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Abstract. A many-body theory approach developed by the authors [Phys. Rev.

A 70 032720 (2004)] is applied to positron bound states and annihilation rates in

atomic systems. Within the formalism, full account of virtual positronium (Ps)

formation is made by summing the electron-positron ladder diagram series, thus

enabling the theory to include all important many-body correlation effects in the

positron problem. Numerical calculations have been performed for positron bound

states with the hydrogen and halogen negative ions, also known as Ps hydride and

Ps halides. The Ps binding energies of 1.118, 2.718, 2.245, 1.873 and 1.393 eV and

annihilation rates of 2.544, 2.482, 1.984, 1.913 and 1.809 ns−1, have been obtained for

PsH, PsF, PsCl, PsBr and PsI, respectively.
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1. Introduction

A many-body theory approach developed by the authors (Gribakin and Ludlow 2004)

takes into account all main correlation effects in positron-atom interactions. These are

polarization of the atomic system by the positron, virtual positronium formation and

enhancement of the electron-positron contact density due to their Coulomb attraction.

The first two effects are crucial for an accurate description of positron-atom scattering

and the third one is very important for calculating positron annihilation rates. In this

paper we apply our method to calculate the energies and annihilation rates for positron

bound states with the hydrogen and halogen negative ions.

Positron bound states can have a strong effect on positron annihilation with matter.

For example, positron bound states with molecules give rise to vibrational Feshbach

resonances, which leads to a strong enhancement of the positron annihilation rates in

many polyatomic molecular gases (Gribakin 2000, 2001, Gilbert et al 2002, Gribakin et

al 2010). Nevertheless, the question of positron binding with neutral atoms or molecules

has been answered in the affirmative only recently, and the ubiquity of such states is

only becoming clear now (Dzuba et al 1995, Ryzhikh and Mitroy 1997, Mitroy et al

2001, 2002, Danielson 2009). On the other hand, it has been known for many decades

that positrons bind to negative ions. Beyond the electron-positron bound state, or

positronium (Ps), the simplest atomic system capable of binding the positron is the

negative hydrogen ion (Ore 1951). The binding energy, annihilation rate and structure

of the resulting compound, positronium hydride (PsH) have now been calculated to

very high precision, e.g., by variational methods (Frolov et al 1997). The information

available for heavier negative ions with many valence electrons is not nearly as accurate

(see Schrader and Moxom 2001 for a useful review). Positronium halides have received

most of the attention, with some calculations dating back fifty years; see, e.g., the

Hartree-Fock calculations of Simons (1953) and Cade and Farazdel (1977), quantum

Monte-Carlo work by Schrader et al (1992a, 1993), and more recent configuration

interaction results (Saito 1995, 2005, Saito and Hidao 1998, Miura and Saito 2003).

At first glance, the physics of positron binding to negative ions is much simpler than

that of positron binding to neutrals. The driving force here is the Coulomb attraction

between the particles. However, in contrast with atoms, the electron binding energy

in a negative ion (i.e., the electron affinity, EA) is always smaller than the binding

energy of Ps, |E1s| ≈ 6.8 eV. This means that the lowest dissociation threshold in the

positron-anion system is that of the neutral atom and Ps, so that the positron bound

to a negative ion may still escape by Ps emission. Hence, for the system to be truly

bound, its energy should lie below the Ps-atom threshold, and the positron energy in

the bound state, ε0, must satisfy

|ε0| > |E1s| − EA. (1)

This situation is similar to positron binding to atoms with ionization potentials smaller

than 6.8 eV. The structure of these bound states is characterized by a large “Ps cluster”

component (Mitroy et al 2002).
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The proximity of the Ps threshold in anions means that to yield accurate binding

energies, the method used must account for virtual Ps formation. The positron

also polarizes the electron cloud, inducing an attractive polarization potential. It

has the form −αe2/2r4 at large positron-target separations r, where α is the dipole

polarizability of the target. The method should thus be capable of describing many-

electron correlation effects. The halogen negative ions have np6 valence configurations,

and are similar to noble-gas atoms. Here many-body theory may have an advantage

over few-body methods (Dzuba et al 1996).

The many-body theory approach developed by the authors (Gribakin and Ludlow

2004), employs B-spline basis sets. This enables the sum of the electron-positron ladder

diagram sequence, or vertex function, to be found exactly. This vertex function accounts

for virtual Ps formation. It is incorporated into the diagrams for the positron correlation

potential and correlation corrections to the electron-positron annihilation vertex. To

ensure convergence with respect to the maximum orbital angular momentum of the

intermediate electron and positron states in the diagrams, lmax, we use extrapolation.

It is based on the known asymptotic behaviour of the energies and annihilation rates as

functions of lmax (Gribakin and Ludlow 2002).

