
a stringent test of any DFT approximation meant to describe
electron systems at high correlation. Already at this stage,
however, we think that DFT-LSD data will contain at least
part of the truth since the scheme accounts for all the impor-
tant energy contributions even though some quantitative de-
tails might still be inaccurate.

I. MODEL AND THE COMPUTATIONAL METHOD

The model we use consists of an inhomogeneous version
of the well-known jellium model.> A system of N =N,
+ N4y €lectrons is contained in a cubic simulation box of
side L, and confined by the electrostatic potential V,(r) of an
orthorhombic positive charge distribution of sides L,=L,
=L, and L,=aL <L. The system is periodically replicated in
3D, giving rise to a planar slab of thickness aL extended
along xy, separated from its nearest periodic replicas in the z
direction by an empty region of space whose width is (1
—a)L. In the computations reported below, « is either 0.5 or
0.7. In what follows, the background density p, is expressed
in terms of the Wigner-Seitz radius r,. The system is globally
neutral, having: ap,L>=N.

The system periodicity defines a cubic first Brillouin zone
in reciprocal space, whose sides are inversely proportional to
L. We use large simulation cells with up to 1000 electrons,
resulting into a tiny first Brillouin zone that we sample at a
single (k=0) point.

205418-2



LARGE-SCALE DENSITY FUNCTIONAL CALCULATIONS...

According to density functional theory in the KS formu-
lation, the ground-state energy and electron density p(r) are
determined by minimizing the functional

N
E[p]=- %2 WlV? |y + f V,(2)p(r)dr
i=1

p(r)p(r’)
f |l‘— | =, drdr’ +UXC[p] (1)
with respect to the occupied single-electron KS orbitals
{¢;,i=1,N}. The electron density is expressed as

Nup Nup+Nd0wn
P(r) = pup(r) + Papn®) = 2 [0+ 2 (o).
i=1 i:Nz4p+1

2)

In what follows, the exchange-correlation energy Uy p] is
given by the local spin-density approximation

Uxdpl= f p(r)exclp(r),{(r)]dr, (3)
where
£(r) = LT = Pown(1) 4

pup(r) + pd(mn( )

We use for ey [p,{] the interpolation given in Ref. 32.

In our plane-wave code, the confining electrostatic poten-
tial of the background is dealt with in reciprocal space. The
Fourier transform of V,(r) = V,,(z) is easily obtained from the
Fourier transform of the background charge density

apy, if G,=0
p(G,) = aL 5
PLGI= P sin(GZ—) if G.#0. ®)
L 2 )
Previous QMC computations for jellium spheres’® have

shown that for electron densities in the simple metal range
(2=r,=6) LSD provides energies and electron densities in
excellent agreement with the QMC data. No comparison has
been made for finite jellium systems at significantly lower
density, and, as stated in the introduction, the usage of LSD
in this regime is meant to provide predictions to be verified
by higher accuracy methods.

The minimization of Eq. (1) is carried out by expanding
KS orbitals on a plane wave basis

Gi(r) = X cge’©, (6)
G

where the G’s are reciprocal lattice vectors for the lattice
defined by the simulation cell periodicity. The sum extends
over all G vectors whose square norm G2 is less than a
cut-off energy E,,;. In what follows, we set Gzrf=28 Ry, in
such a way to obtain at all densities a constant relative res-
olution within the simulation cell. For systems of 700 elec-
trons this choice corresponds to a basis of ~15000 plane
waves per KS orbitals while the electron density is expanded
on a basis of 120X 10 plane waves. Tests carried out for
smaller systems and higher cutoff have confirmed the con-
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vergence of energies and densities at the cut-off of the main
computations.

Expansion (6) transforms the functional variation of Eq.
(1) into an algebraic minimization problem.* This last is
solved by a slight adaptation of the well-known steepest de-
scent method.?> Each minimization step consists of three en-

%;7 evaluations along a fixed direction in the space of the
e coefﬁ01ents The fixed direction is given by the gradient
&EKS/ o"cG evaluated at the starting point. The sampling of
the KS functional along this direction is carried out at fixed
intervals of amplitude of, each time updating the coefficients
{cg} according to

cg) [new] =

(z) : (7)

where &f, whose name is meant to evoke an elementary step
of time evolution, is chosen a priori and given in input. After
each displacement, and before computing the energy, the full
set of coefficients is orthogonalized by a Gram-Schmidt rou-
tine. This step is still relatively inexpensive (~5% of the
total time) for systems of up to 1000 electrons.

