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Abstract—This paper studies the ergodic capacity of multiple-
input multiple-output (MIMO) systems with a single co-channel
interferer in the low signal-to-noise-ratio (SNR) regime. Two
MIMO models namely Rician and Rayleigh-product channels
are investigated. Exact analytical expressions for the minimum
energy per information bit, 𝐸𝑏/𝑁0min, and wideband slope,
𝑆0, are derived for both channels. Our results show that the
minimum energy per information bit is the same for both
channels while their wideband slopes differ significantly. Further,
the impact of the numbers of transmit and receive antennas, the
Rician 𝐾 factor, the channel mean matrix and the interference-
to-noise-ratio (INR) on the capacity, is addressed. Results indicate
that interference degrades the capacity by increasing the required
minimum energy per information bit and reducing the wideband
slope. Simulation results validate our analytical results.

Index Terms—Double scattering, fading channels, MIMO sys-
tems, optimum combining, performance analysis.

I. INTRODUCTION

S INCE the pioneer work by Winters [1], Telatar [2]
and Foschini et al. [3], multiple-input multiple-output

(MIMO) antenna systems have received enormous attention.
The use of multiple antennas at both ends of the communica-
tion link in MIMO systems offers substantial improvement
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in capacity and performance over single-antenna systems.
Thus far, the analysis of MIMO systems has been extensively
investigated for many different statistical channel models of
interest (see e.g., [4–7]). Due to spectrum scarcity, neverthe-
less, communication systems are anticipated to be corrupted
by interference, which has motivated the studies of MIMO
with interference, e.g., [8–15].

On the other hand, a wide variety of digital communi-
cation systems operate at low power where both spectral
efficiency and the energy-per-bit can be very low. Examples
include wireless sensor networks where low power and energy-
efficient devices are preferred, and cellular networks where
due to frequency reuse, users often operate at low signal-to-
noise ratio (SNR) to avoid causing excessive interference to
other cell users. It has been shown in [16, 17] that 40% of the
geographical locations experience receiver SNR levels below 0
dB.1 In [18], Verdú proposed that the spectral efficiency in the
low SNR (or wideband) regime can be analyzed through two
parameters; namely, the minimum 𝐸𝑏/𝑁0 (with 𝐸𝑏 denoting
the average energy per information bit and 𝑁0 being the
noise spectral density) required for reliable communications,
and the wideband slope (denoted by 𝑆0). These low SNR
metrics not only provide a useful reference in understanding
the achievable rate of a channel at low SNRs, but also offer
practical insights into the interaction between various system
parameters on the capacity performance. In addition, these
metrics can be exploited to obtain engineering guidance on
the optimal signalling strategies in the low power regime [18].

The low SNR metrics have subsequently been elaborated in
[19–23], where the impacts of Rician 𝐾 factor, spatial corre-
lation, transmit and receiver channel state information (CSI)
were investigated. However, all of these works considered
the interference-free scenarios, except [19], where the effect
of interference was analyzed. The limitation of [19] is that
explicit expressions for these two low SNR metrics were only
derived for the interference-limited Rayleigh fading channels.

Although [19] developed many profound results towards
understanding of the capacity at low SNRs for interference-
limited MIMO Rayleigh fading channels, the corresponding
results for Rician fading channels appear to be limited. Rician
fading channel is a more general model which captures

1Since both networks operate in the low power regime and are generally
subjected to interference, the analytical results to be developed may find
possible applications in both scenarios.

0090-6778/10$25.00 c⃝ 2010 IEEE



2550 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 9, SEPTEMBER 2010

the scenarios with dominant propagation paths between the
transmitter and receiver sides, and embraces Rayleigh fading
as a special case. Motivated by this and the importance of un-
derstanding the capacity of MIMO channels with interference
at low SNRs, in this paper, we first investigate the MIMO
Rician fading channels with arbitrary mean matrix and 𝐾
factor, in which we derive exact expressions for 𝐸𝑏/𝑁0min and
𝑆0 in the presence of both interference and noise. Based on
these results, we shall further study the special cases, namely,
the multiple-input single-output (MISO) Rician channels, the
rank-one deterministic channels and the MIMO Rayleigh
channels, in which simple expressions can be obtained to
illustrate the impacts of the number of transmit and receive
antennas, the Rician 𝐾 factor, the channel mean matrix, and
the interference-to-noise ratio (INR) on the capacity. Also,
asymptotic results in the large-system limit and high INR are
developed.

Another major contribution of this paper is that we also
provide the low SNR capacity analysis for MIMO Rayleigh-
product fading channels [24], which recently have emerged
as a unified model to describe the reduced-rank phenomenon
and bridge the gap between an independent and identically
distributed (i.i.d.) full-rank Rayleigh channel and a degenerate
rank-one keyhole channel [25]. The matrix product models
have also emerged in MIMO multi-hop relaying systems [26,
27]. Due to its importance, the outage performance of MIMO
Rayleigh-product channels with interference has been recently
studied in [28]. Nonetheless, the capacity of such channels is
not at all understood. In contrast, we have made distinctive
contributions of understanding the capacity of these channels
in the presence of interference by deriving the exact expres-
sions of 𝐸𝑏/𝑁0min and 𝑆0 at low SNRs. Our assumption
is, however, that the co-channel interferer is equipped with
only one transmit antenna and as in [18, 19] and many similar
endeavors, perfect CSI at the receiver side is also assumed.

The reminder of the paper is structured as follows. Section II
describes the models for MIMO Rician and Rayleigh-product
channels and gives the capacity definition at low SNRs. In
Sections III and IV, we derive the low SNR capacity results for
MIMO Rician and Rayleigh-product channels, respectively.
Numerical results are provided in Section V, and Section VI
concludes the paper.

We adopt the following notation. Vectors are written in low-
ercase boldface letters and matrices are denoted by uppercase
boldface letters. The superscripts (⋅)𝑇 , (⋅)∗ and (⋅)† represent
the transpose, complex conjugate and conjugate transpose
operations, respectively. We also use det(⋅) and tr{⋅} to denote
the matrix determinant and trace operations, respectively. I is
used to denote an identity matrix of appropriate dimension.
ℂ𝑚×𝑛 stands for an 𝑚× 𝑛 complex matrix. E {⋅} returns the
expectation, and 𝒞𝒩 (𝜇, 𝜎2) is a complex Gaussian distribution
with mean 𝜇 and variance 𝜎2.

II. SYSTEM MODEL

Consider a communication link with 𝑁𝑡 transmit and 𝑁𝑟

receive antennas, corrupted by interference and additive white
Gaussian noise (AWGN). The received signals, y ∈ ℂ𝑁𝑟×1,

can be expressed as

y = Hx+ h𝑠+ n, (1)

where x ∈ ℂ
𝑁𝑡×1 is the transmitted symbol vector sat-

isfying E{∥x∥2} = 𝑃 , 𝑠 is the interference symbol such
that E{∣𝑠∣2} = 𝑃𝐼 , and H ∈ ℂ𝑁𝑟×𝑁𝑡 denotes the MIMO
channel between the transmitter and receiver. Likewise, h ∈
ℂ𝑁𝑟×1 denotes the channel vector between the interferer
and the desired receiver with its entry being i.i.d. zero-mean
unit-variance Gaussian random variables, and n ∈ ℂ

𝑁𝑟×1

is the complex AWGN vector with i.i.d. entries following
𝒞𝒩 (0, 𝑁0).

In this paper, we investigate the low SNR capacity prop-
erties of two important MIMO channel models, namely:
1) Rician fading and 2) Rayleigh-product fading. They are
described as follows:

∙ MIMO Rician channels—In this case, the channel ma-
trix has the structure [29]

H =

√
𝐾

𝐾 + 1
H0 +

√
1

𝐾 + 1
H𝑤, (2)

where 𝐾 denotes the Rician 𝐾-factor, and H𝑤 ∈
ℂ𝑁𝑟×𝑁𝑡 is the channel matrix containing i.i.d. zero-mean
unit-variance complex Gaussian entries. On the other
hand, H0 ∈ ℂ𝑁𝑟×𝑁𝑡 denotes the channel mean matrix,
which is normalized to satisfy

tr
{
H0H

†
0

}
= 𝑁𝑟𝑁𝑡. (3)

∙ MIMO Rayleigh-product channels—The channel ma-
trix H can be expressed as [24]

H =
1√
𝑁𝑠

H1H2, (4)

where H1 ∈ ℂ𝑁𝑟×𝑁𝑠 and H2 ∈ ℂ𝑁𝑠×𝑁𝑡 are statis-
tically independent matrices containing i.i.d. zero-mean
unit-variance complex Gaussian entries, with 𝑁𝑠 being
the number of effective scatterers. By varying 𝑁𝑠, this
model can describe various rank-deficient effects of a
MIMO channel, e.g., it degenerates to Rayleigh fading
if 𝑁𝑠 → ∞, and a keyhole channel if 𝑁𝑠 = 1.