In Gribakin and Ludlow (2004) the theory has been successfully applied to positron

scattering and annihilation on hydrogen below the Ps formation threshold, where the

present formalism is exact. This theory is now extended to treat the more difficult

problem of positron interaction with multielectron atomic negative ions. We test the

method for H−, and consider the halogen negative ions F−, Cl−, Br− and I−. Note that

a conventional notation for the positron bound with a negative ion A− is PsA, rather

than e+A−, hence one has PsH, PsF, etc. (Schrader 1998).

2. Calculation of positron binding using Dyson’s equation

The many-body theory method for positron bound states is similar to that developed

for electron-atom binding in negative ions (Chernysheva et al 1988, Johnson et al 1989,

Gribakin et al 1990, Dzuba et al 1994), and used for positron-atom bound states by

Dzuba et al (1995).

The Green function of the positron interacting with a many-electron system

(“target”) satisfies the Dyson equation (see, e.g., Migdal 1967),

(E − Ĥ0)GE(r, r′) −

∫

ΣE(r, r′′)GE(r′′, r′)dr′′ = δ(r − r′), (2)

where Ĥ0 is the zeroth-order positron Hamiltonian, and ΣE is the self-energy. A

convenient choice of Ĥ0 is that of the positron moving in the field of the Hartree-Fock

(HF) target ground state. The self-energy then describes the correlation interaction

between the positron and the target beyond the static-field HF approximation (Bell

and Squires 1959). It can be calculated by means of the many-body diagrammatic

expansion in powers of the electron-positron and electron-electron Coulomb interactions

(see below).
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If the positron is capable of binding to the system, i.e., the target has a positive

positron affinity PA, the positron Green function GE(r, r′) has a pole at E = ε0 ≡ −PA,

GE(r, r′) ≃
E→ε0

ψ0(r)ψ
∗

0(r
′)

E − ε0

. (3)

Here ψ0(r) is the quasiparticle wavefunction which describes the bound-state positron.

It is equal to the projection of the total ground-state wavefunction of the positron and N

electrons, Ψ0(r1, . . . , rN , r), onto the target ground-state wavefunction, Φ0(r1, . . . , rN) ,

ψ0(r) =

∫

Φ∗

0(r1, . . . , rN)Ψ0(r1, . . . , rN , r)dr1 . . .drN . (4)

The normalization integral for ψ0(r),

a =

∫

|ψ0(r)|
2dr < 1, (5)

can be interpreted as the probability that the electronic subsystem of the positron-target

complex remains in its ground state.

The magnitude of a quantifies the extent to which the structure of the complex

is that of the positron bound to the anion, e+A−, as opposed to that of the Ps atom

orbiting the neutral atom. Such separation is a feature of the “heuristic wavefunction

model” (Mitroy et al 2002). If the former component dominates the wavefunction, the

value of a is expected to be be close to unity. If, on the other hand, the wavefunction

contains a large “Ps cluster” component, the value of a will be notably smaller.

By taking the limit E → ε0 in equation (2), one obtains the Dyson equation for

the quasiparticle wavefunction ψ0(r) (“Dyson orbital”) and the bound-state energy ε0,

Ĥ0ψ0(r) +

∫

Σε0
(r, r′)ψ0(r

′)dr′ = ε0ψ0(r). (6)

This equation is analogous to the standard Schrödinger eigenvalue problem, except that

the correlation potential Σ depends on the energy.

The eigenstates ϕε(r) of the Hamiltonian Ĥ0,

Ĥ0ϕε(r) = εϕε(r), (7)

are characterized by their energies ε and the orbital angular momentum l, implicit in

this notation. They form a complete single-particle positron basis set. For negative ions

the spectrum of Ĥ0 consists of both discrete (Rydberg) and continuum states. This set

can be used to expand the quasiparticle bound-state wavefunction,

ψ0(r) =
∑

ε

Cεϕε(r), (8)

and cast the Dyson equation (6) in the matrix form,

εCε +
∑

ε′

〈ε|Σε0
|ε′〉Cε′ = ε0Cε, (9)

where the sums in equations (8) and (9) include the positive-energy continuum, as well

as the discrete negative-energy states, and

〈ε|ΣE|ε
′〉 =

∫

ϕ∗

ε(r)ΣE(r, r′)ϕε′(r
′)drdr′. (10)
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In practice the continuum is discretized by using a B-spline basis set (see below),

and equation (9) becomes a matrix eigenvalue problem. Therefore, to find ε0 and Cε

one simply needs to diagonalize the matrix,

εδεε′ + 〈ε|ΣE|ε
′〉. (11)

Its lowest eigenvalue ε0(E) depends on the energy E at which ΣE is calculated, and

the diagonalization must be repeated several times until self-consistency is achieved:

ε0(E) = E. Knowing the dependence of the eigenvalue on E allows one to determine

the normalization integral, equation (5), via the relation (Migdal 1967),

a =

(

1 −
∂ε0(E)

∂E

∣

∣

∣

∣

E=ε0

)

−1

. (12)

Note that owing to the spherical symmetry of the target, the states ϕν and ψ0 have

definite orbital angular momenta. To find the bound positron ground state it is sufficient

to calculate the self-energy matrix (10) for the s-wave positron only.