The three energies computed along the fixed direction
0Eys/ r?cg) are interpolated by a parabola, whose minimiza-
tion (whenever possible) provides an estimate of the mini-
mum location along the gradient direction. At the beginning
of the computation, such a minimization might not be pos-
sible since far from the target minimum the parabolic inter-
polation might have a minimum instead of a maximum. In
such a case, the search is continued in regular steps of am-
plitude ot. This problem, however, arises only at the begin-
ning while the interpolation-minimization approach is stable
in the lengthy stage of refinement.

As already mentioned, the minimization approach de-
scribed above is a slight modification of the steepest descent
method. Standard computational textbooks? state and dem-
onstrate that other approaches such as conjugate gradient are
more efficient. While this is certainly the case, in principle, it
might not be the case in practice. It is worth mentioning, for
instance, that conjugate gradient differs significantly from
steepest descent only on sequences of minimization steps
whose length (n,,,) is comparable to the number of vari-
ables to be minimized. In our minimizations, n,,, is always
much smaller than the (very large) number of variables.
Moreover, standard implementations of conjugate gradient
and steepest descent require the accurate minimization of the
energy along one direction, a task that is often fairly time
consuming. Our simple approach based on interpolation and
minimization avoids this accurate line minimization step. As
a result, when judged on the rate of energy decrease per
equal CPU time, our simple approach outperforms current
implementations of conjugate gradient in plane wave codes.

For our systems, the minimization of the energy to better
than six digits requires a few days on a single Opteron CPU
and thus it represents only a modest computational require-
ment. Needless to say, we find only local minima, while
reaching the absolute (ground-state) minimum is not guaran-
teed. This limitation, however, is shared by all practical com-
putational method. Moreover, its impact on computed prop-
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erties is fairly mild, since the competing minima are nearly
degenerate, and also their geometric and magnetic structures
are similar.

Once the ground-state orbitals, electron density, and KS
potentials have been determined, empty states are computed
by minimizing the auxiliary functional

’
up

Kempoy {9 (0)}] = 2<¢ r)l— 24V, (0] (r))

Nup+Ndn

+ 2 YOO = SV V()9
i= N +l

X (r)) ()

with respect to the Fourier coefficients defining the addi-
tional {wgg)} orbitals. In Eq. (8), V,,(r) and V,,,,(r) are the
ground-state Kohn-Sham potentials for spin-up and spin-
down electrons, respectively, and N, , and Ny, are the num-
ber of spin-up and spin-down orbitals to be determined. The
two potentials V,,(r) and Vy,,,(r) depend only on the den-
sity and spin polarization of the occupied orbitals, and are
kept fixed during this stage of the computation. Empty states
of equal spin are orthonormal among themselves and nor-
malized to all occupied states of the same spin.

The dipole polarizability along the direction z perpendicu-
lar to the slab surface has been computed by reoptimizing the
electron density upon applying a weak, piece-wise linear per-
turbing potential. The corresponding electric field is constant
along the entire width of the background slab, plus a safety
margin on each side of width (1—a)L/4. The applied field
reverses its sign in the remaining slice of (nearly) empty
space of width (1—a)L/2. The induced dipole per unit area
is

L2
P.=-e f [p(z) = pp(2)Jzdz, 9)

-L/2

where the notation p,(z) indicates that the background den-
sity only extends over a portion (aL) of the simulation cell.
The expression for P, is evaluated in Fourier space.

The electric conductivity parallel to the slab surface is
computed using the Kubo-Greenwood expression’

o(w)=152 |Dzylzm;no(625(

€-¢€—-w), (10)

ij

where n, are ground state occupation numbers, and the sum
extends over occupied and empty states. The current parallel
to the surface induced by an external field E,, constant in
space and oscillating at frequency w in time, is given by

J (w) E | U|2ML)5(

61'—0)).
ij .
(11)

Matrix elements contributing to the current are of the
form
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Di_j=fdl'[‘ﬂ,('e)(l')]*vxlﬁj(l’)=fdzAi_,-(z), (12)

where

Ay(z) = f dxdy[ () 'V .(x). (13)

Using this definition we rewrite Eq. (11) as

o) = e CRrar
= J dzJ (v,7), (14)
where we defined
J(w2)= T e |2M Se—€— ).
(15)

The distribution J(z,w) can be interpreted as the induced
current flowing along the plane of constant z, driven by the
field E,. This interpretation will be used in the following
section to characterize the space distribution of conductivity.

