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Parametric FIR Design of Propagation Loss Filters
in Digital Waveguide String Models

Maarten van Walstijn

Abstract—One of the attractive features of sound synthesis
by physical modeling is the potential to build acoustic-sounding
digital instruments that offer more flexibility and different
options in its design and control than their real-life counterparts.
In order to develop such virtual-acoustic instruments, the models
they are based on need to be fully parametric, i.e. all coefficients
employed in the model are functions of physical parameters that
are controlled either on-line or at the (off-line) design stage. In
this letter we show how propagation losses can be parametrically
incorporated in digital waveguide string models with the use of
zero-phase FIR filters. Starting from the simplest possible design
in the form of a three-tap FIR filter, a higher-order FIR strategy
is presented and discussed within the perspective of string sound
synthesis with digital waveguide models.

EDICS: AEA-AUEA Audio and Electroacoustics, DSP-FILT
Filter design, analysis and implementation

I. INTRODUCTION

D IGITAL waveguides have been used for efficient sim-
ulation and sound synthesis of 1-D musical resonators,

such as string and pipes, for more than 20 years [1]. A basic
digital waveguide (DW) structure consists of a pair of delay-
lines that directly simulate the traveling wave solutions of
the 1-D wave equation. For realistic sound synthesis of string
instruments, various physical phenomena, such as propagation
losses, end reflections, and where appropriate, stiffness, or
even non-linear phenomena such as tension-modulation [2]
must be taken into account. The focus of this letter is on the
incorporation of propagation losses, which in principle can
be done by inserting loss filters in the basic DW structure
(see Figure 1). The concept of using loop filters to account
for losses in string simulations originated in studies on the
Karplus-Strong algorithm [3], [1], a well-known forerunner of
digital waveguides.

A common approach is to lump the propagation losses
together with those occurring at the bridge, and modeling
all losses with a single loop filter [4]. Due to the typical
complexity of the bridge reflection function, the overall loss
filter is then usually designed via optimisation, often fitting
to experimental data (see, e.g. [5], [6]). This approach works
well when the objective is to simulate a ‘fixed instrument’ with
prescribed specifications, but does not allow easy adjustment
of the characteristics of either the string or the bridge/body.
Such separate control is of interest when the objective is not
to approximate a prescribed string response, but instead to
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more widely explore the sonic potential of a virtual-acoustic
string instrument, either in real-time or off-line; this includes
venturing into domains where the string losses are artificially
high or low, thus making higher demands regarding parameter
ranges. Consequently, the propagation loss filter must remain
separate and physically parametric, i.e. its coefficients are
defined and calculated as closed-form functions of one or more
physical parameters. This allows ‘tuning’ the string losses,
similar to adjusting the string tension with tunable fractional
delay filters [7], or the string stiffness with tunable allpass
filters [8]. Commonly used tunable loss-filter include first-
order FIR [9] and IIR [10], [9] designs, the coefficients of
which can be linked to physical parameters [9]. A disdavantage
of these designs is that the phase delay response varies with
the loss parameters, causing the fundamental frequency of the
string to change with one of the loss parameters. This problem
can be avoided by using a linear-phase FIR design, such as
the second-order filters proposed in [11], [1]. However no
direct link to the physical loss parameters is given in these,
and in addition they have a limit on the spectral roll-off, and
therefore on the amount of frequency-dependent loss that can
be achieved.

The aim of this letter is to design tunable propagation loss
filters, where the main criterion is low-cost filters with simple
coefficient formulas. Further properties assumed to be useful
are direct control over accuracy via filter order, a perceptually
sensible dependence of accuracy on frequency, filters that do
not affect the frequencies of the partials (so that this can
be controlled separately), and the ability to approximate any
specific instance of the theoretical target response.

II. LOSS FILTER TARGET RESPONSE

Propagation losses in strings can generally be attributed
to two physical phenomena, namely the loading by the sur-
rounding air and internal friction [12]. These effects can be
modelled loosely by adding two loss terms to the transversal
wave equation, that for a flexible string then takes the form
[13]:

∂2u

∂t2
= c2

∂2u

∂x2
− 2b1

∂u

∂t
+ 2b2

∂3u

∂x2∂t
(1)

where u is the transversal displacement, c is the wave speed,
and where the constants b1 and b2 are the loss parameters. It is
straightforward to show that displacement waves governed by
(1) decay at a rate α = b1+b2k

2, where k is the wave number,
that relates to the frequency by ω2 = k2c2−α2 [13]. The same
holds for velocity waves, that are commonly employed in DW
models. Since for real strings, α ≪ k2c2, it is reasonable to
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use instead the wave number for ideal strings (k = ω/c), so
that for propagation over distance d and time τ = d/c, the
target response of the digital loss filter can be defined as

HL(ω) = ge−b2 c−2τω2

, (2)

where g = e−b1τ is a simple gain factor. Hence a suitable
target response for a digital loss filter that approximates the
frequency-dependent part of HL, i.e. HL(ω)/g, can be defined
as