We assume that CSI is not known at the transmitter side
but perfectly known at the receiver. Thus, an equal-power
allocation policy is used and the ergodic capacity is then
expressed as [19]

𝐶 = E

{
log2 det

(
I+

𝑃

𝑁0𝑁𝑡
H†

(
𝑃𝐼

𝑁0
hh† + I

)−1

H

)}
.

(5)
As pointed out in [19], with co-channel interference, it is more
suitable to define the SNR as

𝜌 ≜
(

𝑃

𝑁0

)
E
{
tr
{
H†(𝜌𝐼hh† + I)−1H

}}
𝑁𝑡𝑁𝑟

, (6)

where 𝜌𝐼 ≜ 𝑃𝐼

𝑁0
is regarded as the INR. Based on the

definitions, the ergodic capacity expression in (5) can be
rewritten as

𝐶(𝜌) =
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E

{
log2 det

(
I+

𝑁𝑟𝜌H
† (𝜌𝐼hh† + I

)−1
H

E {tr {H†(𝜌𝐼hh† + I)−1H}}

)}
. (7)

At low SNRs, it has proved useful to investigate the capacity
in terms of the normalized transmit energy per information bit,
𝐸𝑏/𝑁0, rather than the per-symbol SNR, 𝜌. This capacity can
be well approximated for low 𝐸𝑏/𝑁0 levels by the following
expression [18]

C

(
𝐸𝑏

𝑁0

)
≈ 𝑆0 log2

(
𝐸𝑏

𝑁0

𝐸𝑏

𝑁0 min

)
, (8)

in which 𝐸𝑏

𝑁0 min
denotes the minimum energy per information

bit required to convey any positive rate reliably and 𝑆0 is the
wideband slope [18, 19]. These are the two key parameters
that dictate the capacity behavior in the low SNR regime, and
can be obtained from 𝐶(𝜌) via [19]2

𝐸𝑏

𝑁0 min

=
𝑁𝑡𝑁𝑟

E {tr {H†(𝜌𝐼hh† + I)−1H}}
1

𝐶̇(0)
, (9)

𝑆0 = −
2
[
𝐶̇(0)

]2
..

𝐶(0)
ln 2, (10)

where 𝐶̇(⋅) and
..

𝐶(⋅) are, respectively, the first- and second-

order derivatives taken with respect to 𝜌. Note that C
(

𝐸𝑏

𝑁0

)
implicity captures the second-order behavior of 𝐶(𝜌) as 𝜌 →
0. It is worth pointing out that though the low SNR metrics
are obtained when 𝜌 → 0, the capacity approximation by (8)
is good for SNRs greater than 𝐸𝑏

𝑁0 min
as will be shown in the

numerical results section.

III. RICIAN MIMO CHANNELS

In this section, we derive analytical expressions for
𝐸𝑏/𝑁0min and the wideband slope, 𝑆0, for MIMO Rician
fading channels. The main result is given in the following
theorem.

Theorem 1: For MIMO Rician fading channels with a sin-
gle interferer, we have

𝐸𝑏

𝑁0 min

=
ln 2

𝑁𝑟 − 1 +𝐴0
, (11)

𝑆0 =
2𝑁𝑡(𝐾 + 1)2

2𝐾 +𝐵0
, (12)

where 𝐴0 = 𝐷1(𝑁𝑟, 𝜌𝐼), and 𝐵0 is shown on the top of next
page, and 𝐷1(𝑚, 𝑡) and 𝐷2(𝑚, 𝑡) are defined as

𝐷1(𝑚, 𝑡) ≜ 𝑡−𝑚Ψ
(
𝑚,𝑚, 𝑡−1

)
, (13)

𝐷2(𝑚, 𝑡) ≜ 𝑡−𝑚Ψ
(
𝑚,𝑚− 1, 𝑡−1

)
, (14)

where Ψ(⋅, ⋅, ⋅) is the confluent hypergeometric function de-
fined in [30].3

Proof: See Appendix II.

2To facilitate comparison to the interference free results, we adopt a slightly
different definition of 𝐸𝑏

𝑁0 min
from that in [19]. Specifically, in [19], 𝐸𝑏 is

normalized by the interference energy plus the noise energy while here 𝐸𝑏

is normalized by the noise energy only. Therefore, the final result of 𝐸𝑏
𝑁0 min

differs by a factor of 𝜌𝐼 + 1.
3It should be noted that the confluent hypergeometric function Ψ can be

expressed in terms of standard exponential integral function as shown in the
Appendix I. Therefore, its computation is well understood.

Theorem 1 is general and valid for mean matrix of arbitrary
rank, H0, and any possible 𝑁𝑡, 𝑁𝑟, 𝐾 and 𝜌𝐼 . From (11), we
observe that the Rician factor 𝐾 and the structure of channel
mean H0 (as long as tr

{
H0H

†
0

}
= 𝑁𝑡𝑁𝑟) do not affect

𝐸𝑏/𝑁0min, while the values of 𝑁𝑟 and 𝜌𝐼 have a direct impact.
Also in (12), we see that all the parameters will affect the
wideband slope 𝑆0.

Based on (11), we can further investigate the impact of 𝑁𝑟

and 𝜌𝐼 on 𝐸𝑏/𝑁0min as follows.
Corollary 1: The 𝐸𝑏/𝑁0min is a decreasing function of

𝑁𝑟 (i.e., when 𝑁𝑟 increases, 𝐸𝑏/𝑁0min decreases) and is an
increasing function of 𝜌𝐼 (i.e., when 𝜌𝐼 increases, 𝐸𝑏/𝑁0min

increases). Moreover, the increase in 𝐸𝑏/𝑁0min due to inter-
ference is upper bounded by ln 2

𝑁𝑟(𝑁𝑟−1) for 𝑁𝑟 ≥ 2.
Proof: See Appendix III.

Corollary 2: When 𝜌𝐼 → 0, Theorem 1 reduces to

𝐸𝑏

𝑁0min

=
ln 2

𝑁𝑟
, (16)

𝑆0 =
2(𝐾 + 1)2

𝐾2tr{(H0H
†
0)

2}
𝑁2

𝑡 𝑁
2
𝑟

+ (1 + 2𝐾)𝑁𝑡+𝑁𝑟

𝑁𝑡𝑁𝑟

. (17)

In particular, if the channel mean matrix, H0, is of rank-one,
then 𝑆0 can be reduced to

𝑆0 =
2(𝐾 + 1)2

𝐾2 + (1 + 2𝐾)𝑁𝑡+𝑁𝑟

𝑁𝑡𝑁𝑟

. (18)

Proof: The results can be obtained with the help
of Lemma 3 in Appendix I, together with the fact that
tr
{
(H0H

†
0)

2
}
= 𝑁2

𝑡 𝑁
2
𝑟 when H0 is of rank-one.

Corollary 2 corresponds to the results for MIMO Rician
fading channels in an interference-free environment, which
generalizes the results in [19] where a rank-one channel mean
was considered.

To gain further insight, in the following, we look at three
special cases: 1) MISO Rician fading channels, i.e., 𝑁𝑟 = 1,
2) MIMO Rician channels of rank-one mean for large 𝐾 , i.e.,
𝐾 → ∞ and H0 = 𝜶𝜷† (with complex column vectors 𝜶,𝜷),
and 3) MIMO Rayleigh channels, i.e., 𝐾 = 0.

