
Robust Estimation of HDR in fMRI using H Filters

Ratnarajah, T. (2010). Robust Estimation of HDR in fMRI using H Filters. IEEE TRANSACTIONS ON
BIOMEDICAL ENGINEERING, 57(5), 1133-1142. [5415629]. DOI: 10.1109/TBME.2009.2039569

Published in:
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

http://pure.qub.ac.uk/portal/en/publications/robust-estimation-of-hdr-in-fmri-using-h-filters(c57eacdd-84bb-4754-8395-505acb130138).html


IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 5, MAY 2010 1133

Robust Estimation of HDR in fMRI using H∞ Filters
S. Puthusserypady*, Senior Member, IEEE, Rui Jue, and T. Ratnarajah, Senior Member, IEEE

Abstract—Estimation and detection of the hemodynamic re-
sponse (HDR) are of great importance in functional MRI (fMRI)
data analysis. In this paper, we propose the use of three H∞

adaptive filters (finite memory, exponentially weighted, and time-
varying) for accurate estimation and detection of the HDR. The
H∞ approach is used because it safeguards against the worst case
disturbances and makes no assumptions on the (statistical) na-
ture of the signals [B. Hassibi and T. Kailath, in Proc. ICASSP,
1995, vol. 2, pp. 949–952; T. Ratnarajah and S. Puthusserypady, in
Proc. 8th IEEE Workshop DSP, 1998, pp. 1483–1487]. Performances
of the proposed techniques are compared to the conventional
t-test method as well as the well-known LMSs and recursive least
squares algorithms. Extensive numerical simulations show that the
proposed methods result in better HDR estimations and activation
detections.

Index Terms—Activation detection, functional MRI (fMRI),
hemodynamic response (HDR), H∞ filters.

I. INTRODUCTION

FUNCTIONAL MRI (fMRI) is a widely used noninvasive
neuroimaging technique to investigate the changes in brain

functions [3], [4]. It detects the blood-oxygen-level-dependent
(BOLD) responses due to different brain activities [5]. The
hemodynamic response (HDR) reflects the temporal proper-
ties of the human brain activities and its estimation is of great
importance in the study of the brain functions [6]. fMRI experi-
ments use two schemes of experiment designs, namely the block
design and the event-related design [7]. Block designs are gener-
ally used in HDR detection because of its larger SNR. However,
due to the temporal integration of the response signals in block
design, the event-related design is preferred in investigating the
temporal characteristics of the HDR [8].

The HDR is usually estimated through selective averaging
procedures, in which many stimuli are presented and the re-
sponses averaged are time-locked to the stimuli [9]. This method
does not take into account the overlap of responses and thus as-
sumes that the interstimulus intervals (ISIs) are large enough
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such that consecutive HDRs do not overlap. Other well-known
approaches used in HDR estimation include the use of time-
series methods based on generalized linear models (GLMs) [10],
[11]. The temporally overlapping responses were also modeled
based on multiple regression within the GLM [12].

Studies in cerebral response have suggested that changes in
intensity or duration have near-linear and additive effects on
the BOLD response [13]. Also in [9], it is found that the fMRI
BOLD signals summated in a roughly linear fashion across
successive trials, even at short ISI (2–4 s). Studies have also
shown that for large ISI (>4–6 s), the system consisting of the
human brain and MRI scanner can be considered as a linear time-
invariant (LTI) system [14]. While nonlinearities were observed
in some cases (leading to the proposal of the Balloon model and
the Volterra series model [15], [16]), the linearity assumption is
found to hold in a wide range of experiments. This validates the
means of estimating the HDR using the LTI approach, which
assumes the linear summation of responses to each stimulus.

Parametric filter models, such as the Poisson filter and the
Gamma filter, impose a specific shape on the linear filter co-
efficients and have been used in the LTI approach [17]. These
parametric models may introduce some bias on the HDR func-
tion, since it is unlikely that they capture the shape variations
of the HDR within the brain [18]. The method of estimating the
HDR using an FIR filter was first performed in [19]. Though it is
parametric in the sense that it fits a number of parameters, it does
not impose a certain shape on the filter coefficients. Thus, the
FIR filter method is known as the semiparametric approach and
is more flexible than the Poisson and Gamma filters in reliably
modeling the initial dip and the undershoot of the HDR [17].
Using the FIR filter model, HDR estimation can be simplified
to be a deconvolution problem as follows:

BOLD = input ⊗ HDR (1)

where ⊗ denotes the convolution operation.
In system modeling, assumptions are often made on the statis-

tical distributions of the noise. However, given the many causes
of noise in fMRI signals, such as swallowing, head motion, as
well as noise originating from the MRI scanner [20], we have
insufficient information to conclude on the noise properties. The
H∞ approach is introduced in robust control theory based on
the hypothesis that the resulting minmax estimation techniques
would be more robust and less sensitive to model uncertainties
and parameter variations than the conventional techniques [21].
The use of H∞ algorithms in situations, where we have lack of
statistical information with respect to noise, replaces the conven-
tional methods of modeling the disturbance signal as a random
process with a given spectral density, which rely heavily on
the validity of the model assumptions and are hence limited in
applications [2], [21].