The accuracy of the binding energy obtained from the Dyson equation depends

upon the accuracy to which the self-energy has been determined. As mentioned in

the Introduction, polarization of the target and virtual Ps formation are the two most

important effects that need to be accounted for. The effect of target polarization is

described in the leading order by the 2nd-order diagram Σ(2), figure 1(a). Following

Gribakin and Ludlow (2004), the Ps formation contribution Σ(Γ) shown in figure 1(b), is

obtained by summing the electron-positron ladder diagram series to all orders, figure 2.

This procedure amounts to calculation of the electron-positron vertex function Γ shown

by the shaded block. Analytical expressions for the diagrams can be found in Gribakin

and Ludlow (2004).
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(b)(a)

εε’
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Figure 1. Main contributions to the positron self-energy. Diagram (a) describes the

effect of polarization in the lowest, second order, Σ(2); diagram (b) accounts for virtual

Ps formation, Σ(Γ). Top lines in the diagrams describe the positron. Other lines with

the arrows to the right are excited electron states, and to the left – holes, i.e., electron

states occupied in the target ground state. Wavy lines are the Coulomb interactions.

Summation over the intermediate positron, electron and hole states is carried out.

For hydrogen, the self-energy is given exactly by the two diagrams in figure 1,

Σ = Σ(2) +Σ(Γ), provided the intermediate electron and positron states are calculated in

the field of the bare nucleus (Gribakin and Ludlow 2004). For multi-electron targets one

may also consider higher-order corrections not included in the virtual Ps contribution,
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Figure 2. Electron-positron ladder diagram series and its sum, the vertex function Γ

(shaded block). Comparison between the left- and right-hand sides of the diagrammatic

equation shows that Γ can be found by solving a linear matrix equation.

figure 1(b). In the present calculation a set of 3rd-order diagrams shown in figure 3

will be included. Diagrams (a), (b), (c) and (d) represent corrections to the 2nd-order

polarization diagram, of the type described by the random-phase approximation with

exchange (RPAE, Amusia et al 1975). They account for the electron-hole interaction and

screening of the positron Coulomb field, and correct the value of the dipole polarizability

α of the target. Diagram (e) accounts for the positron-hole repulsion. The contribution

of the diagrams in figure 3 is denoted collectively by Σ(3). Calculation of these diagrams

will allow us to gauge the importance of these corrections, and even to include effectively

higher-order diagrams (see below).

(e)(a) (b) (c) (d)

Figure 3. Third-order contributions to the positron self-energy, Σ(3). Mirror images

of the diagrams (c) and (d) are also included. The top line describes the positron.

Of course, any many-body theory calculation can at best include only dominant

classes of diagrams, leaving out an infinite number of other higher-order diagrams.

For example, the diagram in figure 4 has the effect of screening the positron-electron

interaction accompanying virtual Ps formation in Σ(Γ), figure 1(b).

µ

2

ν1

µ1

ε’ ν2

n1

n2

ε

3

µ

Figure 4. Screening correction to the virtual Ps contribution Σ(Γ).

The number of diagrams increases rapidly as one moves to higher orders. The

effort required to evaluate these diagrams becomes prohibitive relative to their small
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contribution. It would therefore be useful to find a simple method to estimate the

contribution of the higher-order diagrams. This will allow us to take into account the

effect of electron screening beyond the corrections shown in figure 3.

A useful quantity for estimating the size of a contribution to the self-energy Σ is a

dimensionless measure of its “strength” (Dzuba et al 1994),

gE(Σ) =

∫

G(0)(r′, r)ΣE(r, r′)drdr′ (13)

= −
∑

ν

〈εν|ΣE|εν〉

εν

, (14)

where G(0) is the 0th order positron Green function calculated at E = 0. Let

SE =
gE(Σ(3))

gE(Σ(2))
(15)

be the ratio of the strength of the sum of the 3rd-order polarization diagrams (figure 3)

to the strength of the 2nd-order polarization diagram. This quantity SE can then be

used to estimate higher-order contributions to Σ(Γ).