A. MISO Rician Channels

Corollary 3: For MISO Rician channels, i.e., 𝑁𝑟 = 1, we
have

𝐸𝑏

𝑁0 min

=
ln 2

𝐷1(1, 𝜌𝐼)
, (19)

𝑆0 =
2𝑁𝑡(𝐾 + 1)2𝐷1(1, 𝜌𝐼)

2

2𝐾 + [1 +𝑁𝑡(1 +𝐾)2]𝐷2(1, 𝜌𝐼)
. (20)

Proof: The result can be obtained by substituting 𝑁𝑟 = 1
in Theorem 1.

Corollary 4: When 𝑁𝑟 = 1, 𝑆0 is an increasing function of
𝑁𝑡. When 0 ≤ 𝐾 < 1−𝐷2(1, 𝜌𝐼), 𝑆0 is a decreasing function
of 𝐾 , while for 𝐾 ≥ 1 − 𝐷2(1, 𝜌𝐼), 𝑆0 is an increasing
function of 𝐾 .

Proof: See Appendix IV.
In contrast to the interference-free case, where the increase

of Rician factor 𝐾 always improves the wideband slope 𝑆0

when 𝑁𝑟 = 1, Corollary 4 reveals that the impact of 𝐾 on
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𝐵0 =
1

(𝑁𝑟 − 1 +𝐷1(𝑁𝑟, 𝜌𝐼))2

⎡
⎣
⎛
⎝2𝐾2

(
tr
{
(H0H

†
0)

2
}
−𝑁2

𝑡 𝑁𝑟

)
𝑁𝑡(𝑁𝑟 + 1)

+ 2(𝑁𝑟 − 1)

⎞
⎠𝐷1(𝑁𝑟, 𝜌𝐼)

+

⎛
⎝1 + (1 + 2𝐾)𝑁𝑡 +

𝐾2
(
tr
{
(H0H

†
0)

2
}
+𝑁2

𝑡 𝑁
2
𝑟

)
𝑁𝑡𝑁𝑟(𝑁𝑟 + 1)

⎞
⎠𝐷2(𝑁𝑟, 𝜌𝐼)

+(𝑁𝑟 − 1)

⎛
⎝𝑁𝑟 − 1 + (1 + 2𝐾)𝑁𝑡 +

𝐾2
(
tr
{
(H0H

†
0)

2
}
(𝑁2

𝑟 −𝑁𝑟 − 1) +𝑁2
𝑡 𝑁

2
𝑟

)
𝑁𝑡𝑁𝑟(𝑁2

𝑟 − 1)

⎞
⎠
⎤
⎦ , (15)

𝑆0 depends on the interference level. Moreover, when 𝜌𝐼 →
∞, 𝑆0 = 0 which aligns with the observations in [19] for
interference-limited Rayleigh fading scenarios. However, the
general impact of 𝜌𝐼 on 𝑆0 is more difficult to characterize,
though simulation results indicate that 𝑆0 decreases when 𝜌𝐼
increases.

B. Rank-1 Mean MIMO Rician Channels for Large 𝐾

Corollary 5: In the large 𝐾 regime, for rank-one mean
MIMO Rician channels with a single interferer, it can be
derived that
𝐸𝑏

𝑁0 min

=
ln 2

𝑁𝑟 − 1 +𝐴0
, (21)

𝑆0 =
2(1/𝑁𝑟 + 1)(𝑁𝑟 − 1 +𝐷1(𝑁𝑟, 𝜌𝐼))

2

𝑁𝑟(𝑁𝑟 − 1) + 2(𝑁𝑟 − 1)𝐷1(𝑁𝑟, 𝜌𝐼) + 2𝐷2(𝑁𝑟, 𝜌𝐼)
,

(22)

Proof: The desired results can be obtained by taking the
limit 𝐾 → ∞ in Theorem 1.

Corollary 5 indicates that in the large 𝐾 regime, for rank-
1 mean Rician MIMO fading channels, multiple transmit
antennas are irrelevant in terms of 𝐸𝑏/𝑁0min and 𝑆0. This
is actually an intuitive result. The reason is that the large
𝐾 regime corresponds to the non-fading channel scenarios,
and thus, varying the number of transmit antennas for a fixed
total transmit power will not increase the receive signal energy
and will not contribute to the capacity. In addition, 𝑁𝑟 affects
both 𝐸𝑏/𝑁0min and 𝑆0 in contrast to the interference-free case
where 𝑁𝑟 is only relevant in terms of 𝐸𝑏/𝑁0min [19].

With the help of Lemma 3, we can further obtain the results
in various asymptotic regimes:

∙ When 𝜌𝐼 → 0, Corollary 5 reduces to

𝐸𝑏

𝑁0 min

=
ln 2

𝑁𝑟
, (23)

𝑆0 = 2. (24)

The above results correspond to the interference-free
scenario, and conforms to those in [19].

∙ When 𝑁𝑟 → ∞, Corollary 5 reduces to

𝐸𝑏

𝑁0 min

=
ln 2

𝑁𝑟 − 1
, (25)

𝑆0 = 2

(
1− 1

𝑁2
𝑟

)
≈ 2. (26)

Compared with the interference-free case, the above
results suggest that interference degrade the capacity by

increasing 𝐸𝑏/𝑁0min and decreasing 𝑆0. For sufficiently
large 𝑁𝑟, the capacity performance with a single in-
terferer (regardless of the interference power level) is
similar to that of a channel with one less receive antenna
operating in an interference-free environment.

∙ When 𝜌𝐼 → ∞ and 𝑁𝑟 ≥ 2, Corollary 5 reduces to

𝐸𝑏

𝑁0 min

=
ln 2

𝑁𝑟 − 1
, (27)

𝑆0 = 2

(
1− 1

𝑁2
𝑟

)
. (28)

Intriguingly, these results coincide with the case 𝑁𝑟 →
∞. Nevertheless, it is worth mentioning that the situations
in application are very different. One is applicable for
large 𝑁𝑟 but arbitrary interference power 𝜌𝐼 , while the
other is valid for large 𝜌𝐼 but arbitrary 𝑁𝑟.

C. MIMO Rayleigh Channels

Corollary 6: For MIMO Rayleigh channels with a single
interferer, we have

𝐸𝑏

𝑁0min

=
ln 2

𝑁𝑟 − 1 +𝐴0
, (29)

𝑆0 =
2𝑁𝑡

1 +𝐵1
, (30)

where 𝐵1 is defined as

𝐵1 ≜ 𝑁𝑡(𝑁𝑟 − 1) + (𝑁𝑡 + 1)𝐷2(𝑁𝑟, 𝜌𝐼)−𝐷1(𝑁𝑟, 𝜌𝐼)
2

[𝑁𝑟 − 1 +𝐷1(𝑁𝑟, 𝜌𝐼)]2
.

(31)
Proof: The results follow immediately by substituting

𝐾 = 0 into Theorem 1.
Corollary 6 shows that the number of transmit antennas

affects the capacity performance through 𝑆0. More insights
can be gained by looking into the asymptotic regimes as
follows.

∙ When 𝜌𝐼 → 0, we have

𝐸𝑏

𝑁0 min

=
ln 2

𝑁𝑟
, (32)

𝑆0 =
2𝑁𝑡𝑁𝑟

𝑁𝑡 +𝑁𝑟
. (33)

This scenario corresponds to the case for MIMO Rayleigh
channels without interference, and the results are consis-
tent with those derived in [19].
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∙ When 𝑁𝑟 → ∞, we have

𝐸𝑏

𝑁0 min

=
ln 2

𝑁𝑟 − 1
, (34)

𝑆0 =
2𝑁𝑡(𝑁𝑟 − 1)

𝑁𝑡 +𝑁𝑟 − 1
. (35)

∙ When 𝜌𝐼 → ∞ and 𝑁𝑟 ≥ 2, we have

𝐸𝑏

𝑁0 min

=
ln 2

𝑁𝑟 − 1
, (36)

𝑆0 =
2𝑁𝑡(𝑁𝑟 − 1)

𝑁𝑡 +𝑁𝑟 − 1
. (37)

Similar to the case of rank-one mean MIMO Rician
channels with a large 𝐾 , it is observed that the results
for 𝑁𝑟 → ∞ and 𝜌𝐼 → ∞ coincide. In addition,
by comparing the above results to the interference-free
results, we see that in Rayleigh fading, 𝐸𝑏/𝑁0min and
𝑆0 for a MIMO channel with a single interferer behaves
like a channel with one less receive antenna operating in
an interference-free environment, which is different from
the large 𝐾 rank-one mean MIMO Rician channel case
where 𝑆0 does not have this interpretation.