0018-9294/$26.00 © 2010 IEEE
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Fig. 1. Filter model.

In this paper, three H∞ adaptive algorithms, namely, the
H∞ time-varying (TV), H∞ exponentially weighted (EW), and
the H∞ finite-memory (FM) algorithms, are proposed for the
estimation of HDR in fMRI. These algorithms cope with time
variations in the HDR and are therefore suitable for fMRI data
analysis. Through extensive numerical simulations, it is shown
that these algorithms work well for the accurate estimation of
HDR, and hence, the improved detection of activated areas of
the brain.

II. METHOD

From an engineering perspective, the HDR estimation can be
regarded as a system modeling problem. The measured fMRI
signal d(n) at any particular voxel can be represented as follows
[8]:

d(n) = h(n) ⊗ w(n) + v(n) (2)

= s(n) + v(n) (3)

where h(n) is the input, w(n) is the impulse response (HDR),
v(n) is the disturbance, and s(n) is the BOLD response.

The input h(n) can be modeled using a boxcar function for
block design. For an event-related design, the input can be mod-
eled using a series of impulses of unit amplitudes at instances,
where the stimuli are present [7]. v(n) consists of slow-varying
drift and white Gaussian noise. w(n) is usually modeled as the
difference between two gamma functions [22]

w(n) =
(

n

d1

)a1

e(−(n−d1 )/b1 ) − c

(
n

d2

)a2

e(−(n−d2 )/b2 ) .

(4)
The common choices of these parameters are a1 = 6, a2 =
12, b1 = b2 = 0.9 s, and c = 0.35. Observations from fMRI ex-
periments have shown that HDRs vary among different brain
regions and subjects [23], [24]. It is also reported that the HDRs
may also vary from trial to trial [25], [26]. Therefore, in this pa-
per, the HDR in each individual voxel of the brain is estimated
using an adaptive filter.

A. Adaptive Estimation

Adaptive filters are used to model the HDR. Given a priori
knowledge of the input paradigm and fMRI signal, the HDR
can be estimated from the filter coefficients of the adaptive filter
shown in Fig. 1.

Here,h(n) = [h(n), h(n− 1), h(n− 2), . . . , h(n−N + 1)]T

is a known input stimulus vector, with N being the filter length.
w(n) = [w1 , w2 , w3 , . . . , wN ]T is the filter coefficient vector.

Fig. 2. Transfer operator from disturbances to output prediction error.

d(n) is the measured fMRI signal [contaminated with distur-
bance v(n)], and ŝ(n) is the estimate of the BOLD signal s(n).
Being the impulse response of the system, w(n) approximates
the HDR function once the algorithm converges.

In this paper, we shall present four H∞ problem formulations
and solutions. The estimation strategy is always to reduce the
H∞ norm (i.e, ‖To,i(F)‖2

∞), which captures the worst case
behavior of the system and can be regarded as the maximum
energy gain from disturbances to prediction errors (see Fig. 2).
Each problem has different forms of disturbances and prediction
errors resulting in different transfer functions [1].

1) Output Prediction Problem: The problem here is to find
an H∞ optimal estimation strategy F(·), such that ‖To,i(F)‖∞
is minimized and obtain

γ2
o = inf

F
‖To,i(F)‖2

∞ (5)

= inf
F

sup
w ,v∈h2

∑i
j=0 | ej |2

µ−1 | w − w−1 |2 +
∑i

j=0 | vj |2
. (6)

In other words, we are minimizing the H∞ norm of the
transfer operator To,i(F) that maps the unknown disturbances
{µ−1/2(w − w−1), {vj}i

j=0} to the prediction errors {ej}i
j=0

(see Fig. 2). Here, w−1 is the initial estimate of the weight vector
w, and µ is a positive constant reflecting the a priori knowledge
on how close w is to w−1 . We denote the estimate of the weight
vector using all the information available up till time i by wi .

Solution to the output prediction problem is the well-known
LMSs algorithm [27]. Since the LMS algorithm does not take
into account possible time variations in the state vector, there
is a need for problem formulations, which deal with such time
variations. As the nature of time variations in HDR is unknown,
we consider the following three problem formulations.