II. RESULTS

Computations have been carried out over a wide range of
densities from r,=10 to r,=40, focusing especially on the
low-density cases (r,=20). Most of the results presented be-
low concern systems of N=700 electrons. This number does
not correspond to the filling of degenerate shells of plane
wave states or to the regular arrangement of particles on a
simple lattice. Such a choice is meant to provide results un-
biased toward any specific phase that is expected to be rel-
evant for our system. On the other hand, it also implies that
our systems are open shells with respect to the orbital quan-
tum numbers, and this feature will be reflected in the precise
location of the Fermi energy within (instead of in between)
electron bands, and it will also affect the computation of
conductivity. The results obtained for N=700 have been veri-
fied by computations for systems of N=512 and N=1000
electrons for selected r, values. The systems we investigate
are globally spin compensated, having N,,=N,,,. Spin po-
larization, however, can arise locally as a way to decrease the
total energy by enhancing the exchange interactions. The ef-
fect of global spin polarization has been assessed by carrying
out computations for a fully spin-polarized sample at r;=40
and N=700. At this density, the slab thickness is ~20 nm.

The dependence of the electron density profile on the slab
thickness at constant p, is displayed in Fig. 1 while Fig. 2
shows its dependence on the background density p, at con-
stant size (N=700) of the system. In all cases, the electron-
density profile in the direction z perpendicular to the surface
displays the characteristic oscillations and the (relatively
small) electron spill out made familiar by a large number of
studies of planar jellium surfaces available in the literature.'*
The density oscillations extending up to the center of the slab
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FIG. 1. (Color online) Electron density profile along the direc-
tion z perpendicular to the slab surface for ;=20 and three different
system sizes. The curves for N=700 and N=1000 have been shifted
along the y direction by one and two units, respectively, for the sake
of clarity.

show that, even for N=1000 electrons in the liquid phase, the
two planar surfaces are not completely decoupled. However,
it is also apparent from Fig. 3 that the density profile in
proximity of the edge of the background is fairly well con-
verged already for N=700 electrons. As expected, the ampli-
tude of the density oscillations increases with decreasing
density, emphasizing the well-known tendency to localize
and order in going toward low-density (high r,) systems.

Up to r,=20, no violation of planarity is observed along
xy and no spontaneous spin polarization is found in nomi-
nally paramagnetic samples (N,,=N,,,) apart from low-
amplitude wavelike features that arise from filling shells of
degenerate of nearly degenerate states.

z/r,

FIG. 2. (Color online) Electron-density profile along the direc-
tion z perpendicular to the slab surface for systems of N=700 elec-
trons at three different values of the background density. The curves
for r,=30 and r,=35 have been shifted along the y direction by one
and two units, respectively, for the sake of clarity.
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FIG. 3. (Color online) Density profiles of Fig. 1 shifted along
the z direction to superimpose the background edge at z=0.

The picture changes gradually but fairly rapidly in the
20=r;=25 range, over which charge modulation along xy
(see Fig. 4) and spin polarization (see Fig. 5; note in this
figure the different value of the isosurfaces for different r,
values) arise simultaneously. Both features at first appear to
be localized at the surface and then they progressively propa-
gate toward the inside of the slab, as shown, for instance, by
magnetization profiles [m(r)=p,,(r)=psp,(r), see Fig. 6]
and confirmed by density- and spin-polarization isosurfaces.