IV. MIMO RAYLEIGH-PRODUCT CHANNELS

In this section, we develop the low SNR capacity results
for MIMO Rayleigh-product channels.

Theorem 2: For MIMO Rayleigh-product channels with a
single interferer, we have

𝐸𝑏

𝑁0 min

=
ln 2

𝑁𝑟 − 1 +𝐴0
, (38)

𝑆0 =
2𝑁𝑡𝑁𝑠

𝑁𝑡 +𝑁𝑠 +𝐵2
, (39)

where 𝐴0 has been defined in Theorem 1 and 𝐵2 is shown
on top of next page.

Proof: See Appendix V.
Theorem 2 shows that the 𝐸𝑏/𝑁0min for MIMO Rayleigh-

product channels is the same as that for MIMO Rician
fading channels, although the two channels have very dif-
ferent information-carrying capabilities. As such, the results
of Corollary 1 also apply for Rayleigh-product channels.
Nonetheless, this is not surprising as has already been reported
in [18], and this is the consequence of the noise being additive
Gaussian. This explains that 𝐸𝑏/𝑁0min is not sufficient to
indicate the capacity performance and motivates the need
for higher order approximation of the capacity such as the
wideband slope, 𝑆0, which is generally different for different
channels. In addition, it is observed that 𝑁𝑡 and 𝑁𝑠 affect the
capacity performance through the wideband slope 𝑆0 but not
𝐸𝑏/𝑁0min.

Corollary 7: 𝑆0 is an increasing function of 𝑁𝑠 and when
𝑁𝑠 → ∞, the wideband slope for Rayleigh-product fading
with a single interferer becomes the same as that for Rayleigh
fading scenarios.

Proof: See Appendix VI.
The above corollary shows that when the number of scat-

terers increases, the ergodic capacity improves. Moreover, it
indicates that the Rayleigh-product channel converges to a
Rayleigh fading channel when 𝑁𝑠 → ∞. This result is quite

intuitive since the large 𝑁𝑠 corresponds to a rich scattering
environment which is the scenario that fits well with the
Rayleigh fading model.

The following asymptotic cases are looked at to gain further
understanding.

∙ When 𝜌𝐼 → 0, we have

𝐸𝑏

𝑁0 min

=
ln 2

𝑁𝑟
, (41)

𝑆0 =
2𝑁𝑡𝑁𝑠𝑁𝑟

𝑁𝑡𝑁𝑠 +𝑁𝑟𝑁𝑠 +𝑁𝑡𝑁𝑟 + 1
. (42)

This scenario corresponds to the interference-free case
for Rayleigh-product channels whose results have been
derived in [32]. In addition, when 𝑁𝑠 = 1, we further
have

𝑆0 =
2𝑁𝑡𝑁𝑟

(𝑁𝑡 + 1)(𝑁𝑟 + 1)
(43)

which provides the wideband slope for keyhole channels.
∙ When 𝑁𝑟 → ∞, we have

𝐸𝑏

𝑁0 min

=
ln 2

𝑁𝑟 − 1
, (44)

𝑆0 =
2𝑁𝑡𝑁𝑠(𝑁𝑟 − 1)

𝑁𝑡𝑁𝑠 + (𝑁𝑟 − 1)(𝑁𝑠 +𝑁𝑡) + 1
. (45)

∙ When 𝜌𝐼 → ∞ and 𝑁𝑟 ≥ 2, it can be easily shown
that 𝐸𝑏/𝑁0min and 𝑆0 are, respectively, given by (44)
and (45). In other words, the results for 𝑁𝑟 → ∞
and 𝜌 → ∞ coincide. Additionally, similar to MIMO
Rayleigh channels, the penalty of having an interferer is
illustrated through a reduction on the number of effective
receive antennas by 1.

V. NUMERICAL RESULTS

In this section, we perform various simulations to further
examine the derived analytical expressions. All the Monte-
Carlo simulation results were obtained by averaging over 105

independent channel realizations. For MIMO Rician channels,
the mean matrix is generated according to [31]

H0 =

𝐿∑
𝑙=1

𝛽𝑙𝜶(𝜃𝑟,𝑙)𝜶(𝜃𝑡,𝑙)
𝑇 , (46)

where 𝛽𝑙 is the complex amplitude of the 𝑙th path, and
𝜶(𝜃𝑡,𝑙) and 𝜶(𝜃𝑟,𝑙) are the specular array responses cor-
responding to the 𝑙th dominant path at the transmitter
and receiver, respectively. The array response is defined as
[1, 𝑒𝑗2𝜋𝑑 cos(𝜃), ⋅ ⋅ ⋅ , 𝑒𝑗2𝜋𝑑(𝑁−1) cos(𝜃)]𝑇 where 𝑑 is the antenna
spacing in wavelengths. In all simulations, we assume that
𝑑 = 0.5 at both the transmit and receive sides.

For 3 × 2 MIMO Rician channels, the mean matrix is
constructed by assuming that there are two dominant paths
(i.e., 𝐿 = 2), with the arriving and departure angles given by
𝜃𝑟,1 = 𝜃𝑡,1 = 𝜋

2 + 𝜋
8 , 𝜃𝑟,2 = 𝜃𝑡,2 = 𝜋

2 − 𝜋
8 ,4 respectively.

The complex coefficient 𝛽𝑙 is chosen such that tr{H0H
†
0} =

𝑁𝑡𝑁𝑟. For rank-1 mean Rician fading MIMO channels, we
assume 𝐿 = 1, 𝛽1 = 1 and 𝜃𝑟,1 = 𝜃𝑡,1 = 𝜋

2 .

4These angles are randomly chosen for simulation purpose, and our results
are applicable to arbitrary angles.
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𝐵2 ≜ (𝑁𝑟 − 1)(𝑁𝑡𝑁𝑠 + 1) + (𝑁𝑡 + 1)(𝑁𝑠 + 1)𝐷2(𝑁𝑟, 𝜌𝐼)− (𝑁𝑠 +𝑁𝑡)𝐷1(𝑁𝑟, 𝜌𝐼)
2

[𝑁𝑟 − 1 +𝐷1(𝑁𝑟, 𝜌𝐼)]2
. (40)
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Fig. 1. Low SNR capacity versus transmit 𝐸𝑏/𝑁0 for
Rayleigh fading channels with different 𝑁𝑟 when 𝑁𝑡 = 3
and 𝜌𝐼 = 0 dB.
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Fig. 2. Low SNR capacity versus transmit 𝐸𝑏/𝑁0 for Rician
fading channels with different 𝜌𝐼 when 𝐾 = 1, 𝑁𝑡 = 2 and
𝑁𝑟 = 3.

Fig. 1 investigates the impact of 𝑁𝑟 on 𝐸𝑏/𝑁0min. To
isolate the effect of 𝑁𝑟, we have set 𝐾 = 0 to eliminate
the possible impact from channel mean matrix H0. From
the results of Fig. 1, it can be seen that the increase of 𝑁𝑟

helps to reduce the required 𝐸𝑏/𝑁0min, which confirms the
analysis of Corollary 1. Moreover, we observe that when 𝑁𝑟

increases, so does the wideband slope 𝑆0, which indicates the
double benefits of increasing 𝑁𝑟. In addition, when compared
with the Monte-Carlo simulation results, the analytical results
show very high accuracy in terms of 𝐸𝑏/𝑁0min, and also the
wideband slope 𝑆0 if the SNR of interest is sufficiently low,
i.e., below 2 bps/Hz of capacity.

In Fig. 2, results for the low SNR capacity approximation
are plotted for 3 × 2 MIMO Rician channels with 𝐾 = 1.
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−8 −7 −6 −5 −4 −3 −2 −1 0 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Transmit E
b
/N

0
 (dB)

C
ap

ac
ity

 (
bp

s/
H

z)

Monte Carlo Simulation
Low SNR approximation

No interference

ρ
I
=0dB

ρ
I
=10dB

−6.36 −5.21−4.7

Fig. 4. Low SNR capacity versus transmit 𝐸𝑏/𝑁0 for rank-
1 mean Rician fading channels when 𝑁𝑡 = 2, 𝑁𝑟 = 3 and
𝐾 = 100.