2) Exponential Weights Problem: A forgetting factor 0 <
λ < 1 is introduced such that more recent data are given more
weightage, thus allowing us to track the time variations of the
underlying models. We are to find an H∞ optimal estimation
strategy and obtain

γ2
λ = inf

F
‖Tλ,i(F)‖2

∞ (7)

= inf
F

sup
w ,v∈h2

∑i
j=0 λ−j | ej |2

µ−1 | w − w−1 |2 +
∑i

j=0 λ−j | vj |2
. (8)

Note that the prediction error and disturbance energies are now
in different forms compared to the previous problem. The solu-
tion to this problem is named the EW algorithm and the expo-
nential bound γλ is calculated as follows:

γ2
λ ≤ sup

i

h + σ(Rλ,i)

λi/µ + σ(Rλ,i)
(9)
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where h = supi hT
i hi , Rλ,i = λ−i

∑i−1
j=0 λ−jhjhT

j , and
σ(Rλ,i) denotes the maximum singular value of Rλ,i . The
algorithm is as follows:

wi = wi−1 +
Pihi

1 + hT
i Pihi

(di − hT
i wi−1) (10)

P−1
i+1 = λP−1

i + λhihT
i − γ−2

λ
hi+1hT

i+1 (11)

initialized with P−1
0 = µ−1I − γ−2

λ
h0hT

0 .
3) FM Problem: Also known as the sliding window prob-

lem, here one considers data from a finite window of length L.
Therefore, as each new datum is observed, the least recent data
are discarded. We are to find an H∞ optimal estimation strategy
and obtain

γ2
L = inf

F
‖TL,i(F)‖2

∞ (12)

= inf
F

sup
w ,v∈h2

∑i
j=i−L+1 | ej |2

µ−1 | w − w−1 |2 +
∑i

j=i−L+1 | vj |2
. (13)

The FM algorithm allows us to cope with time variations in the
underlying model as follows:

γ2
L ≤ sup

i

h + σ(RL
i )

µ−1 + σ(RL
i )

(14)

where RL
i is

∑i
j=i−L+1 hjhT

j , and σ(RL
i ) denotes the maxi-

mum singular value of RL
i . The update rule is as follows:

wd
i−1 = wi−1 +

Pd
i hi−L

−1 + hT
i−LPd

i hi−L
(di−L − hT

i−Lwi−1)

(15)

(Pd
i )

−1 = P−1
i − (1 − γ−2

L )hi−LhT
i−L (16)

wi = wd
i−1 +

Pihi

1 + hT
i Pihi

(di − hT
i wd

i−1) (17)

P−1
i+1 = (Pd

i )
−1 − (1 − γ−2

L )hi+1hT
i+1 (18)

initialized with P0 = Pd
0 = µI.

4) Time Variation Problem: This problem deals with a TV
filter model, instead of considering the underlying time vari-
ations of a time-invariant filter. The filter is of the form di =
hT

i xi + vi , where the state vector xi is time-varying. Because
of this, there is an additional disturbance term δxi = xi+1 − xi ,
which is included in the problem

γ2
g = inf

F
‖Tg ,i(F)‖2

∞ (19)

= inf
F

sup
x0 ,v ,δx∈h2

‖e‖2
2

µ−1 | x0 − x̂0 |2 +‖v‖2
2 + q−1‖δx‖2

2

(20)

where ‖e‖2
2 =

∑i
j=0 | ej |2 and ‖δx‖2

2 =
∑i

j=0 | δx |2 . q is a
positive constant that reflects a priori knowledge on how fast
the state vector varies with time. The solution to this problem is

named as the TV algorithm

γ2
g ≤ 1 + qh̄. (21)

xi+1 = xi +
Pihi

1 + hT
i Pihi

(di − hT
i x̂i) (22)

P−1
i = P̃−1

i − γ−2
g hihT

i (23)

P̃i+1 = [P̃−1
i + (1 − γ−2

g )hihT
i ]−1 + qI (24)

initialized with P̃0 = µI.
5) Recursive Least Square (RLS) Algorithm: Since the RLS

algorithm is not an H∞ algorithm, we will compare our anal-
ysis results against it. The RLS algorithm is presented here as
follows:

gi+1 =
Pihi

1 + hT
i Pihi

(25)

Pi+1 = Pi − gi+1hT
i Pi (26)

wi+1 = wi + gi+1(di − hT
i wi) (27)

initialized with P0 = µI.
The parameters mentioned hereafter will be consistent with

the parameters in this section. Performances of the three H∞

algorithms (FM, EW, and TV) in HDR estimation and detection
are investigated on both time-invariant and TV-HDRs.