As a check, we test that the binding energy obtained using Σ(2+3) = Σ(2) + Σ(3) is

close to that obtained with Σ(2) multiplied by 1 + SE , i.e., using

(1 + SE)Σ(2) ≡ Σ(2+3′). (16)

An estimate of the total self-energy corrected for the screening effects in the lowest order

can then be obtained as

(1 + SE)
[

Σ(2) + Σ(Γ)
]

. (17)

As we will see in section 4, the relative effect of screening is negative, SE < 0,

which means that screening reduces the magnitude of the self-energy. Similar higher-

order terms in the self-energy expansion will alternate in sign. Thus, for example,

a diagram such as that shown in figure 5, will tend to compensate the lowest-order

screening correction in figure 4.

εε’

Figure 5. Higher-order screening correction to the virtual Ps contribution Σ(Γ), cf.

figure 4.

Assuming that the sequence of screening corrections behaves like a geometric series,

its effect can approximately be taken into account by using the screened self-energy,

which we denote Σ(scr):

Σ(scr) =
1

1 − SE

[

Σ(2) + Σ(Γ)
]

. (18)
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We expect that this approximation should yield our best prediction for the binding

energy.

3. Calculation of the positron annihilation rate in the bound state

The spin-averaged positron annihilation rate Γa in the bound state can be expressed in

terms of the average contact electron-positron density ρep (see, e.g., Berestetskii et al

1982)

Γa = πr2
0cρep, (19)

where r0 is the classical radius of the electron, c is the speed of light, and ρep is given

by the integral,

ρep =
N
∑

i=1

∫

|Ψ0(r1, r2, . . . , rN , r)|
2 δ(r − ri)dr1 . . . drNdr, (20)

where Ψ0(r1, r2, . . . , rN , r) is the full (N + 1)-particle bound-state wavefunction of the

N electron coordinates ri and positron coordinate r.

Figure 6 shows a series of diagrams that would constitute a complete set of

annihilation diagrams for a one-electron system (Gribakin and Ludlow 2004). Here ε

represents the positron bound-state Dyson orbital ψ0(r) normalized as per equation (5).

+ ...

+ +

(b)(a) (c) (d)

+

+

(f)(e)

+

ε ε ε ε ε ε ε ε

ε ε ε ε

n

Figure 6. Many-body theory expansion for the contact electron-positron density. The

solid circle in the diagrams is the delta-function annihilation vertex, cf. equation (20).

Diagrams (b), (d) and (e) are multiplied by two to account for their mirror images.

Diagram (a) in figure 6 is the overlap of the positron and HF electron densities. It

represents the independent-particle approximation to the annihilation vertex with the

contact density

ρ(0)
ep =

N
∑

n=1

∫

|φn(r)|2|ψ0(r)|
2dr, (21)

where φn(r) is the HF orbital of hole n. The first-order correction, diagram (b), can be

thought of as the analogue of Σ(2), and will be denoted by ρ
(1)
ep . The diagrams with the
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vertex function Γ, e.g., (d) in figure 6, are particularly important in the calculation of

ρep, as the annihilation takes place at a point, and is strongly enhanced by the Coulomb

attraction in the annihilating electron-positron pair.

The diagrams shown in figure 6 represent a basic set of contributions with a single

hole line, which one needs to consider to obtain a reliable answer. We will denote

the corresponding density as ρ
(0)
ep + ρ

(∆)
ep , ρ

(∆)
ep representing a correction to the zeroth-

order contact density. Similar to the self-energy diagrams in figure 1, they represent

the exact answer for the positron-hydrogen system, provided the electron and positron

intermediate states are calculated in the field of the bare nucleus (Gribakin and Ludlow

2004). For complex many-electron systems it may be necessary to account for the effects

of electron screening when calculating ρep. A series of RPA-type annihilation diagrams

is therefore also calculated, see figure 7.

(g)

(a) (b) (c) (d)

(e) (f)

Figure 7. Annihilation diagrams with two Coulomb interactions, including those of

RPA-type, ρ
(2)
ep . The top line describes the positron. All the diagrams have equal

mirror images.

Similarly, screening corrections to the annihilation diagrams containing the Γ block

can also be considered, as shown in figure 8.

Figure 8. Screening correction to the annihilation diagram containing the vertex

function Γ.

The diagrams shown in figure 7, ρ
(2)
ep , can be thought of as next-order corrections

to ρ
(1)
ep , diagram (b) in figure 6. By evaluating the ratio

C = ρ(2)
ep /ρ

(1)
ep , (22)
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an estimate can be made of the total contact density ρep that includes higher-order

corrections in a manner similar to the self-energy [cf. equation (18)],

ρep = ρ(0)
ep +

1

1 − C
ρ(∆)

ep . (23)

4. Numerical Implementation

The Hartree-Fock ground state of the negative ions is first found. The frozen-

core HF Hamiltonian for an electron or a positron (with and without exchange,

respectively) is then diagonalized in a B-spline basis (Sapirstein et al 1996). The

corresponding eigenvectors provide bases of single-particle electron and positron states,

cf. equation (7). The spectrum of these states for the electron includes the negative-

energy ground-state orbitals (hole states) and positive-energy excited states spanning

the electron continuum, see, e.g., figure 6 in Gribakin and Ludlow (2004). The positron

basis contains a number of negative-energy Rydberg states augmented by the discretized

positive energy positron “continuum”.