Results reveal a good agreement between the analysis and
the simulations. We also see that the increase in the interfer-
ence power degrades the capacity performance by increasing
the required 𝐸𝑏/𝑁0min, while the impact on 𝑆0 is not so
pronounced. Furthermore, the increase in 𝐸𝑏/𝑁0min from a
channel without interference to that with a 10 dB of INR is
about 0.1, which appears to be very close to the upper bound
we obtained in Corollary 1 (ln 2)/(𝑁𝑟(𝑁𝑟 − 1)) = 0.115.

Results in Fig. 3 are provided for the capacity of 3 × 2
MIMO Rician channels for different Rician-𝐾 factors in the
low SNR regime according to Theorem 1. The curves indicate
the accuracy of our analytical expression and that the range for
a good approximation improves if 𝐾 increases. In particular,
the approximation is very good for the capacity range from
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0 to 10, when 𝐾 = 100. Also, results demonstrate that the
Rician 𝐾 factor affects the capacity performance through
the wideband slope 𝑆0 but not the 𝐸𝑏/𝑁0min, and more
specifically, the wideband slope 𝑆0 increases when 𝐾 becomes
larger. However, the increase is not very substantial. On the
other hand, Fig. 4 plots the results for rank-1 mean 3 × 2
MIMO Rician channels in the large 𝐾 regime both with and
without interference. Results confirm the correctness of the
analytical results in Corollary 5.

In Fig. 5, we provide the results for MIMO Rayleigh fading
channels. Two system configurations are investigated: one for
3 × 21 channels with a single interferer of 𝜌𝐼 = 10 dB, and
the other for 3 × 20 channels without interference. As we
can see, the results of the two systems almost overlap with
inappreciable difference in the low SNR regime, which aligns
with our analysis.

Results in Figs. 6 and 7 are provided for MIMO Rayleigh-
product channels. Results show a good agreement between
the analysis and simulations. We also observe that the level of

−4 −2 0 2 4 6
0

1

2

3

4

5

6

7

8

9

Transmit E
b
/N

0
 (dB)

C
ap

ac
ity

 (
bp

s/
H

z)

Monte Carlo, N
r
=3, ρ

I
=20dB

Low SNR approximation
Monte Carlo, N

r
=2, no interference

Low SNR approximation, no interference

−4.6

Fig. 7. Low SNR capacity versus transmit 𝐸𝑏/𝑁0 for
Rayleigh-product channel when 𝑁𝑡 = 2, 𝑁𝑠 = 6 and different
𝑁𝑟 and 𝜌𝐼 .

interference increases the required 𝐸𝑏/𝑁0min and reduces the
wideband slope 𝑆0. On the other hand, Fig. 7 plots the results
for two systems both with 𝑁𝑡 = 2 and 𝑁𝑠 = 6: one with
a single strong interferer of 𝜌𝐼 = 20 dB and 𝑁𝑟 = 3, and
the other with 𝑁𝑡 = 2 in an interference-free environment.
Results for both systems overlap in the low SNR regime,
which confirms our findings in (44) and (45).

VI. CONCLUSION

This paper has studied the ergodic capacity of MIMO
systems operating over Rician fading and Rayleigh-product
channels in the presence of a single interferer and noise in the
low SNR regime. Exact expressions for the minimum energy
per information bit, 𝐸𝑏/𝑁0min, and the wideband slope, 𝑆0,
were derived for both channels, which provide a much efficient
way to evaluate the ergodic capacity of the system at low SNR
as compared to the Monte-Carlo simulation method.

Based on the analytical expressions derived, we showed that
for both MIMO Rician fading and Rayleigh-product channels,
interference is detrimental in terms of ergodic capacity. It
degrades the capacity performance by increasing 𝐸𝑏/𝑁0min

and reducing 𝑆0. However, the capacity deterioration due to
interference is bounded. Specifically, the capacity of MIMO
systems with 𝑁𝑟 receiving antennas in the presence of a single
interferer is no worse than that of MIMO systems with 𝑁𝑟−1
receiving antennas in interference-free environment, regardless
of the interference power level.

A number of additional insights on the impact of various
system parameters have been observed. For MIMO Rician
channels, we showed that both the structure of mean matrix
and Rician factor 𝐾 will affect the ergodic capacity. Moreover,
in the MISO case, we proved that a larger 𝐾 does not
necessarily lead to an improvement on the capacity. In fact,
how the Rician factor 𝐾 affects the capacity is closely related
to the interference level 𝜌𝐼 , which is very different to the case
without interference, where it has been shown that a larger 𝐾
increases the capacity. For MIMO Rayleigh-product channels,
we revealed that the number of scatterers has a positive effect
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on the ergodic capacity, i.e., when 𝑁𝑠 increases, the ergodic
capacity improves. Furthermore, in the presence of a single
interferer, the capacity of MIMO Rayleigh-product channels
is upper bounded by the capacity of a MIMO Rayleigh
fading channel with the same number of transmit and receive
antennas.

To make the problem tractable, we have adopted the single
interferer assumption, which has permitted the derivation of
closed-form analytical expressions and a number of important
physical insights. Nevertheless, the assumption has made the
results less general and a more thorough investigation of the
general scenario with multiple interferers is left for future
work.

APPENDIX A
SOME STATISTICAL RESULTS

Lemma 1: For any 𝑚×1 vector h ∼ 𝒞𝒩 (0, I), and positive
number 𝑡, let Λ

Δ
= (𝑡hh† + I)−1. Then,

E {tr {Λ}} = 𝑚− 1 +𝐷1(𝑚, 𝑡), (47)

E
{
tr
{
Λ2

}}
= 𝑚− 1 +𝐷2(𝑚, 𝑡), (48)

E
{
tr2 {Λ}} = (𝑚− 1)2 + 2(𝑚− 1)𝐷1(𝑚, 𝑡) +𝐷2(𝑚, 𝑡).

(49)

Proof: The result can be obtained by noticing the unitary
invariant of vector h, and using the integration formula [30,
(3.385.5)].

Lemma 2: For any 𝑚×𝑛 matrix H ∼ 𝒞𝒩 (0, I⊗I), 𝑚×1
vector h ∼ 𝒞𝒩 (0, I), and positive constant 𝑡, we have

E{tr{H†ΛH}} = 𝑛(𝑚− 1) + 𝑛𝐷1(𝑚, 𝑡), (50)

E{tr{(H†ΛH)2}} = 𝑛(𝑚− 1)(𝑛+𝑚− 1)+

(𝑛2 + 𝑛)𝐷2(𝑚, 𝑡) + 2𝑛(𝑚− 1)𝐷1(𝑚, 𝑡), (51)

E{tr2{H†ΛH}} = 𝑛(𝑚− 1)(𝑚𝑛− 𝑛+ 1)+

(𝑛2 + 𝑛)𝐷2(𝑚, 𝑡) + 2(𝑚− 1)𝑛2𝐷1(𝑚, 𝑡), (52)

where Λ has been defined in Lemma 1.
Proof: Utilizing the unitary invariant property of the

distributions of H and h, conditioned on Λ, we have

E
{
tr{H†ΛH}∣Λ} = E

{
tr{H†ΛH}∣Λ} (53)

= E
{
(vec(H))†(I⊗Λ)vec(H)}∣Λ} = 𝑛tr(Λ). (54)

Similarly, conditioned on Λ, E{tr{(H†ΛH)2}} can be ex-
pressed as

E
{
tr{(H†ΛH)2}∣Λ} = E{tr{(H†ΛH)2}∣Λ}

= tr2{I}tr{Λ2}+ tr2{Λ}tr{I}, (55)

where (55) comes from [32, Lemma 6]. Finally, conditioned
on Λ, and with the help of [32, Lemma 5], we have

E
{
tr2{H†ΛH}∣Λ} = tr{I2}tr{Λ2}+ tr2{I}tr2{Λ}. (56)

The desired results can be obtained by taking expectation on
Λ with the help of Lemma 1.

Lemma 3: When 𝑚 → ∞ or 𝑡 → ∞, we have 𝐷1(𝑚, 𝑡) =
𝐷2(𝑚, 𝑡) = 0. On the other hand, if 𝑡 → 0, then 𝐷1(𝑚, 𝑡) =
𝐷2(𝑚, 𝑡) = 1.