In the proximity of the transition, the identification of
relevant patterns is difficult since charge and spin features
change rapidly with decreasing background density, and,
moreover, the geometry of charge and spin isosurfaces also
depends on the specific value chosen to draw them. None of
the patterns seen in our results, however, can be unambigu-
ously identified with the planes and lines discussed in Ref.
26, obtained upon introducing simplifying constraints in the
minimization of the KS energy functional. Nevertheless, our
computations agree with those of Ref. 26 in highlighting
that, at least at the DFT-LSD level of approximation, the
change from the paramagnetic fluid to the charge localized,
spin-polarized state is a continuous transition, taking place
over a density range spanning 20=r,=25. Moreover, it is
apparent that it represents a complex, multistage transforma-
tion, especially as seen at a sharp interface.

The surface energy of the OCP slab has been computed by
subtracting the energy of the extended system from the total
energy of the slab at equal number of electrons and dividing
by twice the area A:L)ZC of each of the two parallel surfaces.
For consistency, and to account for the spin-polarization and
localization transitions, the total energy of the extended sys-
tem, having a homogeneous background, has been computed
with the method of Sec. I, using the same number of elec-
trons and the same plane-wave cutoff of the slab computa-
tions. In the Wigner crystal phase, total energies are domi-
nated by the potential (Madelung) energy. At constant
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(a)
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(c)

FIG. 4. (Color online) Electron density isosurfaces [at p(r)=p=1.8p,] seen from the z direction perpendicular to the slab surface. (a)

ry=20; (b) r,=25; and (c) r,=30.

number of electrons N, therefore, the total energy difference
AE, between the slab and the system extended in 3D will
scale as 1/r,. The surface energy u,, representing the energy
difference per unit area, will scale as 1/ rg’ (see also Ref. 36).
At higher density, in the paramagnetic and spin-polarized
phase, potential energy is supplemented by a sizable kinetic-
energy contribution, which scales as 1/ rf, giving an 1/ r‘;
term in the surface energy. A plot of rf Xuy, therefore, is
expected to display a constant plateau at r, beyond the local-
ization transition while at lower r, the same function will
behave as erus~a+b/rs. The plot of erus using the

() (2)

simulation results for u, is shown in Fig. 7 and confirms our
expectation. Oscillations of the results around the analytical
fit for r;<<30 are a manifestation of shell effects and thus
arise primarily from kinetic energy.

At all densities such that »,=10, the z dependence of the
electrostatic and exchange-correlation potentials display
marked oscillations in proximity of the background edge that
extend to the entire slab for r;>25. A suitable averaging
procedure (macroscopic averaging®’) allows us to compute
reliable (average) values for the depth vy of the exchange
correlation potential well. Together with the corresponding

(4.0 {} ¢

[ >e g

FIG. 5. (Color online) Spin-polarization isosurfaces [at |m(r)|=7i] seen from the z direction perpendicular to the slab surface. (a) r,
=15, @=0.02p,; (b) r,=17, =0.05p;; (¢) r,=20, fi=0.1py; (d) r,=21, A=0.1py; (€) r,=22, M=0.15p,; (£) r,=25, 7=0.55p,; (2) r,=27,
m=13py; (h) ry=30, m=2pp; (1) ry=32, m=2.5p,; and (j) r,=35, m=3p,. Dark (blue) surfaces: spin-up and light (yellow) surfaces:

spin-down polarization.
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FIG. 6. (Color online) Magnetization profile along the direction
z perpendicular to the slab surface for nominally paramagnetic slabs
of N,,=Ng=350 at three different values of the background
density.

electrostatic potential drop Ag¢=—e[ p()—p(0)] (where z
=0 is the center of the slab) this defines the surface work
function Wy. Over a wide density range, r, X W, turns out to
be nearly constant (r,X W,~20 eV for 10=r,;=40). Never-
theless, a slight anomaly is apparent in the r, dependence of
W, at ry=30, marking the full crystallization of the entire
sample. At variance from what is found at simple metal den-
sities (2=r;=6), the exchange-correlation and the electro-
static terms entering the definition of W are of opposite sign,
but the electrostatic term is fairly small, corresponding to
~20% (in absolute value) of Uy

The number n,,, of electrons spilling out of the back-
ground edge has been computed and the results are shown in
the inset of Fig. 7. At all densities n,,, is small and decreases

10 20 30 40 50

FIG. 7. (Color online) Dependence of the surface energy on r,.
Solid dots: computational results. Full lines: interpolation of rz
Xu, by a+b/rg at low r, and by a constant at high r,. Inset: number
n,,. of electrons spilling out of the background edge as a function of
ry. The data refer to the entire simulated sample and to both sides of
the slab. Solid dots: computational results. Full line: fit of the low
density (high r, values) by a constant value.
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FIG. 8. (Color online) Electron and spin configuration deter-
mined by placing spherical particles at local maxima of the spin-up
and spin-down densities (see text) for r;=30, N=1000. Dark (blue)
particles: spin up and light (brown) particles: spin down.

slowly with increasing r,. Following localization, spill out
remains nearly constant thus providing an additional diag-
nostic sign to monitor localization.