The effective spanning of the continuum is achieved by using an exponential radial

knot sequence for the B-splines. For H−, the first 23 eigenstates generated from a

set of 60 splines of order 9 were used, with a box size of R = 30 au. For the other

systems, namely F−, Cl−, Br− and I−, the first 20 states from a set of 40 splines of

order 6 were used with R = 30 au. Only the outermost s and p subshells were included

when calculating the self-energy and annihilation diagrams. More strongly bound inner-

shell electrons are only weakly perturbed by the positron. Their contribution to the

correlation potential and annihilation vertex is relatively small, and has been neglected.

The diagrammatic contributions to the self-energy and contact density described in

sections 2 and 3, are calculated by direct summation over the intermediate electron and

positron states, and the vertex function is found by solving a linear matrix equation.

The use of B-spline bases ensures quick convergence with respect to the number of

states with a particular angular momentum l included in the calculation. In addition,

the convergence with respect to the maximum orbital angular momentum included in

the calculation, lmax, also needs to be considered. This is done by extrapolation through

the use of the asymptotic formulae (Gribakin and Ludlow 2002),

ε0 = ε
(lmax)
0 −

A

(lmax + 1/2)3
, (24)

and

ρep = ρ(lmax)
ep +

B

(lmax + 1/2)
, (25)

where ε
(lmax)
0 and ρ

(lmax)
ep are the bound-state energy and contact density obtained in

a calculation for a given lmax, and A and B are constants. While the derivation

of equations (24) and (25) is based on perturbation theory (Gribakin and Ludlow

2002), this asymptotic behaviour is confirmed by nonperturbative many-body-theory

calculations (Gribakin and Ludlow 2004), and by configuration-interaction calculations
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of positron binding and annihilation in atoms (Mitroy and Bromley 2006). The constants

A and B are found numerically and have different values for each system studied.

5. Results

5.1. Details of calculations for PsCl

In this section a detailed examination of the results for PsCl will be presented. This

should illustrate how the final results for the other systems were arrived at.

The positron radial wavefunctions for PsCl obtained by solving the Dyson equation

using the ab initio self-energy Σ(2+Γ+3) and the screened self-energy Σ(scr) are compared

to the HF positron wavefunction in figure 9. The inclusion of the attractive correlation

potential results in lower energies of the positron bound states, and hence, more compact

wavefunctions. Otherwise the two Dyson orbitals are very similar to each other.

0 5 10 15 20
Radius (au)

0

0.2

0.4

0.6

R
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ia
l w

av
ef

un
ct
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n

Figure 9. Radial positron wavefunction in PsCl: - - - -, Hartree-Fock; — · —, Dyson

orbital calculated using the self-energy Σ(2+Γ+3); ——, Dyson orbital obtained with

Σ(scr). The HF and Dyson orbitals on the graph are normalized to unity.

When solving the Dyson equation, the self-energy and the bound-state energy ε0

were calculated for a number of maximum orbital angular momenta, e.g., lmax = 7–10,

and then the asymptotic behaviour (24) was used to find the result for lmax → ∞. This

procedure is illustrated for PsCl in figure 10. Extrapolation from lmax = 10 to infinity

increases the binding energy by about 0.5%.

Before the contact density ρep can be determined, the positron Dyson orbital must

be correctly normalized via equation (12). This is achieved by calculating the self-energy

for a number of energies E and finding the lowest eigenvalue of the matrix (11) at these

energies, giving ε0(E). This is repeated to self-consistency, E = ε0(E), and the gradient

∂ε0(E)/∂E is found at this point. This is illustrated for PsCl in figure 11.
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1/(l
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+1/2)
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ε 0 (
au

)

Figure 10. Convergence of the binding energy for PsCl as a function of lmax. Open

circles connected by a solid line to guide the eye, show the energies ε0 calculated using

Σ(2+Γ+3) at E = −0.207 au for lmax = 7–10; dashed line shows extrapolation.
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-0.22
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-0.18

E
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ε 0 (
au
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Figure 11. Open circles connected by the solid line show the positron energy ε0(E)

for PsCl obtained from the Dyson equation with Σ(2+Γ+3), as a function of the energy

at which the self-energy was calculated; dashed line is ε0 = E. The intersection of the

two lines, ε0(E) = E, gives the binding energy. The gradient of ε0(E) at this point is

used to calculate the normalization constant a from equation (5).