Proof: First, we note that the confluent hypergeometric
function can be expressed in terms of exponential integral

function 𝐸𝑛(⋅) [34], so that

Ψ

(
𝑚,𝑚,

1

𝑡

)
= 𝑡𝑚−1𝑒

1
𝑡 𝐸𝑚

(
1

𝑡

)
, (57)

and

Ψ

(
𝑚,𝑚− 1,

1

𝑡

)

=
𝑡𝑚−2

𝑚− 1

[
𝑒

1
𝑡 𝐸𝑚−1

(
1

𝑡

)(
𝑚− 1 +

1

𝑡

)
− 1

]
. (58)

Moreover, the exponential integral function satisfies the fol-
lowing inequality [35, (5.1.19)]

1

𝑥+ 𝑛
< 𝑒𝑥𝐸𝑛(𝑥) ≤ 1

𝑥+ 𝑛− 1
, for 𝑥 > 0. (59)

Then, we can establish the following two inequalities:

1

1 + 𝑡𝑚
< 𝐷1(𝑚, 𝑡) ≤ 1

1 + 𝑡(𝑚− 1)
, (60)

0 < 𝐷2(𝑚, 𝑡) ≤ 1

𝑡(𝑚− 1)[𝑡(𝑚− 2)− 1]
. (61)

For the cases 𝑚 → ∞ and 𝑡 → ∞, it is easy to see that
both sides of (60) and (61) approach 0 and therefore, we have
𝐷1(𝑚, 𝑡) = 𝐷2(𝑚, 𝑡) = 0. Now, consider the case 𝑡 → 0. It
is easily observed that both sides of (60) will approach 1 and
hence, 𝐷1(𝑚, 𝑡) = 1. However, since 1

𝑡(𝑚−1)[𝑡(𝑚−2)−1] → ∞
when 𝑡 → 0, the two sides of (61) diverge. To obtain the limit
of 𝐷2(𝑚, 𝑡), define 𝑎 ≜ 1

𝑡 . Utilizing the property of confluent
hypergeometric function [35, (13.4.24)] and [35, (13.4.21)],
we have

𝑎𝑚Ψ(𝑚,𝑚− 1, 𝑎) = (1 −𝑚)𝑎𝑚Ψ(𝑚,𝑚, 𝑎)+

𝑚𝑎𝑚+1Ψ(𝑚+ 1,𝑚+ 1, 𝑎) . (62)

Then, from (60), we have

𝑎𝑚Ψ(𝑚,𝑚, 𝑎) = 1, as 𝑎 → ∞. (63)

Therefore, (62) reduces to

𝑎𝑚Ψ(𝑚,𝑚− 1, 𝑎) = (1 −𝑚) +𝑚 = 1, as 𝑎 → ∞, (64)

which completes the proof.

APPENDIX B
PROOF OF THEOREM 1

With the help of the following determinant properties,

𝑑

𝑑𝑥
ln det(I+ 𝑥A) ∣𝑥=0 = tr{A}, (65)

𝑑2

𝑑2𝑥
ln det(I+ 𝑥A) ∣𝑥=0 = −tr{A2}, (66)

and treating H†(𝜌𝐼hh
†)−1H

1
𝑁𝑟

E{tr{H†(𝜌𝐼hh†)−1H}} as one matrix, as well

as noticing that the order of expectation operation on H and
h and the derivative operation on 𝜌 can be exchanged, we
compute the first and second derivatives of 𝐶(𝜌) at 𝜌 = 0 as

𝐶̇(0) = 𝑁𝑟 log2 𝑒, (67)

..

𝐶(0) = −
𝑁2

𝑟 E
{
tr
{(

H†ΛH
)2}}

log2 𝑒

E2 {tr {H†ΛH}} . (68)
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As a result, 𝐸𝑏

𝑁0 min
and 𝑆0 can be computed according to (9)

as
𝐸𝑏

𝑁0min

=
𝑁𝑡 ln 2

E {tr {H†ΛH}} , (69)

𝑆0 =
2E2

{
tr
{
H†ΛH

}}
E
{
tr
{
(H†ΛH)

2
}} . (70)

To proceed, we need to compute E
{
tr{H†ΛH}} and

E{tr{(H†ΛH)2}}.
Following similar steps as in [19], we have

E
{
tr
{
H†ΛH

}}
=

𝐾

𝐾 + 1
E
{
tr
{
H0H

†
0Λ

}}
+

1

𝐾 + 1
E
{
tr
{
H𝑤H

†
𝑤Λ

}}
. (71)

The first term of (71) can be computed with the help of [19,
Lemma 3] as

𝐾

𝐾 + 1
E
{
tr
{
H0H

†
0Λ

}}
=

𝐾tr
{
H0H

†
0

}
E {tr {Λ}}

(𝐾 + 1)𝑁𝑟

=
𝐾𝑁𝑡

𝐾 + 1
[𝐷1(𝑁𝑟, 𝜌𝐼) +𝑁𝑟 − 1] , (72)

where in (72), we have used the fact that tr{H0H
†
0} = 𝑁𝑡𝑁𝑟

and the result of Lemma 1. On the other hand, the second term
of (71) can be obtained directly from Lemma 2. As such,

E
{
tr
{
H†ΛH

}}
= 𝑁𝑡 [𝐷1(𝑁𝑟, 𝜌𝐼) +𝑁𝑟 − 1] . (73)

Now, it remains to derive the expression for
E{tr{(H†ΛH)2}}. Utilizing the zero mean property of
H𝑤 and after some basic algebraic manipulations, we express
E
{
tr
{
(H†ΛH)2

}}
as in Eq. (74) shown on the top of this

page. The first term can be easily obtained directly from
Lemma 2. Therefore, here, we focus on the last three terms.
With the help of [19, Lemma 3], we compute the second
term as

E

{
tr

{(
H0H

†
0Λ

)2
}}

=

tr
{
(H0H

†
0)

2
}

𝑁2
𝑟 − 1

(
E
{
tr2 {Λ}}− 1

𝑁𝑟
E
{
tr
{
Λ2

}})

+
𝑁2

𝑡 𝑁
2
𝑟

𝑁2
𝑟 − 1

(
E
{
tr
{
Λ2

}}− 1

𝑁𝑟
E
{
tr2 {Λ}}) . (75)

Similarly, the third and fourth terms can be obtained as
follows:

E
{
tr
{
H𝑤H

†
𝑤ΛH0H

†
0Λ

}}
=

1

𝑁𝑟
E
{
tr
{
H𝑤H

†
𝑤

}}
E
{
tr
{
H0H

†
0Λ

2
}}

(76)

= 𝑁𝑡E
{
tr
{
H0H

†
0Λ

2
}}

= 𝑁2
𝑡 E

{
tr
{
Λ2

}}
, (77)

and

E
{
tr
{
H†

𝑤ΛH𝑤H
†
0ΛH0

}}
=

1

𝑁𝑟
E {tr {Λ}} E

{
tr
{
H𝑤H

†
0ΛH0H

†
𝑤

}}
(78)

=
E {tr {Λ}}

𝑁𝑡𝑁𝑟
E
{
tr
{
H𝑤H

†
𝑤

}}
E
{
tr
{
H†

0ΛH0

}}
(79)

= 𝑁𝑡E
2 {tr {Λ}} . (80)

As a result, E
{
tr
{
(H†ΛH)2

}}
can be computed as shown

on the top of next page. Finally, applying Lemma 1 yields the
desired result.