H(Ω) = e−βΩ2

, (3)

where β = (b2τ)/(c
2T 2) is a convenient design parameter

and Ω = ωT denotes digital frequency for sampling period T .
The Taylor expansion of (3) about Ω = 0, on which all FIR
designs in this letter are based, is

H(Ω) = 1 +

∞∑
i=1

βi

i!
(−Ω2)i (4)

In order to assess the accuracy of any digital filter designed to
match the target response, one may compare the digital filter
frequency response Ĥ(Ω) to H(z). Alternatively, the filter’s
effective β value can be computed as a function of frequency
as follows

β̂(Ω) = − ln Ĥ(Ω)

Ω2
(5)

and compared to the theoretical target value β. The latter
comparison is used throughout the letter since it allows a more
clear visual inspection.

III. THREE-TAP FIR DESIGN

The target response H(Ω) is zero-phase, so it makes sense
to design a zero-phase digital loss filter [1]; this can be
achieved using an N -tap FIR with symmetrical coefficients,
and ‘stealing’ M = (N − 1)/2 delays from the delay-line.
Regarding the DW structure in Figure 1, the lowest number of
delays in each of the delay-lines is one, which corresponds to
having only one modal frequency (i.e. the fundamental) below
Nyquist. In that case, propagation losses may be modelled
efficiently using only a gain factor g. For two or more modal
frequencies below Nyquist, the structure will have at least
two delays in each of the delay-lines. Hence a three-tap,
second-order zero-phase FIR filter, that requires stealing only a
single delay, is always realisable where needed, and therefore
a logical first design choice. The transfer function of this filter
can be parameterized suitably as

Ĥ(z) = θz + (1− 2θ) + θz−1, (6)

where θ is a free parameter that controls the spectral roll-off.
The frequency response is

Ĥ(Ω) = 1 + 2θ(cosΩ− 1), (7)

and its Taylor approximation about Ω = 0 is

Ĥ(Ω) = 1 + 2θm

∞∑
i=1

(−Ω2)i

(2i)!
(8)

Comparing (8) to (4) for i = 1 immediately reveals that a
second-order accuracy approximation is possible by setting

θ = β. Plotting Ĥ(Ω) and β̂(Ω) against normalized fre-
quency (fT = Ω/(2π)) for a range of β values (see Figure
2) confirms that accuracy is high at lower frequencies and
decreasing with frequency, but also reveals that the three-tap
FIR design works well only for β ≤ 0.25; for higher values,
the effective damping is too small, leading to high-frequency
modes decaying far too slowly. Such high-frequency ringing
can become perceptually significant and would present an
unpleasant model artefact, and should therefore be avoided.
Hence the three-tap design has a distinct limit on β.

IV. N -TAP FIR DESIGN

For audio-rate simulations where τ is considerably larger
than 2T , which is the case for almost all real musical strings,
higher-order accuracy can be achieved by using a larger FIR
filter, the generalized transfer function of which takes the form

Ĥ(z) = 1 + θm

M∑
m=1

[
zm − 2 + z−m

]
(9)

where we now have M free parameters θm. The corresponding
FIR frequency response is

Ĥ(Ω) = 1 + 2

M∑
m=1

θm [cosmΩ− 1] (10)

and its Taylor expansion can be written

Ĥ(Ω) = 1 +
∞∑
i=1

−ai
i!

(−Ω2)i (11)

where

ai =
2i!

(2i)!

M∑
m=1

θmm2i (12)

Comparing (11) to (4) reveals that accuracy of order 2M is
achieved when ai = βi for i = 1, 2, 3..M . This amounts to
solving a linear system of M equations, which in principle can
be directly applied to calculate the free parameters θm (see
accompanying Matlab file NtapFIR.m). In practice however
it is convenient to pre-calculate closed-form expressions for
specified orders. Table I lists these formulae for M = 1, 2, 3,
and Figure 3 plots the resulting effective β value responses
for M = 2, 3.

As could be expected, using a higher filter order increases
accuracy, and also stretches the valid β range somewhat.
However, for higher values of β, the effective damping at high
frequencies is still heavily under-approximated, and further
plots (not shown here) showed that the damping can even
become negative, which would lead to instability. An exact
limit on β is not as easy to define now, but in general it
can be said that, for a filter using N = 2M + 1 taps, it lies
considerably lower than M times the limit of 0.25 for a basic
three-tap filter.