According to equation (25), the electron-positron contact density ρep converges

much more slowly than the energy, and extrapolation with respect to lmax is much more

important here. This is illustrated for PsCl in figure 12. Extrapolation beyond lmax = 10

increases the contact density, and hence, the annihilation rate, by about 30%.

The calculations are performed for a number of approximations to the self-energy.

This enables us to determine the relative magnitude of various diagrams, and helps

to clarify which physical effects are important to include so as to obtain an accurate
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0 0.05 0.1
1/(l

max
+1/2)

0.025

0.030
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Figure 12. Convergence of the electron-positron contact density ρep for PsCl as a

function of lmax. Open circles connected by a solid line to guide the eye, show values

of ρ
(0)
ep +ρ

(∆)
ep +ρ

(2)
ep obtained for lmax = 7–10 in the calculation using Σ(2+Γ+3); dashed

line shows extrapolation.

binding energy. The positron energies obtained for PsCl using different approximations

are given in table 1.

Table 1. Positron bound-state energies ε0 (in au) for Cl− obtained using various

approximations to the correlation potential.

HF Σ(2) Σ(2+Γ) Σ(2+3) Σ(2+Γ+3) Σ(2+3′) Σ(scr)

−0.1419 −0.1855 −0.2276 −0.1663 −0.2072 −0.1641 −0.1998

In the HF approximation, the energy of the lowest s wave positron state is

−0.1419 au. The Ps binding energy (BE) is determined from the positron affinity

PA = |ε0| using equation (26), which gives BE = 0.672 eV. This value is in agreement

with the HF results of Cade et al (1977). Therefore, PsCl is bound even in the static HF

approximation. However, the self-energy is essential in determining an accurate binding

energy. The second-order polarization diagram Σ(2) increases the binding energy, and

the inclusion of the virtual Ps formation contribution Σ(Γ) increases it even further.

When we add the 3rd-order corrections Σ(3) to Σ(2), the binding reduces noticeably.

This means that screening of the Coulomb interaction is important. In particular, the

positron binding energy of 0.2276 au, obtained with Σ(2+Γ), becomes equal to 0.2072 au

when the total self-energy Σ(2+Γ+3) is used.

However, this calculation neglects the effect of screening on the virtual Ps-formation

contribution Σ(Γ). Evaluating the magnitude of screening via equation (15) we obtain

SE = −0.45. When the effect of screening on Σ(2) is included via the factor 1 + SE ,

as per equation (16), the corresponding result (labelled Σ(2+3′)) is very close to that
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obtained with Σ(2+3) (see table 1). The application of approximation (18), denoted

Σ(scr), gives our best estimate of the positron binding energy, 0.1998 au, corresponding

to a Ps binding energy of 2.245 eV. This value is only slightly below the completely ab

initio value of 2.437 eV obtained using Σ(2+Γ+3).

The contact densities calculated using the Dyson orbitals obtained with Σ(2+Γ+3)

and Σ(scr) are quite close, as are the energies and wavefunctions. We show the

breakdown of the contributions to ρep in table 2. To appreciate the scale of densities

involved, it is useful to remember that the contact density of ground state Ps is

ρep(Ps) = 1/8π ≈ 0.0398 au. Note that although Σ(2+Γ+3) gives a slightly larger binding

energy and a more compact positron wavefunction than Σ(scr), the densities obtained in

the former approximation are lower. This is due to a smaller normalization constant a,

which results from a somewhat stronger energy dependence of Σ(2+Γ+3).

Table 2. Breakdown of contributions to the electron-positron contact density in PsCl

(in au).

Approx. ρ
(0)
ep ρ

(1)
ep ρ

(0)
ep + ρ

(∆)
ep ρ

(2)
ep total ρep, eq. (23)

Σ(2+Γ+3) 0.00841 0.00931 0.04263 −0.00155 0.04108 −

Σ(scr) 0.00872 0.00964 0.04444 −0.00162 0.04281 0.03929

The zeroth-order diagram, ρ
(0)
ep , gives only about 20% of the total density, with ρ

(1)
ep

giving another 20% and the rest coming from higher order diagrams in ρ
(∆)
ep (figure 6).

As with the self-energy, the inclusion of screening effects (ρ
(2)
ep , figure 7) reduces the

total. However, the effect of screening on the annihilation vertex is much smaller than

that on the correlation potential, as indicated by the value of C = −0.17, equation (22).

Physically, this is related to the fact that in the annihilation vertex corrections, small

electron-positron separations dominate. Finally, using equation (23) to account for the

effect of screening on the diagrams in ρ
(∆)
ep , we obtain our best prediction for the contact

density (last column in table 2). This corresponds to the PsCl decay rate of 1.984 ns−1,

which is close to the spin-averaged decay rate of Ps, 2.01 ns−1.