III. RESULTS AND DISCUSSION

Preliminary investigations were conducted using time-
invariant HDRs, before performing more detailed investigations
using TV-HDRs. For both cases, the three H∞ algorithms were
first run on simulated data to assess their performances in esti-
mating the HDR, and estimation results were compared against
that of the LMS and RLS algorithms. The activation detection
abilities of the three algorithms were also investigated and com-
pared against that of the conventional t-test method, as well
as the LMS and RLS algorithms. The efficacy of these algo-
rithms was then verified using real data. Results obtained by
assuming a TV-HDR were compared against those obtained by
a time-invariant HDR assumption.

A. Simulated Data

1) HDR Estimation: Time-invariant HDR: Fig. 3 shows the
simulated inputs (in red) and BOLD responses for each design.
Fig. 4 shows 400 samples of the simulated fMRI signals for
both block (SNR ≈ 5 dB) and event-related (SNR ≈ −5 dB)
designs consisting of the BOLD signal, slow-varying drift, and
white Gaussian noise.

The simulated fMRI signals were investigated using the pro-
posed H∞ filters, as well as the LMS and RLS algorithms.
In determining the parameter values, a range of values were
tested for each parameter, and the value for which the algo-
rithm showed the best performance was used. Parameters used
for this simulation are µ = 0.001, λ = 0.99999, q = 10−8 , and
L = 6000. In Fig. 5, the estimated HDRs are shown along with
the actual HDR for both designs.
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Fig. 3. Simulated input and BOLD signals. (a) Block design. (b) Event-related
design.

Fig. 4. Simulated fMRI signals. (a) Block design. (b) Event-related design.

In evaluating the filter performances, the normalized MSE
(NMSE), defined in (29), is computed and shown in Table I

NMSE =
‖ ŵ − w ‖2

‖ w ‖2 (29)

where ŵ and w are the estimated and true HDR vectors,
respectively.

From Fig. 5 and the NMSE values in Table I, it is clear
that the filters are capable of accurately estimating the HDR.
Furthermore, results from the LMS and RLS algorithms are

TABLE I
NMSES IN HDR (TIME-INVARIANT) ESTIMATION

Fig. 5. HDR estimates. (a) Block design. (b) Event-related design.

Fig. 6. Learning curves of the algorithms.

similar to that of the EW, FM, and TV algorithms. This shows
that HDR estimation can be done by LMS when the HDR is not
varying with time due to its simplicity. Also, HDR estimations
are more accurate using the event-related design than the block
design, which is in line with the fact that the event-related and
block designs are used for HDR estimations and detections,
respectively [8].

Fig. 6 shows the learning curves for the proposed algorithms.
It can be seen from the graph that the FM algorithm converges
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Fig. 7. HDRs 500 s apart. (a) Variation in undershoot. (b) Variation in delay.

the fastest (about 10 000 iterations). The TV and RLS algorithms
converge the slowest (about 50 000 iterations).

2) HDR Estimation: TV-HDR: Here, we consider an event-
related design. To simulate the variation of HDR, one of its
parameters in the gamma function is changed based on a drift
signal. This ensures that the general shape of the HDR remains
unchanged. Since the variation of HDRs in real fMRI data is not
well understood, we consider changes in both the HDR delay
and undershoot (see Fig. 7).

To show the robustness of H∞ methods against different types
of disturbances, we consider five types of noises (SNR ranging
from −10 to 3 dB): white noise (type I), white noise and drift
(type II), drift (type III), bandpass filtered noise (type IV), and
highpass filtered noise (type V).

Parameters used for the simulations are µ = 0.015, λ =
0.999, q = 2 × 10−5 , and L = 20. The mean estimation errors
in the state vector [defined in (30)] are computed for all algo-
rithms in each run consisting of 1100 samples, and averaged
over 500 independent runs. Results are tabulated in Tables II
and III for HDR varying in undershoot and delay, respectively,

Mean estimation error =
1
Nt

Nt∑
i=0

‖ ŵi − wi ‖2 (30)

where Nt is the total number of samples. ŵi and wi are the
estimated and true HDR vectors, respectively, at time i.

TABLE II
MEAN ESTIMATION ERRORS (VARIATIONS IN UNDERSHOOT)

TABLE III
MEAN ESTIMATION ERRORS (HDRS VARYING IN DELAY)

Fig. 8. Learning curves of algorithms under type II noise (HDR varying in
undershoot).

Fig. 9. Learning curves of algorithms under type I noise (HDR varying in
delay).

Results in Tables II and III clearly show that the EW, FM, and
TV algorithms, which cope with time variations, outperform the
LMS and RLS algorithms for all types of disturbances and HDR
variations. In addition, LMS performs better than RLS, since the
former is an H∞ algorithm and is therefore more robust and less
sensitive to state-vector variations [27].