APPENDIX C
PROOF OF COROLLARY 1

Define the function 𝑓(𝑁𝑟) ≜ 𝑁𝑟 − 1 +𝐴0. Hence, we are
required to prove that 𝑓(𝑁𝑟) is an increasing function of 𝑁𝑟

which we do by considering

𝑓(𝑁𝑟+1)−𝑓(𝑁𝑟) = 1+𝐷1(𝑁𝑟+1, 𝜌𝐼)−𝐷1(𝑁𝑟, 𝜌𝐼). (82)

With the help of (60), we can bound 𝑓(𝑁𝑟 +1)− 𝑓(𝑁𝑟) ≥ 0
by

𝑓(𝑁𝑟 + 1)− 𝑓(𝑁𝑟) > 1 +
1

1 + 𝜌𝐼(𝑁𝑟 + 1)
− 1

1 + 𝜌𝐼(𝑁𝑟 − 1)

= 1− 2𝜌𝐼
(1 + 𝜌𝐼𝑁𝑟)2 − 𝜌2𝐼

≥ 1− 2𝜌𝐼
1 + 2𝜌𝐼

> 0, (83)

which completes the first half of the proof.
To prove the corresponding part for 𝜌𝐼 , we define another

function 𝑔(𝜌𝐼) as 𝑔(𝜌𝐼) = 𝐷1(𝑁𝑟, 𝜌𝐼) and then show that
𝑔(𝜌𝐼) is monotonically decreasing. To do so, we compute the
first derivative of 𝑔(𝜌𝐼) with the help of the derivative formula
of a confluent hypergeometric function [35, (13.4.20)]

𝑔′(𝜌𝐼) = 𝑁𝑟𝜌
−𝑁𝑟−2
𝐼 Ψ(𝑁𝑟 + 1, 𝑁𝑟 + 1, 𝜌−1

𝐼 )

−𝑁𝑟𝜌
−𝑁𝑟−1
𝐼 Ψ(𝑁𝑟, 𝑁𝑟, 𝜌

−1
𝐼 ) (84)

< 𝑁𝑟𝜌
−1
𝐼

1

1 + 𝜌𝐼𝑁𝑟
−𝑁𝑟𝜌

−1
𝐼

1

1 + 𝜌𝐼𝑁𝑟
= 0. (85)

Hence, 𝑔(𝜌𝐼) is a monotonic decreasing function. Therefore,
we have

𝑔(𝜌𝐼 → ∞) ≤ 𝑔(𝜌𝐼) ≤ 𝑔(𝜌𝐼 → 0). (86)

With the help of Lemma 3, we have 𝑔(𝜌𝐼 → 0) = 1 and
𝑔(𝜌𝐼 → ∞) = 0. As a consequence, the increase in 𝐸𝑏/𝑁0min

is bounded by

ln 2

𝑁𝑟 − 1 + 𝑔(𝜌𝐼 → ∞)
− ln 2

𝑁𝑟 − 1 + 𝑔(𝜌𝐼 → 0)

= ln 2

(
1

𝑁𝑟
− 1

𝑁𝑟 − 1

)
=

ln 2

𝑁𝑟(𝑁𝑟 − 1)
, (87)

which completes the proof.

APPENDIX D
PROOF OF COROLLARY 4

The first derivative of 𝑆0 with respect to 𝑁𝑡 can be obtained
as

𝑆
′
0(𝑁𝑡) =

2(𝐾 + 1)2𝐷1(1, 𝜌𝐼)
2(2𝐾 +𝐷2(1, 𝜌𝐼))

(2𝐾 + (1 +𝑁𝑡(𝐾 + 1)2𝐷2(1, 𝜌𝐼)))2
≥ 0,

(88)
which has proved the first claim. Similarly, the first derivative
of 𝑆0 with respect to 𝐾 is given by

𝑆
′
0(𝐾) =

4𝑁𝑡(𝐾 + 1)𝐷1(1, 𝜌𝐼)
2(𝐾 +𝐷2(1, 𝜌𝐼)− 1)

(2𝐾 + (1 +𝑁𝑡(𝐾 + 1)2𝐷2(1, 𝜌𝐼)))2
.

(89)
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E
{
tr
{
(H†ΛH)2

}}
=

1

(𝐾 + 1)2
E
{
tr
{(

H𝑤H
†
𝑤Λ

)2}}
+

𝐾2

(𝐾 + 1)2
E

{
tr

{(
H0H

†
0Λ

)2
}}

+
2𝐾

(𝐾 + 1)2

(
E
{
tr
{
H𝑤H

†
𝑤ΛH0H

†
0Λ

}}
+ E

{
tr
{
H†

𝑤ΛH𝑤H
†
0ΛH0

}})
. (74)

E
{
tr
{
(H†ΛH)2

}}
=

1

(𝐾 + 1)2

⎡
⎣𝐾2

(
tr
{
(H0H

†
0)

2
}
−𝑁2

𝑡 𝑁𝑟

)
𝑁2

𝑟 − 1
+𝑁𝑡

⎤
⎦ E

{
tr2 {Λ}}

+
1

(𝐾 + 1)2

⎡
⎣𝐾2

(
𝑁2

𝑡 𝑁
3
𝑟 − tr

{
(H0H

†
0)

2
})

𝑁𝑟(𝑁2
𝑟 − 1)

+ (1 + 2𝐾)𝑁2
𝑡

⎤
⎦ E

{
tr
{
Λ2

}}
+

2𝐾𝑁𝑡

(𝐾 + 1)2
E2 {tr {Λ}} . (81)

To complete the proof, we further have

𝐷2(1, 𝜌𝐼) =
1

𝜌𝐼

∫ ∞

0

𝑒
− 1

𝜌𝐼
𝑥
(1 + 𝑥)−2𝑑𝑥 =∫ ∞

0

𝑒−𝑥(1 + 𝜌𝐼𝑥)
−2𝑑𝑥 ≤

∫ ∞

0

𝑒−𝑥𝑑𝑥 = 1. (90)

Because of the fact that 0 ≤ 𝐷2(1, 𝜌𝐼) ≤ 1, we have 𝑆′
0(𝐾) >

0 if 0 ≤ 𝐾 < 1 − 𝐷2(1, 𝜌𝐼) and 𝑆′
0(𝐾) ≤ 0 if 𝐾 ≥ 1 −

𝐷2(1, 𝜌𝐼), which has proved the second claim.

APPENDIX E
PROOF OF THEOREM 2

Following the same steps as in the proof of Theorem 1, for
MIMO Rayleigh-product channels, it can be derived that

𝐸𝑏

𝑁0 min

=
𝑁𝑡 ln 2

E
{

1
𝑁𝑠

tr
{
H†

2H
†
1ΛH1H2

}} , (91)

𝑆0 =
2E2

{
1
𝑁𝑠

tr
{
H†

2H
†
1ΛH1H2

}}
E

{
1
𝑁2

𝑠
tr

{(
H†

2H
†
1ΛH1H2

)2
}} . (92)

First defining W
Δ
= H†

1ΛH1, conditioned on W, we get

E

{
1

𝑁𝑠
tr
{
H†

2H
†
1ΛH1H2

}∣∣∣∣W
}

=

1

𝑁𝑠
E
{
tr
{
H†

2WH2

}∣∣∣W}
=

𝑁𝑡

𝑁𝑠
tr{W}. (93)

Similarly, we have

E

{
1

𝑁2
𝑠

tr

{(
H†

2H
†
1ΛH1H2

)2
}∣∣∣∣W

}

=
1

𝑁2
𝑠

E
{
tr{(H†

2WH2)
2}
∣∣∣W}

(94)

=
1

𝑁2
𝑠

(
tr{I}2tr{W2}+ tr2{W}tr{I}) (95)

=
1

𝑁2
𝑠

(
𝑁2

𝑡 tr{W2}+𝑁𝑡tr
2{W}) . (96)

With the help of Lemma 2 and further taking expectation on
W in (93) and (96), the desired result can be obtained after
some basic algebraic manipulations.

APPENDIX F
PROOF OF COROLLARY 7

Starting from Theorem 2, we rewrite 𝑆0 as

𝑆0 =
2𝑁𝑡

(𝑁𝑡 +𝐵2)/𝑁𝑠 + 1
. (97)

To this end, extract the terms inside 𝐵2 without 𝑁𝑠 and
simplify, which leads to

𝑆0 =
2𝑁𝑡

𝐶1/𝑁𝑠 + 1 + 𝐶2
, (98)

where 𝐶2 is a constant and 𝐶1 is given by

𝐶1 =
𝑁𝑡(𝑁𝑟 − 1)2 +𝑁𝑟 − 1 + 2𝐷1(𝑁𝑟, 𝜌𝐼)(𝑁𝑟 − 1)𝑁𝑡

(𝑁𝑟 − 1 +𝐷1(𝑁𝑟, 𝜌𝐼))2

+
𝐷2(𝑁𝑟, 𝜌𝐼)(𝑁𝑡 + 1)

(𝑁𝑟 − 1 +𝐷1(𝑁𝑟, 𝜌𝐼))2
. (99)

It is easy to observe that 𝐶1 is a positive number, which proves
the first part of the corollary. As for the limiting part, one can
easily show that 𝐵2

𝑁𝑠
∣𝑁𝑠→∞ = 𝐵1, which completes the proof.
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the low-power regime," IEEE Trans. Inf. Theory, vol. 49, no. 10, pp.
2527-2544, Oct. 2003.