5.2. Results for PsH, PsF, PsCl, PsBr and PsI

The final results for PsH, PsF, PsCl, PsBr and PsI obtained with the correlation

potential Σ(2+Γ+3) and density ρ
(0)
ep + ρ

(∆)
ep + ρ

(2)
ep , and Σ(scr) and screened densities from

equation (23), are shown in table 3. In all cases the positron is bound in the s-wave,

all higher lying quasi-bound states being unstable against Ps emission. Note that the

latter is true for the electron-spin-singlet states, as excited “unnatural parity” electron-

spin-triplet Ps-atom bound states have been discovered recently for the hydrogen and

the alkalis (Mitroy and Bromley 2007, Mitroy et al 2007).

The positron binding energy is highest in PsH. This is a consequence of the small size

of the hydrogen atom, and the small value of its electron affinity, which makes for strong

electron-positron correlation effects. Beyond PsH the binding energy decreases along
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Table 3. Positron binding energies, normalization constants and contact densities for

PsH and Positronium halides.

Compound ε0
a au aa ρep

a ε0
b au ab ρep

b

PsH −0.27619 0.714 0.05231 −0.26338 0.748 0.05037

PsF −0.22778 0.950 0.04790 −0.22489 0.958 0.04913

PsCl −0.20718 0.875 0.04108 −0.19975 0.894 0.03929

PsBr −0.20373 0.834 0.03910 −0.19523 0.868 0.03788

PsI −0.19805 0.794 0.03707 −0.18878 0.835 0.03582

a Dyson equation solved using Σ(2+Γ+3), density ρep = ρ
(0)
ep + ρ

(∆)
ep + ρ

(2)
ep .

b Dyson equation solved using Σ(scr), density ρep from equation (23).

the halogen sequence, mostly due to a stronger positron repulsion from the positively-

charged atomic cores in heavier systems.

Values of the normalization parameter a in table 3 give some insight into the

structure of these compounds. PsH has the smallest value of a and its structure therefore

has a large component that describes Ps bound to the neutral atom (“Ps cluster”), the

small electron affinity of H playing a role in this. PsF has the largest value of a and

its structure can best be described as a positron bound to F−. Generally, all of the

compounds considered have large values of a. This indicates that a positron bound to

the negative ion is the dominant component of the structure. This is a consequence of the

stable noble-gas-like structure of the halogen negative ions. In contrast, positron bound

states with the weakly-bound alkali negative ions have a distinct Ps-atom character

(Mitroy et al 2002).

It is interesting to compare the positron wavefunctions obtained from the Dyson

equation for H− and the halogen anions. In figure 13 the wavefunctions obtained

with the self-energy Σ(2+Γ+3) are shown. The shape of the positron wavefunction is

determined by a balance between the Coulomb and correlation-potential attraction at

large separations, and the Coulomb repulsion from the nucleus at smaller radii. The

positron wavefunctions for PsH and PsF are quite similar. This feature reflects the high

positron binding energy to the H− and F− ions, and the fact that the corresponding

atoms have the smallest radii. As the positron binding energy decreases, the positron

wavefunction relaxes outwards. This feature is seen as one moves along the halogen

sequence. One can also observe the increasing “expulsion” of the positron from the

atomic core region, caused by the Coulomb repulsion from the nucleus.

5.3. Comparison with other theoretical results

The positron binding energies can be converted to Ps binding energies via the simple

relation,

BE(PsA) = EA(A) + PA(A−) + E1s(Ps), (26)

where BE(PsA) is the binding energy of a Ps atom to a generic atom denoted by

A, EA(A) is the electron affinity of the atom, PA(A−) is the positron affinity of the
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Figure 13. Comparison of the radial Dyson orbitals obtained with Σ(2+Γ+3): solid,

PsH; dashed, PsF; long-dashed, PsCl; dot-dashed, PsBr; dot-double-dashed, PsI. For

the purpose of comparison, all orbitals are normalized to unity.

negative ion and E1s(Ps) = −6.8028 eV is the spin-averaged energy of Ps. For the

electron affinities needed, the values of 0.7542 eV for H, 3.4012 eV for F, 3.6127 eV for

Cl, 3.3636 eV for Br and 3.0590 eV for I, have been used (Andersen et al 1999).

Annihilation rates Γa in units of ns−1 are obtained by dividing the contact density

ρep by the conversion factor 109 s/(πr2
0c) = 0.0198 ns × au. The final Ps binding

energies and positron annihilation rates are shown in table 4, and compared with other

calculations and experiment.

For PsH very accurate variational calculations are available (Frolov et al 1997).