Figs. 8 and 9 show the learning curves of the algorithms under
different disturbances and HDR variations. Similar graphs are
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Fig. 10. Detection results of the simulated fMRI data. (a) Simulated brain
activations. (b) FM algorithm (ρ > 0.4). (c) EW algorithm (ρ > 0.4). (d) TV
algorithm (ρ > 0.45). (e) LMS algorithm (ρ > 0.4). (f) RLS algorithm (ρ >
0.4). (g) Conventional t-test (p < 0.001).

obtained for other types of noise (figures not shown). From
these graphs, it is seen that the FM algorithm has the fastest
convergence rate. Furthermore, learning curves corresponding
to the LMS and RLS algorithms are above that of the FM, TV,
and EW algorithms most of the time. This could be because
LMS and RLS are poorer in coping with time variations.

3) Detection of Brain Activations: Time-Invariant HDR:
The detection abilities using the FM, EW, and TV algorithms
are compared against that of the LMS and RLS algorithms, as
well as the conventional t-test method, which the average signal
during the task to the average signal during the rest period [28].

In coming up with the simulations, a slice from a set of real
fMRI data was used as the background image. Simulated BOLD
signals generated by different TV-HDRs (parameter c varies
between −1 and 1 for each voxel) were added to certain voxels
in the brain. Disturbance signals consisting of Gaussian white
noises and drifts of varying powers were added to all voxels,
forming a 3-D fMRI time series having various SNRs. Eighty
samples were used in this simulation. For the FM algorithm,
µ = 0.01 and L = 20. For the TV algorithm, µ = 0.002 and
q = 10−8 , and for EW algorithm, µ = 0.001 and λ = 0.99999.
For both the LMS and RLS algorithms, µ = 0.001.

Each algorithm was run over all voxels in the brain scan. The
estimated HDR in each voxel was then convolved with the input
stimulus function to obtain the reconstructed BOLD signal. The
correlation coefficient between the reconstructed BOLD signal
and the simulated fMRI signal was then computed for each
voxel. Statistical parametric map (SPM) was then performed
by comparing the correlation coefficients against a threshold
value. A voxel was considered active if the correlation coeffi-
cient exceeded the threshold, otherwise it was deemed inactive.
Fig. 10(b)–(d) shows the detections using the proposed H∞

Fig. 11. ROC curves for the detection methods.

algorithms. For the conventional t-test, if the t-statistic in a
particular voxel was greater than the voxel’s threshold value,
then that voxel was considered active [see Fig. 10(g)]. Cor-
relation values were chosen such that the detections showed
the best mapping result. These threshold values (around 0.3 to
0.45) were used for reference in deciding the threshold values
for real data, which shall be examined later on. From these re-
sults, we can see that the H∞ algorithms clearly outperform the
conventional t-test method. The t-test method results in many
false detections, while the proposed algorithms can accurately
detect the activated regions and minimize the number of false
detections.

The performances of the algorithms were further investigated
by studying the receiver–operator characteristic (ROC) curve
(see Fig. 11) [29]. The ROC curve is a plot of true-positive ratio
(proportion of correctly detected voxels to all actual activated
voxels) against false-positive ratio (proportion of voxels that
were incorrectly deemed active to all actual inactivated voxels).
A method that detects the most real activations while minimiz-
ing the number of false detections is the most desirable. From
Fig. 11, it is clear that all three H∞ algorithms outperform the
conventional method, with the FM algorithm showing the best
detection ability. We also see that the LMS and RLS algorithms
have similar detection abilities compared to the EW, FM, and
TV algorithms.

4) Detection of Brain Activations—TV-HDR: The ability of
the algorithms in detecting activations was further investigated
using TV-HDRs. Investigations were carried out in a similar
manner for the time-invariant case, expect that all the HDR
estimates were used in reconstructing the BOLD signal. This
is unlike the time-invariant case, in which only the final HDR
estimate is used in reconstructing the BOLD signal. Three hun-
dred samples were used in this simulation. Parameters used are
µ = 0.015, λ = 0.999, q = 7 × 10−5 , and L = 10.

From Fig. 12, it is obvious that the proposed H∞ algorithms
outperform the LMS and RLS algorithms in brain activation
detections with fewer false detections and more true detections.
The performances of the algorithms were further investigated
by studying the ROC curve (see Fig. 13) [29]. From Fig. 13, it is
clear that the EW, FM, and TV algorithms outperform the LMS
and RLS algorithms, with RLS having the poorest detection
ability due to its poor robustness.
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Fig. 12. Detection results of the simulated fMRI data. (a) Simulated brain
activations. (b) FM algorithm (ρ > 0.34). (c) EW algorithm (ρ > 0.38).
(d) TV algorithm (ρ > 0.45). (e) LMS algorithm (ρ > 0.38). (f) RLS algo-
rithm (ρ > 0.25).