[20] A. M. Tulino, A. Lozano, and S. Verdu, “The impact of antenna
correlation on the capacity of multiantenna channels," IEEE Trans. Inf.
Theory, vol. 51, no. 7, pp. 2491-2509, July 2005.

[21] E. A. Jorswieck and H. Boche, “Multiple-antenna capacity in the low-
power regime: channel knowledge and correlation," in Proc. IEEE Int.
Conf. Acoustic, Speech, Signal Process., 2005, pp. 385-388, Philadel-
phia, USA.

[22] W. Zhang and J. N. Laneman, “Benefits of spatial correlation for multi-
antenna non-coherent communication over fading channels at low SNR,"
IEEE Trans. Wireless Commun., vol. 6, no. 3, pp. 887-896, Mar. 2007.

[23] S. Jin, M. R. McKay, K. K. Wong, and X. Li, “Low SNR capacity of
double-scattering MIMO channels with transmitter channel knowledge,"
in Proc. IEEE Int. Conf. Commun., Dresden, German, 2009.

[24] D. Gesbert, H. Bolcskei, D. A. Gore, and A. J. Paulraj, “Outdoor MIMO
wireless channels: models and performance prediction," IEEE Trans.
Commun., vol. 50, no. 12, pp. 1926-1934, Dec. 2002.

[25] P. Almers, F. Tufvesson, and A. F. Molisch, “Keyhole effect in MIMO
wireless channels: measurements and theory," IEEE Trans. Wireless
Commun., pp. 3596-3604, vol. 5, no. 12, Dec. 2006.

[26] D. Gunduz, A. Khojastepour, A. Goldsmith, and H. V. Poor, “Multi-
hop MIMO relay networks: diversity-multiplexing trade-off analysis,"
submitted to IEEE Trans. Wireless Commun..

[27] S. Jin, M. McKay, C. Zhong, and K. Wong, “Ergodic capacity analysis
of amplify-and-forward MIMO dual-hop systems," accepted in IEEE
Trans. Inf. Theory.

[28] C. Zhong, S. Jin, and K. K. Wong, “MIMO Rayleigh-product channels
with co-channel interference," IEEE Trans. Commun., vol. 57, no. 6,
pp. 1824-1835, June 2009.

[29] F. R. Farrokhi, G. J. Foschini, A. Lozano, and R. Valenzuela, “Link-
optimal space-time processing with multiple transmit and receive anten-
nas," IEEE Commun. Lett., vol. 5, no. 3, pp. 85-87, Mar. 2001.

[30] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products, 5th edition. Orlando, FL: Academic Press, 1994.

[31] H. Bolcskei, M. Borgmann, and A. J. Paulraj, “Impact of the propagation
environment on the performance of space-frequency coded MIMO-
OFDM," IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 427-439,
Apr. 2003.

[32] H. Shin and M. Z. Win, “MIMO diversity in the presence of double
scattering," IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 2976-2996, July
2008.

[33] R. J. Murihead, Aspects of Multivariate Statistical Theory. Wiley Inter-
science, 1982.

[34] [Online]. Available: http://functions.wolfram.com.

[35] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
New York: Dover Publications Inc., 1974.

Caijun Zhong (S’07) Caijun Zhong received the
B.S. degree in Information Engineering from the
Xi’an Jiaotong University, Xi’an, China, in 2004,
and the M.S. degree in Information Security in 2006,
Ph.D. degree in Telecommunications in 2010, both
from University College London, London, United
Kingdom. He is currently a research fellow at the
Institute for Electronics, Communications and In-
formation Technologies (ECIT), Queen’s University
Belfast, Belfast, UK. His research interests include
multivariate statistical theory, MIMO communica-

tions systems, cooperative communications.

Shi Jin (S’06-M’07) Shi Jin received the B.S.
degree in Communication Engineering from the
Guilin University of Electronic Technology, Guilin,
China, in 1996, and the M.S. degree from the
Nanjing University of Posts & Telecommunications,
Nanjing, China, in 2003. He received the Ph.D.
degree in Communication & Information System
at the Southeast University, China, in 2007. He
then joined the National Mobile Communications
Research Laboratory, Southeast University. From
June 2007 to October 2009, he was also a Research

Fellow in Adastral Park Research Campus at University College London, UK.
His research interests include space-time wireless communications, random
matrix theory, and information theory.

Kai-Kit Wong (S’99-M’01-SM’08) received the
BEng, the MPhil, and the PhD degrees, all in Elec-
trical and Electronic Engineering, from the Hong
Kong University of Science and Technology, Hong
Kong, in 1996, 1998, and 2001, respectively. After
graduation, he joined the Department of Electrical
and Electronic Engineering, the University of Hong
Kong as a Research Assistant Professor. From July
2003 to December 2003, he visited the Wireless
Communications Research Department of Lucent
Technologies, Bell-Labs, Holmdel, NJ, U.S. where

he was a Visiting Research Scholar studying optimization in broadcast MIMO
channels. After that, he then joined the Smart Antennas Research Group of
Stanford University as a Visiting Assistant Professor conducting research
on overloaded MIMO signal processing. From 2005 to August 2006, he
was with the Department of Engineering, the University of Hull, U.K., as
a Communications Lecturer. Since August 2006, he has been with University
College London Adastral Park Campus where he is a Senior Lecturer.

Dr Wong won the IEEE Vehicular Technology Society Japan Chapter Award
of the International IEEE Vehicular Technology Conference-Spring in 2000,
and was also a co-recipient of the First Prize Paper Award in the IEEE Signal
Processing Society Postgraduate Forum Hong Kong Chapter in 2004. In 2002
and 2003, he received, respectively, the SY King Fellowships and the WS
Leung Fellowships from the University of Hong Kong. Also, he was awarded
the Competitive Earmarked Research Grant Merit and Incentive Awards in
2003-2004.

Dr Wong is a senior member of IEEE and is also on the editorial board of
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. He has worked
in several areas including multiuser mobile networks, information theory,
smart antennas, space-time processing/coding and channel equalisation. His
current research interests center around secure wireless communications
theory, cross-layer optimisation, performance analysis of MIMO channels,
cooperative wireless networks, cognitive radio, multiuser communications
theory, information theory and optimisation.



2560 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 9, SEPTEMBER 2010

Mohamed-Slim Alouini (S’94, M’98, SM’03,
FÕ09) was born in Tunis, Tunisia. He received the
Ph.D. degree in electrical engineering from the Cal-
ifornia Institute of Technology (Caltech), Pasadena,
CA, USA, in 1998. He was with the department
of Electrical and Computer Engineering of the
University of Minnesota, Minneapolis, MN, USA,
then with the Electrical and Computer Engineering
Program at the Texas A&M University at Qatar,
Education City, Doha, Qatar. Since June 2009, he
has been a Professor of Electrical Engineering in

the Division of Physical Sciences and Engineering at KAUST, Saudi Arabia,
where his current research interests include the design and performance
analysis of wireless communication systems.

T. Ratnarajah (S’94-A’96-M’05-SM’05) T. Rat-
narajah holds B. Eng. (Hons), M.Sc. and Ph.D. de-
grees. He is currently a Principal Research Engineer
with the Institute for Electronics, Communications
and Information Technologies (ECIT), Queen’s Uni-
versity Belfast, Belfast, UK. Since 1993, he has
held various research positions with University of
Ottawa, Ottawa, ON, Canada, Nortel Networks, Ot-
tawa, ON, Canada, McMaster University, Hamilton,
ON, Canada and Imperial College, London, UK. His
research interests include random matrices theory,

information theoretic aspects of MIMO channels and ad hoc networks,
wireless communications, signal processing for communication, statistical
and array signal processing, biomedical signal processing and quantum
information theory. He has published over 90 publications in these areas and
holds four US. patents. Dr Ratnarajah is a member of American Mathematical
Society and Information Theory Society.