Starting from r,=30, isosurfaces of relatively high elec-
tron density (p~ 3p,) display a distribution of discrete blobs,
that can be identified with single electrons, since each of
these blobs contains nearly exactly one electron (mean-
square deviation of about 2%) and, with an error of a few
units at most, we find as many blobs as electrons in the
system. Moreover, each blob is spin-polarized, supporting
the identification of blobs with single electrons. On the other
hand, it is important to remark that individual blobs do not
correspond to one single KS eigenstate, but result from the
superposition of contributions from at least a few KS orbit-
als, extending over small clusters consisting of 6—8 blobs. In
a few cases, KS orbitals are divided into two or more dis-
connected regions, participating into non-nearest-neighbor
blobs.

To emphasize the close correspondence of blobs and
single electrons, we associate a spherical particle to each
blob, locating it at the local maximum of the density distri-
bution. As already mentioned, the number of particles dis-
tributed in this way over the entire system corresponds very
much to N and greatly helps in identifying the charge and
spin structures.

The result of this construction for ;=30 is shown in Fig.
8. The distribution of particles turns out to be rather regular,
with a sequence of planes parallel to the surface, and a fairly
symmetric in-plane structure. A closer inspection, however,
reveals a number of defects and anomalies that represent in
fact the most interesting result of our structural determina-
tion.

First of all, surface vacancies are apparent since the sys-
tem sizes we use do not necessarily correspond to the filling
of an integer number of electron layers. Possibly because of
that, at all densities such that charge is localized, the outer-
most planes tend to be the most disordered of the entire slab
since vacancies tend to migrate to the surface. The irregular-
ity in the Kohn-Sham potential due to surface vacancies is
likely to be responsible for the splitting of a few blobs into
dumbbell distributions, pointing to tunneling centers for the
electrons at the surface. In a few extreme cases, the dumbbell
geometry is replaced by a spherocylinder charge distribution,
whose major axis is on the order of the electron-electron
separation, i.e., ~2r,. An example of this last case is shown
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FIG. 9. (Color online) Spherocylindrical charge blob located at a
surface vacancy site. Dark (black) blobs: spin-up polarization. Light
(green) blobs: spin-down polarization.

in Fig. 9 (which also displays an additional example of sur-
face dislocation).

Intrinsic defects such as vacancies, and low restoring
forces at the surface are also responsible for a wide variety of
more complex defects, including localized and extended
ones. As an example, a closely bound pair made of a positive
(A) and a negative (B) disclination, giving rise to a 2D
dislocation,*® is shown in Fig. 10.

At densities close to the localization transition, the
Wigner crystal (as given by LSD computations) is supposed
to be stable in the bcc structure, whose most stable termina-
tion is the (100) surface. A (100) surface geometry is in fact
apparent in Fig. 11(a), showing the distribution of particles
on the uppermost electron layer for the r;=30, N=700
sample. The opposite surface, however, displays the charac-
teristic (111) surface structure familiar from face-centered
cubic (fcc) or hexagonal close-packing crystals [see Fig.
11(b)]. In the case of the r,=30, N=700 sample, the match-
ing of the two competing structures takes place in the first
layer below the (100) surface (i.e., most of the system is in
the fcc structure), that appear to be fairly poorly defined. To
emphasize the role of defects in the structure of the simulated
slabs, we report that we observed samples displaying the
regular alternation of compact fec(111) planes and of
bee(100) planes throughout the entire slab.