Fig. 13. ROC curves for the detection methods.

B. Real fMRI Data

The ability of the H∞ algorithms to perform accurate ac-
tivation detections was also verified on two sets of real fMRI
data: DATA-EVENT (event-related design) and DATA-BLOCK
(block design). Both data sets were obtained from the National
fMRI Data Center (http://www.fmridc.org). Detections that as-
sume a time-invariant HDR are compared against the detection
results obtained by assuming a TV-HDR.

1) DATA-EVENT: This data were from an event-related ex-
periment (with the accession number 2-2000-11127) [30]. This
experiment investigated the activity in the human calcarine sul-
cus (which contains the primary visual cortex) during single
instances of mental imagery. Each experiment began with a 2-s
auditory presentation of an animal’s name. After 14 s, a second
auditory presentation of a possible characteristic of the animal
was made. Following this, the subjects evaluated the character-
istic of the animal. Several such visual–mental processes were
made. Each experiment contained 308 data points and each
fMRI scan was 2 s apart (repetition time TR = 2 s). From the
description of the experiment, we learn that the subjects were
given auditory stimuli. Thus, the auditory cortex and the Wer-
nicke’s area (next to the auditory cortex and used for speech
processing) should be activated during instances when the au-

Fig. 14. Detection of auditory cortex (assuming time-invariant HDR). (a) FM
algorithm (ρ > 0.3). (b) EW algorithm (ρ > 0.3). (c) TV algorithm (ρ > 0.3).
(d) LMS algorithm (ρ > 0.3). (e) RLS algorithm (ρ > 0.3).

ditory stimulus was present. In this paper, we investigate the
activation of these two regions.

The input stimulus function was inferred from the experiment
description. The data were preprocessed (for realignment, nor-
malization, and spatial smoothing) using the SPM software [31].
The H∞ algorithms were then used to analyze the data and per-
form activation detections. Since the data had a sampling period
of 2 s, the length (N ) of the filter coefficient in the adaptive filter
was chosen to be 10, such that the estimated HDR lasts for 18 s.

Detections were first performed on the data by assuming a
time-invariant HDR (see Fig. 14). For the FM algorithm, µ =
0.01 and L = 20. For the TV algorithm, µ = 0.002 and q =
10−8 , and for EW algorithm, µ = 0.001 and λ = 0.99999. For
both LMS and RLS algorithms, µ = 0.001.

Detections on the same set of real data were further inves-
tigated by assuming a TV-HDR. The analysis procedure was
similar to the time-invariant case, except that the BOLD sig-
nal was reconstructed differently. After the algorithms were run
on the dataset containing 308 samples, the first 108 HDR esti-
mates were discarded and the 200 most recent estimates were
used in reconstructing the BOLD signal. This allows better sig-
nal reconstruction, since the first 108 HDR estimates were not
well-learnt. Parameters used for this experiment are µ = 0.1,
L = 10, q = 3 × 10−5 , and λ = 0.999. The detection results
are shown in Fig. 15. As seen, performances among the al-
gorithms are approximately the same, with the proposed H∞

algorithms having slightly better detections than the LMS and
RLS algorithms, since they detect a slightly bigger region of
activation, which is closer to the expected size.

Detections show slightly different activated areas for different
assumptions made on the HDR. Comparing this set of results
to those obtained using the time-invariant assumption, there is
a slight displacement in the active area for the right side of the
brain. However, both regions correspond to a part of the auditory
cortex and Wernicke’s area. In the absence of the ground truth,
we cannot determine which assumption on HDR variation leads
to a better detection in this case.

2) DATA-BLOCK: The second set of data (DATA-BLOCK,
with accession number 2-2000-111JJ) was designed for
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Fig. 15. Detection of auditory cortex (assuming TV-HDR). (a) FM algorithm
(ρ > 0.3). (b) EW algorithm (ρ > 0.3). (c) TV algorithm (ρ > 0.3). (d) LMS
algorithm (ρ > 0.3). (e) RLS algorithm (ρ > 0.3).

Fig. 16. Detection of visual cortex (assuming time-invariant HDR). (a) FM
algorithm (ρ > 0.45). (b) EW algorithm (ρ > 0.45). (c) TV algorithm (ρ >
0.45). (d) LMS algorithm (ρ > 0.45). (e) RLS algorithm (ρ > 0.45).

visuospatial processing task—judgement of line orientation
[32]. This set of data contains 100 fMRI scans, each obtained
3 s apart (TR=3 s). The experiment lasted for 5 min. During
the baseline condition, the subjects were asked to determine if
two stimulus lines on the screen were at the same level. During
the activation condition, nine radial lines arranged in a semicir-
cle were shown in the bottom half of the screen. The subjects
had to decide if the two stimulus lines shown in the top half
of the screen were oriented in the same way as the two high-
lighted lines in the bottom half. Thus, this experiment activates
the visual cortex of the brain.