V. SERIES FIR DESIGN

In attempting to find a better way of overcoming the limit
on β, it is worthwhile realizing that a steeper spectral roll-off
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can be achieved simply by cascading several identical second-
order FIR sections of the form of (6). The transfer function
for L FIR sections in series then thus takes the form

Ĥ(z) =
[
1 + θ(z − 2 + z−1)

]L
(13)

Given that there is now only a single free parameter (θ),
the maximum accuracy that can be achieved is second-order.
Applying the Taylor series expansion again and truncating all
terms higher than second-order gives

Ĥ(Ω) ≈ (1− θΩ2)L ≈ 1− LθΩ2, (14)

Therefore, in order to approximate (4), we now have to set
θ = β/L. Since the limit for a single section is still θ ≤ 0.25,
the maximum value of β for which the filter behaves well at
higher frequencies is now L/4, i.e. L times higher than for a
single tree-tap FIR section. It follows that for a given value
of β, the required filter order can be determined by setting
L = ⌈4β⌉. Figure 4 shows the effective β value of a two-
section series FIR design for a number of β values in the
valid β range.

VI. SERIES OF N -TAP SECTIONS

The fact that one may extend the valid β range simply
by cascading identical FIR sections could of course also
have been seen directly from nature of the target response
function in (4). Hence this idea holds generally, and may
thus also be applied to N -tap sections. That is, we may also
cascade L instances of a N -tap FIR section, each of which
approximates β in order to approximate a target value Lβ.
This combinatorial approach allows fine-tuning the balance
between ‘bandwidth of accuracy’ and ‘maximum β’, and
generalizes the FIR design strategy proposed in this letter. The
accompanying Matlab file plotPPLFIR.m can be used to
generate plots for Ĥ(z) or β̂(z) for any choice of β,M,L.

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this letter we have discussed methods for designing
physically parametric loss filters for use in digital waveguide
string models. A zero-phase FIR approach was proposed, with
the FIR coefficients derived as functions of the loss parameters
by enforcing equivalence between the FIR frequency response
and the theoretical target response up to a certain Taylor
expansion order. As could be expected from this approach, the
resulting filters are exact at ω = 0 and the accuracy generally
decreases with frequency. From a perceptual perspective, this
is a useful attribute, given that in the digital waveguide model
output signal the lower frequencies are generally more promi-
nent and slower decaying than high frequencies. However,
large under-approximations of the effective damping should
be avoided as it would result in noticeable artefacts; this is
what sets a limit on the size of the design parameter β.

In many applications, β is relatively small (typically below
0.1 for a 44.1kHz sample rate) and, given that the perceptual
tolerance for decay parameters is typically high [14], high
accuracy is often not required. In that case, a single three-
tap FIR design is likely to suffice. The proposed design
differs from previous three-tap FIR designs [11], [1] in that

the coefficients are calculated from the parameters of the
underlying partial differential equation.

When higher accuracy is needed, the N -tap FIR design can
be used. This may occur, for example, in inverse filtering
applications (e.g. [4]) or quantitative comparisons of DW
modeling with other physical modeling paradigms (e.g. [15]).
It is worthwhile noting though that the target response is itself
based on a fairly simplified, smooth model of the propagation
losses, hence it remains to be verified to what extent a strong
match with this parameterization means something toward
synthesis realism or estimation accuracy.

For applications in which it is envisaged that β is a time-
varying parameter, the series FIR design is attractive, since
a large valid β range can be achieved with a lower filter
order than with the N -tap design. In addition, this design
uses only a single parameter that can be updated at very little
cost. Hence the series FIR design is greatly suited to real-
time implementations in which damping is one of the control
parameters. Accuracy can again be improved by using an N -
tap FIR filter as the nominal section to be cascaded.

An interesting option to explore in future work is to extend
the loss parameterisation itself, i.e. adding more mixed-term
derivatives to equation (1), and investigate whether this allows
an improved fit to, for example, measured data on propagation
losses in strings, or to the more complex case of wall losses
in pipes. If successful, it seems possible then to directly apply
the principles of the FIR design approach presented in this
letter to these cases.
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TABLES AND FIGURES

TABLE I
PARAMETER FORMULAE FOR N -TAP FIR DESIGN.

M 1 2 3

θ1 β 4

3
β − 2β2 3

2
β − 13

4
β2 +

5

2
β3

θ2
1

12
β − 1

2
β2

−

3

2
β + β2

− β3

θ3
1

90
β − 1

12
β2 +

1

6
β3

z-K

-1

HL(z)

RB(z)

z-K HL(z)

Fig. 1. A digital waveguide model of a lossy string. Wave propagation is
simulated with a fractional delay-line z−K in series with a loss filter HL(z).
The minus one reflection at the left end models a fixed boundary, and the
filter RB(z) models the reflection from the bridge.
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Fig. 2. The frequency response (a) and effective β value (b) of the three-
tap FIR loss filter (solid) compared to the target response (dotted), for β =
0.05, 0.10, 0.15...0.5.
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Fig. 3. The effective β value of (a) the five-tap (M = 2) FIR design, and (b)
the seven-tap (M = 3) FIR design compared to the target response (dotted),
for β = 0.05, 0.10, 0.15...0.5.
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Fig. 4. The effective β value of an L = 2 series FIR design (solid) compared
to the target values (dotted), for β = 0.05, 0.10, 0.15...0.5.