The spin distribution is also fairly defective, different
from one sample to the other, and even within each sample it

00000 %%

FIG. 10. (Color online) (a) Positive and (b) negative disclination
pair, giving rise to a surface (2D) dislocation. Blue (dark) particles:
spin-up electron and gray (light) particles: spin-down electrons.
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FIG. 11. (Color online) Structure of the upper and lower surface
of the r;=30, N=700 sample. Particles represent electron density
blobs, distributed according to the procedure described in the text.
All surface blobs have the same spin in this sample.

is possible to detect apparent irregularities. The distribution
of spin in space tends to be more regular at low r, than at
high r,, probably because the exchange energy decreased
with increasing r,, and because at low-density systems tend
to give rise to glassy configurations already in the space co-
ordinates.

While a few of the localized defects such as surface va-
cancies might be intrinsic, being due to the incomplete filling
of planes, the majority of the defects that we observe might
result from a finite effort to locate the absolute minimum of
potential energy as a function of the spin and density distri-
butions. A fully exhaustive search, of course practically in-
feasible, might in fact turn out more symmetric structure of
lower energy than those provided by our computations.
However, the many defective structures found by our mini-
mization apparently reflects the near degeneracy of many
different geometries and spin configurations at the electron
densities close to the Wigner transition. This feature is ex-
pected to be present also in real systems, and suggests that
experiments might provide different results for seemingly
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FIG. 12. (Color online) Spin-resolved density of states at r,
=10, r,=25, and r,=35. Blue full line: spin up states and Ref dash
line: spin down states. The shaded area identifies empty states.

equivalent samples, a feature not uncommon in the physics
of disordered materials.

The energy distribution of Kohn-Sham eigenvalues (den-
sity of states, DOS) is shown in Fig. 12 at three r, values
(r,=10, 25, and 35) and N=700. In all cases, the cutoff of the
DOS on the high-energy side is due to the finite number
(N'=N) of empty states computed in our simulations (see
Sec. I). At the highest density (r,=10), the spin-up and spin-
down components virtually coincide. For both spin-up and
spin-down electrons, the energy dependence of the DOS is
still reminiscent of the ideal OCP result, corresponding to a
single parabolic band. At intermediate densities (r,=25),
small differences in the two spin-resolved DOSs point to the
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FIG. 13. (Color online) Dependence of the dipole polarizability
per unit area on r, (see text). The polarizability is measured along
the direction z perpendicular to the slab surface. The inset shows the
z dependence of the perturbing electrostatic potential with respect to
the slab, whose location corresponds to the shaded area.

spontaneous spin polarization of the slab, and are due to the
relatively disordered distribution of spins in space, and, in
particular, to spin-polarized defects. Finally, at densities such
that electrons are fully localized (r,=35) in addition to being
spin-polarized, the spin-up and spin-down DOSs present a
multiple-peak structure (only two are visible in Fig. 12). In
an apparent case of strong shell effects, the Fermi energy for
the r,=35, N=700 sample is not in the middle of the gap
separating the low- and high-energy bands but it falls not far
from the edge of the lowest-energy band. In all cases, how-
ever, the spin-resolved DOS only mildly reflects the spin-
polarization transition while charge localization leaves a
more apparent signature.

The metal-insulator transition accompanying the Wigner
crystallization is expected to have a sizable effect on the
electron polarizability of the slab. By definition, a conductor
screens every electric field applied to the system, confining it
to a thin skin layer. A planar slab immersed into a perpen-
dicular field E=(0,0,E,) will accumulate a surface charge
o=E_ /4 of opposite sign on the two faces of the slab, thus
acquiring a dipole moment P,=FE L /4 per unit area. The
slab polarizability in the z direction, therefore, will be pro-
portional to L_, and thus, in our computations, proportional to
Iy

The polarization of an insulator is still proportional to the
system volume and thus the polarizability per unit area of a
planar slab is also proportional to the slab thickness. In this
case, however, the acquired dipole moment will be less than
in the metallic case and the proportionality factor relating P
to L, will display a nontrivial dependence on r,. As a result,
x Wwill no longer be simply proportional to r,. A plot of
x(ry)/r,, therefore, is expected to display a nearly constant
plateau at metallic densities and a progressive drop with r,
increasing beyond the Wigner crystallization point.

Such a behavior is seen precisely in Fig. 13, showing the
plot of x(r,)/r, as a function of r;. As expected, across the
metal-insulating transition the polarizability decreases from
the extreme case of the conducting state. Also this observa-
tion could provide an additional, complementary diagnostic
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quantity to characterize the transition in real systems.