Again, investigations were first carried out using the time-
invariant assumption (see Fig. 16). Filter length (N ) was chosen
to be 7. For the FM algorithm, µ = 0.01 and L = 20. For the TV
algorithm, µ = 0.002 and q = 10−8 , and for EW algorithm, µ =
0.001 and λ = 0.99999. For both LMS and RLS algorithms,
µ = 0.001.

Similar investigations were carried out by assuming a
TV-HDR. However, since all the estimated HDRs have to be
used to reconstruct the BOLD signal and there are only 100

Fig. 17. Detection of visual cortex (assuming TV HDR). (a) FM algorithm
(ρ > 0.33). (b) EW algorithm (ρ > 0.4). (c) TV algorithm (ρ > 0.39). (d) LMS
algorithm (ρ > 0.33). (e) RLS algorithm (ρ > 0.3). (f) Conventional t-test (p <
0.001).

samples available, the HDR estimates might not be well learned.
To overcome this problem, the dataset were first run on LMS
algorithm and the final HDR estimate is then used to initialize
the filters. For the FM algorithm, µ = 0.1 and L = 8. For the TV
algorithm, µ = 0.22 and q = 3 × 10−5 . For the EW algorithm,
µ = 0.35 and λ = 0.999, and for the LMS and RLS algorithms,
µ = 0.2. Detection was also performed using the conventional
t-test method at 99.9% significance level. From Fig. 17(f), it
is clear that there are many false detections, proving that H∞

algorithms outperform the conventional t-test method. From the
detection results in Fig. 17, we can see that the visual cortex is
correctly detected by all the algorithms, with the LMS and RLS
algorithms having poorer detection results, since their detected
regions are smaller than what is expected. For good detections,
the entire set of 100 HDRs have to be rather good estimates,
since all of them would be used in BOLD signal reconstruction.
With LMS and RLS algorithms having slower convergence rates
(seen in the convergence curves previously), poor estimates of
HDRs would be obtained, thus resulting in poorer detections.
Similarly, since the EW algorithm is able to work with the
largest learning parameter (µ = 0.35), its detection result is the
best due to its fastest rate of convergence.

Comparing the two sets of detection results, we notice that
detection by the EW algorithm under time-varying assumption
produces the best detection. However, we also see that there is
not much difference between the two sets of detections, leading
us to conclude that there is not much time variations in the HDR
for this dataset. In such cases, it is more convenient to perform
detections by assuming time invariance since the LMS algo-
rithm, which can then be used, is much simpler. However, due
to their better abilities in coping with time variations in the HDR
(as shown in simulated data), the EW, TV, and FM algorithms
can be used for datasets that do not show good detections under
the time-invariance assumption.

For many years, researchers have been exploring the mystery
of the most complex and enigmatic organ in the human body—
the brain. With the developments in cognitive neuroscience,
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many mysteries are gradually becoming clear to the scientific
community. During the past decade, fMRI has been emerged
as a powerful noninvasive neuroimaging technique for studying
the brain’s functions based on the HDR related to neural activity
in the brain. It is becoming the diagnostic method of choice for
learning how a normal, diseased, or injured brain is working,
as well as for assessing the potential risks of surgery or other
invasive treatments of the brain.

The intrinsic complexity of the brain functions as well as the
data acquisition procedure makes the fMRI data analysis a dif-
ficult task. Estimation of the HDR is an important step in the
processing and analysis of fMRI data. The time variations of
the HDRs as well as the lack of knowledge of the statistical dis-
tribution of the disturbances make its estimation a challenging
problem. In such situations, the use of H∞ approach in param-
eter estimation is proved to be optimal [1], [2]. Accordingly,
in this paper, we proposed three robust signal processing algo-
rithms based on the H∞ approach to the estimation of the HDRs
in fMRI data analysis. The extensive simulation studies show
the efficacy of these algorithms compared to the LMS and RLS
algorithms.

C. Potential Limitations of Proposed Algorithms

Parameter choices (such as the forgetting factor λ in EW algo-
rithm, window length L in FM algorithm, and the parameter q in
TV algorithm) greatly affect the performance of the algorithms.
However, currently there is no optimal way of determining these
parameters and are determined empirically in carrying out the
numerical simulations in our studies.