Our many-body theory calculations are in good agreement with these results, and both

the Ps binding energy and positron annihilation rate are accurate to within 5%. Because

of the small electron affinity of hydrogen, PsH is more difficult for many-body theory

to treat than larger, more tightly bound systems with many valence electrons. The

results for the heavier systems should therefore be of similar or possibly even of greater

accuracy than the results for PsH.

For PsF a few theoretical calculations are available, the present Ps binding energy

and positron annihilation rate agreeing most closely with multi-reference configuration-

interaction calculations (Miura and Saito 2003, Saito 2005). The Ps binding energy is

also close to a diffusion Monte-Carlo calculation by Bressanini et al (1998).

The present Ps binding energies for PsCl, PsBr and PsI are greater than those

obtained using a second-order variational perturbation method (Saito et al 1995, 1998)

and Monte-Carlo calculations (Schrader et al 1992a, 1993). Our values are in better

agreement with, although consistently smaller than, multi-reference configuration-

interaction calculations by Saito (2005). The positron annihilation rates from the present

calculation and that of Saito (2005) are in reasonable agreement, although our values

are consistently higher. This can be in part due to underestimation of the contribution
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Table 4. Ps binding energies and positron annihilation rates for PsH and positronium

halides compared with other calculations and experiment.

Compound Present results Other results

Ps BE (eV) Γa (ns−1) Ps BE (eV) Γa (ns−1)

PsH 1.118 2.544 1.066126a 2.4361a

1.1±0.2i

PsF 2.718 2.482 2.806b 2.019b

2.70c 1.98c

2.24d

1.98±0.17g

2.838f

2.9±0.5j

PsCl 2.245 1.984 2.350b 1.504b

1.91± 0.16e

1.62d

2.0±0.5j

PsBr 1.873 1.913 2.061b 1.371b

1.14±0.11g

1.25h

PsI 1.393 1.809 1.714b 1.254b

0.56h

Theory: a Frolov et al 1997, b Saito 2005, c Miura and Saito 2003, d Saito 1995,
e Schrader et al 1992a, f Bressanini et al 1998, g Schrader et al 1993, h Saito et al

1998.

Experiment: i Schrader et al 1992b, j Tao et al 1969.

of high orbital angular momenta by the extrapolation procedure used by Saito (Mitroy

and Bromley 2005).

5.4. Comparison with experiment

For PsH, a direct experimental measurement of the Ps binding energy (Schrader et al

1992b) is available. In this experiment, the reaction e++CH4 → CH+
3 +PsH was studied

by detecting the CH+
3 ions. From the experimentally determined threshold energy for

CH+
3 production and the various bond energies, a value of 1.1 ± 0.2 eV was found for

the PsH binding energy. This value is in excellent agreement with theory, though much

less precise.

So far, there have been no direct experimental measurements of the Ps binding

energy for the halogens, however estimates of the Ps binding energy for PsF and PsCl

has been made (Tao et al 1969), see table 4. The PsCl binding energy was estimated

by studying positron annihilation in Cl2 and Ar-Cl2 gas mixtures. The appearance of a

shoulder in the positron annihilation lifetime spectrum was attributed to the reaction,

Ps+Cl2 → PsCl+Cl. From a knowledge of the energy at which this shoulder begins and

the Cl2 dissociation energy, a binding energy of about 2.0 eV was estimated for PsCl.

The estimate of the PsF binding energy was obtained from the observation that when a
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hydrogen atom in benzene is replaced by fluorine, the fraction of positrons annihilating

with the longest lifetime, as ortho-positronium, was reduced from 40 to 27%. This

reduction was assumed to be due to the reaction, C6H5F + Ps → PsF + C6H5. From

a knowledge of the threshold energy and the relevant dissociation energies, a binding

energy of about 2.9 eV was estimated for PsF. The present results support these early

estimates.

6. Concluding remarks

Traditionally, many-body theory has had more success in treating purely electronic

systems (Chernysheva et al 1988, Dzuba and Gribakin 1994), than systems that contain

a positron. In particular, earlier many-body theory calculations relied on very simple

(Amusia et al 1976) or approximate (Dzuba et al 1995, 1996) treatments of the virtual

Ps formation contribution to the correlation potential. However it is now clear that

many-body theory is capable of giving positron and Ps binding energies and positron

annihilation rates that are accurate to within a few percent for many-electron systems.

The calculated binding energies and annihilation rates for positronium halides

should serve as a useful reference for other theoretical calculations and future

experiments. We have also performed an extended analysis of various contributions

to the correlation potential and contact density, especially of the role of screening. This

will be helpful for the problem of positron scattering and annihilation on noble-gas

atoms. In the future it will be important to calculate explicitly the contribution of

the RPA-type screening diagrams and also to move to a fully relativistic framework,

particularly for heavy atoms and ions.
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