Needless to say, the electron conductivity is the most ob-
vious quantity to monitor in order to detect changes in the
electronic structure at the Wigner crystallization that is ex-
pected to correspond also to the metal-insulator transition for
the OCP. In the extended 3D case, application of the Kubo-
Greenwood formula [see Eq. (10)], shows that conductivity
consists only of a single, &-like peak at zero frequency for all
densities such that the electron density is uniform, and KS
eigenstates are single plane waves. Conductivity at nonvan-
ishing frequency arises around the localization transition,
when each eigenstate becomes the superposition of many
plane waves of different wave vector. Strict charge localiza-
tion at higher r; will prevent again conductivity, unless the
frequency of the applied field is sufficient to promote elec-
trons into extended states of fairly high energy.

In the case of our simulated slabs, the density and energy
dependence of conductivity result from the interplay of
charge localization, spin polarization, and band-filling ef-
fects. Because of the limited number of empty states deter-
mined in our computation, our discussion of conductivity is
limited to the low-energy regime, corresponding to a fraction
(~20%) of the bulk plasma frequency. The computation of
conductivity in the plane xy parallel to the surface, carried
out again with the Kubo-Greenwood formula of Eq. (10),
shows that at densities such that the system is spin-
unpolarized (see r,=10 in Fig. 14), the spin-up and spin-
down channels are, as expected, equivalent. Moreover, the
analysis of the spatial distribution of conductivity [see Eq.
(15)] shows that the induced current is higher within the slab
than in close proximity of the surfaces. The spontaneous spin
polarization arising at r,=25 gives rise to a marked asymme-
try in the two spin channels that tends to increase with de-
creasing density. Moreover, in systems such that charge is
localized, conductivity tends to occur at the surface, as
shown by the results for ;=25 in Fig. 14. In all cases, we
observe a close correspondence between the distribution of
induced current and structural features in the sample. The
two inequivalent planar surfaces of the r,=30 sample shown
in Fig. 11, for instance, display a markedly different conduc-
tivity in proximity of the two surfaces. More remarkably,
conductivity in this sample takes place predominantly in the
subsurface plane where the bcc-like and fcc-like lattices
match, as described above. It is tempting to interpret these
results as suggesting that conductivity in well-localized
samples results from the many defects seen in the ground-
state structures.

The results of computations for the fully spin-polarized
sample at r;=40 and N=N,,=700 electrons provide results
completely analogous to those described above for N,,
=Ngym Systems, apart from obvious differences in magneti-
zation structures, in band filling, and thus in conductivity.

III. SUMMARY AND CONCLUSIONS

The surface properties of the jellium model have been
explored by large supercell computations in the DFT-LSD
approach for planar slabs with up to 1000 electrons. A wide
interval of densities (10=r;=40) has been covered, extend-
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FIG. 14. (Color online) Spin- and z-resolved conductivities at
ry=10, r;=20, and r;=30. Blue full line: spin up and red dash line:
spin down. The dashed vertical lines mark the position of the back-
ground edge.

ing well into the stability range of the Wigner crystal. Fol-
lowing standard computational recipes, Kohn-Sham orbitals
have been expanded on a large basis of plane waves, whose
wave vector belongs to the reciprocal lattice of the supercell
geometry. Most computations have been carried out for glo-
bally spin-compensated system, having N,,=N,,,,. Never-
theless, spin compensation is not enforced locally and polar-
ization can arise as a way to lower the exchange energy. The
influence of global spin compensation has been tested by a
few computations for fully spin-polarized samples (N,
=N,N,,,.,=0) at r;=40, and found to be relatively minor.