Another limitation is the computational complexity of the
proposed algorithms. They are slightly computationally more
intensive than the LMS algorithm. Therefore, these algorithms
should not be used for time-invariant problems or those which
involve little time variations. In such situations, the LMS algo-
rithm should be used instead.

IV. CONCLUSION

HDR estimation and detection are vital in fMRI data analysis.
In this paper, three H∞ based adaptive filters, namely the FM,
EW, and TV, were proposed to estimate the TV-HDRs. Through
extensive numerical simulations (on simulated as well as real
fMRI data), it is shown that these algorithms are capable of
estimating the HDR accurately and outperform the conventional
t-test method in detecting the activated regions of the brain.
Investigations using phantom data containing TV-HDRs also
show that the proposed H∞ algorithms perform better than
the LMS and RLS algorithms, which do not cope with time
variations. Thus, the proposed methods would be useful in cases,
where fMRI data contains much time variations in the HDR.

REFERENCES

[1] B. Hassibi and T. Kailath, “H∞ adaptive filtering,” in Proc. ICASSP, 1995,
vol. 2, pp. 949–952.

[2] T. Ratnarajah and S. Puthusserypady, “An H∞ approach to adaptive mini-
mization of EOG artefacts from EEG signals,” in Proc. 8th IEEE Workshop
DSP, 1998, pp. 1483–1487.

[3] K. Najarian and R. Splinter, Biomedical Signal and Image Processing.
Boca Raton, FL: CRC, 2006.

[4] G. Nardulli and S. Stramaglia, Modelling Biomedical Signals.
Singapore: World Scientific, 2002.

[5] G. E. Wnek and G. L. Bowlin, Encyclopedia of Biomaterials and Biomed-
ical Engineering. London, U.K.: Informa Health Care, 2008.

[6] R. B. Buxton, Introduction to Functional Magnetic Resonance Imaging:
Principles and Techniques. Cambridge, U.K.: Cambridge Univ. Press,
2002, ch. 6.

[7] P. Jezzard, P. Matthews, and S. Smith, Functional MRI: An Introduction
to Methods. London, U.K.: Oxford Univ. Press, 2001.

[8] H. E. Luo and S. Puthusserypady, “Adaptive spatio-temporal modelling
and estimation of the event-related fMRI responses,” Signal Process.,
vol. 87, no. 11, pp. 2810–2822, 2007.

[9] A. Dale and R. Buckner, “Selective averaging of rapidly presented in-
dividual trials using fMRI,” Hum. Brain Mapp., vol. 5, pp. 329–340,
1997.

[10] K. J. Friston, A. P. Holmes, J. B. Poline, P. J. Grasby, S. C. Williams,
R. S. Frackowiak, and R. Turner, “Analysis of fMRI time-series revisited,”
NeuroImage, vol. 2, no. 1, pp. 45–53, 1995.

[11] K. J. Worsley and K. J. Friston, “Analysis of fMRI time-series revisited–
again,” NeuroImage, vol. 2, no. 3, pp. 173–235, 1995.

[12] V. P. Clark and J. V. Haxby, “fMRI study of face perception and mem-
ory using random stimulus sequences,” Neurophysiology, vol. 79, no. 6,
pp. 3257–3265, 1998.

[13] G. M. Boynton, S. A. Engel, G. H. Glover, and D. J. Heeger, “Linear
systems analysis of functional magnetic resonance imaging in human
V1,” Neuroscience, vol. 16, no. 13, pp. 4207–4221, 1996.

[14] R. M. Birn, Z. S. Saad, and P. A. Bandettini, “Spatial heterogeneity of the
nonlinear dynamics in the fMRI BOLD response,” NeuroImage, vol. 14,
pp. 817–826, 2001.

[15] K. J. Friston, A. Mechelli, R. Turner, and C. J. Price, “Nonlinear responses
in fMRI: The balloon model, volterra kernels, and other hemodynamics,”
NeuroImage, vol. 12, pp. 466–477, 2000.

[16] R. Buxton, K. Uludag, D. J. Dubowitz, and T. T. Liu, “Modelling the hemo-
dynamic response to brain activation,” NeuroImage, vol. 23, pp. S220–
S233, 2004.

[17] C. Goutte, F. Nielsen, and L. Hansen, “Modelling the haemodynamic
response in fMRI with smooth FIR filters,” IEEE Trans. Med. Imag.,
vol. 19, no. 12, pp. 1188–1201, Dec. 2000.

[18] P. Ciuciu, J.-B. Poline, G. Marrelec, J. Idier, C. Pallier, and H. Benali,
“Unsupervised robust non-parametric estimation of the hemodynamic re-
sponse function for any fMRI experiment,” IEEE Trans. Med. Imag.,
vol. 22, no. 10, pp. 1235–1251, Oct. 2003.
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