The unconstrained minimization of the DFT-LSD func-
tional with respect to these orbitals provides a direct view of
changes in the surface properties across the transition from
the paramagnetic electron fluid to the fully localized Wigner
crystal. Spin polarization and in-plane charge modulation
arise nearly simultaneously at the surface starting from r
~20. With decreasing density (increasing r,) both polariza-
tion and charge modulation extend toward the center of the
slab, at the same time enhancing their amplitude.
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Starting from r;=30, the charge modulation has evolved
into a clearly identifiable Wigner crystal consisting of
rounded blobs of electron density, each corresponding nearly
exactly to one electron and one (1/2) spin. A simple way to
represent the lattice by associating particles to local density
maxima has been proposed and the results are shown in Figs.
8—11. Analysis of the simulation results for the fully charge
localized samples reveal both apparent regularities as well as
many defects in the spatial distribution of blobs. We observe,
in particular, surface vacancies, probably due to the mis-
match between the actual slab size and the integer numbers
corresponding to the filling of regular orthorhombic portions
of the Wigner lattice, a feature that has been described as
shell effects in the previous section. We observe also other
point and extended defects such as dislocations and disclina-
tions, familiar from the solid state physics of atomic lattices.
In the case of electrons, some of these defects will give rise
to tunneling centers, whose presence could manifest itself in
spectroscopic data measured at very low temperature.

In most cases, the distribution of localized spins is too
disordered to be described simply as the superposition of
defects on an underlying regular structure. We find that spin
disorder increases with decreasing density, paralleling the de-
crease in exchange energy in going toward more dilute sys-
tems.

The spin-resolved energy distribution of Kohn-Sham ei-
genvalues (DOS) is still reminiscent of the ideal OCP one in
the paramagnetic liquid regime at r,=10, with spin-up and
spin-down components virtually coinciding with each other.
Local spin polarization and the first stages of charge local-
ization (20 =r;=25) have only a limited impact on the den-
sity evolution of the DOS, which only displays relatively
small differences between the spin-up and spin-down DOS
components with oscillations superimposed to an otherwise
monotonically increasing trend. The propagation of charge
localization to the entire sample, instead, has a major effect,
dividing both spin-up and spin-down DOSs into disjoint
bands. Because of the shell effects described above, the pre-
cise position of the Fermi energy within a band or in between
bands depends on the size N of the sample. For the systems
considered in our simulations, for instance, sizes do not cor-
respond to the precise filling of bands, and our systems, in
many respects, behave as open shell systems. This is re-
flected, for instance, into a residual but still sizable conduc-
tivity parallel to the surface even at r;=30, which is limited
only by charge localization (and not by band effects). De-
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tailed analysis of the current induced by an external field
parallel to the surface shows that in charge-localized systems
(ry=30) conductivity is a surface property. We have been
unable to verify unambiguously that surface conductivity is
mediated by surface vacancies but it is tempting to assume
that this is indeed the case. A qualitative link between con-
ductivity and surface vacancies is established by the obser-
vation that surface vacancies arise primarily from the incom-
plete filling of electron layers (shell effect), which, in turn, is
responsible for the location of the Fermi energy inside one of
the bands.

At all densities such that local spin polarization is present,
the in-plane conductivity is apparently asymmetric in the two
spin channels. This is an interesting observation from the
conceptual point of view and it could be even more impor-
tant in practice, especially in view of spintronics applica-
tions. In the case of fully localized samples, we found cases
in which the two surfaces of the planar slab are apparently
different (see Fig. 11). In these cases, the structural anomaly
is reflected into an equally apparent asymmetry of the con-
ductivity associated to the two surfaces.

Finally, we identified a few additional changes in the den-
sity dependence of the surface energy, in the electrostatic
polarizability perpendicular to the surface and in the electron
spill out from the jellium background that mark the transition
to the fully localized state.

All these observation provide a wealth of features and
predictions on the properties of low-density jellium surfaces
and of Wigner crystal surfaces, in particular. Of course, the
picture provided by our computations concerns the DFT-
LDA level of approximation. Semilocal approximations such
as gradient-corrected DFT recipes are not likely to change
the picture.! Fully correlated and virtually exact computa-
tions relying, for instance, on quantum Monte Carlo might
provide a different picture. These computations, however, are
not available yet, and might not be easy to carry out'® at the
level of accuracy required to quantitatively characterize sur-
face properties of low-density slabs. In the meantime, com-
putational studies based on DFT approximations are the most
accessible route to obtain a first view of Wigner crystal sur-
faces that could assist setting-up experiments and interpret-
ing their data. Moreover, the results accumulated during this
stage provide a clear set of predictions to be validated or
disproved by more sophisticated methods whenever they will
become available.
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