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Huiyu Zhou and Abdul H. Sadka, Senior Member, IEEE

Abstract—Face recognition and identification is a very active
research area nowadays due to its importance in both human com-
puter and social interaction. Psychological studies suggest that face
recognition by human beings can be featural, configurational, and
holistic. In this paper, by incorporating spatially structured fea-
tures into a histogram-based face-recognition framework, we in-
tend to pursue consistent performance of face recognition. In our
proposed approach, while diffusion distance is computed over a
pair of human face images, the shape descriptions of these images
are built using Gabor filters that consist of a number of scales and
levels. It demonstrates that the use of perceptual features by Gabor
filtering in combination with diffusion distance enables the system
performance to be significantly improved, compared to several
classical algorithms. The oriented Gabor filters lead to discrimi-
native image representations that are then used to classify human
faces in the database.

Index Terms—Configuration, diffusion distance, face recogni-
tion, holistic, perceptual features.

I. INTRODUCTION

FACE recognition (or identification) is a very active research
area nowadays due to its importance in both human com-

puter and social interaction [16], [64]. Many applications will
benefit from the success of face recognition, e.g., video surveil-
lance, behavioral analysis, access control, and teleconferencing.
Recent progress in this field has witnessed some successful sys-
tems that incorporate advanced algorithms, such as principal
component analysis (PCA) (Eigenface) [57], [61], linear dis-
criminate analysis [75], elastic bunch graph matching (Fisher-
face) [2], and neural networks [52].

Psychological studies suggest that face recognition by human
beings can be feature and configuration based [55]. Featural in-
formation refers to as isolated facial components, such as hair,
brow, eyes, nose, mouth, and cheeks. Configurational infor-
mation denotes the spatial relations between the features, their
interaction, and to various proportions, for example, nose length
to brow length [18], [47], [49]. It is also widely accepted that
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holistic recognition plays an important role in face perception
(e.g., [1] and [59]). The applications of these psychological stud-
ies have been commonly found in the community of computer
vision, e.g., [26], [27], [71], and [76].

A. Feature Based

In recent years, the concept of face space has been used to
interpret the coding of facial information [33], [63], [67]. It is
discovered that face identity is represented as a locus in a mul-
tidimensional space in which the dimensions are independent
perceptual attributes of faces. This approach suggests that en-
coding along each facial dimension is relative to properties of
the average face, and facial distinctiveness is encoded as dis-
tance from the average [4], [12]. Tversky and Krantz [62] stated
that faces could be distinguished by three components: eyes,
mouth, and face shape. Penry [44], the inventor of the photo-fit,
argued that a given face was a particular combination of indi-
vidual features, and the alteration of a feature would change the
whole facial appearance.

B. Configuration Based

Garner [22] proposed that the spatial relations of parts of
the whole face as configurational properties (e.g., symmetry
and repetition) could be used to discriminate faces. Maurer
et al. [39] provided evidence for the separability of three types
of configurational processing: detection of the first-order rela-
tions that define faces (i.e., two eyes above nose and mouth),
holistic processing (glueing the features together into a Gestalt),
and processing second-order relations (i.e., the spacing among
features). Goffaux et al. [23] presented experimental results to
support that low spatial frequencies play in the configural pro-
cessing of faces, whereas featural processing was largely depen-
dent on high spatial frequencies. Young et al. [72] demonstrated
that, for adults, the encoding of relations among facial parts is
sensitive to orientation.

C. Holistic Face Recognition

Yovel and Duchaine [73] explicitly supported the holistic
hypothesis where both parts and spacing among them were in-
tegral aspects of face representation. Recent work has explored
how one might learn to utilize holistic information [50] and
the contributions of holistic processing to the analysis of facial
expressions [7]. Rossion and Boremanse [51] suggested that a
substantial part of the face-inversion effect could be explained
by the inability to apply an experience-derived holistic repre-
sentation to a face image that was rotated horizontally or beyond
the orientation.

1094-6977/$26.00 © 2010 IEEE
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Histogram-based features (e.g., colors, curvatures, and ori-
entation) have been commonly used in object recognition and
categorization, for example [9], [13], [31], [54], [58], and [69].
As well-recognized, histogram-based descriptors have shown
extent robustness with respect to object transformation [56]. Ev-
idence shows that combination of color, shape, and texture his-
tograms can be utilized to improve the recognition rates against
single modality approaches [40]. These recognition results also
suggest that spatially structured features are desirable in a well-
performed recognition system, e.g. [56].

In this paper, we incorporate spatially structured features into
a histogram-based face-recognition framework, which calcu-
lates diffusion distance based on the intensity histograms [34].
In our approach, while diffusion distance is computed over a pair
of human face images, the shape descriptions of these images
are built using Gabor filters that have been widely studied in the
literature, e.g. [20], [43], [60], and [74]. A distinctive advan-
tage of the Gabor features is their optimality in the space-spatial
frequency in two dimensions [20], while these features respond
strongly to image edges [68]. Our proposed scheme demon-
strates that the use of perceptual features by Gabor filtering, in
combination with diffusion distance, enables the system perfor-
mance to be significantly improved, particularly in the presence
of illumination changes or occlusions due to pose variations.
The oriented Gabor filters produce discriminative image rep-
resentations that are then used to classify human faces in the
database.

This paper is organized as follows. In Section II, related work
is summarized, particularly with the recent developments in
computer vision. In Section III, the principles of Gabor filtering
and diffusion distance will be introduced. This is followed by
the combination of these two features, which is reported in Sec-
tion IV. Then, evaluation of the proposed strategy is performed
in Section V. Finally, conclusions and future work will be given
in Section VI.

II. RELATED WORK

In this section, classical similarity measures between two im-
ages will be categorized into two groups: histogram and Gabor
based. This is because these two groups are closely related to
our study. Here, a histogram refers to a distribution of image
pixels against specific definitions, and Gabor features describe
the outcomes of applying a Gabor-filtering function to an image.

A. Histogram Based

Chapelle et al. [9] reported that support vector machines
(SVMs) were capable of generalizing well on difficult image-
classification problems, where the features referred to high-
dimensional histograms. Heavy-tailed radial basis function
(RBF) kernels were evaluated on the classification of images
extracted from the Corel stock photo collection and shown to
far outperform traditional polynomial or Gaussian RBF kernels.
Schiele and Crowley [54] presented a technique where appear-
ances of objects are represented by the joint statistics of such lo-
cal neighborhood operators. Based on joint statistics, techniques

have been developed for the identification of multiple objects at
arbitrary positions and orientations in a cluttered scene.

Common visual codebook-generation methods used in a bag
of visual words model, e.g., k-means or Gaussian mixture model,
use the Euclidean distance to cluster features into visual code
words. However, most popular visual descriptors are histograms
of image measurements, such as bags of features [32], [42]. It has
been shown that the histogram intersection kernel (HIK) is more
effective than the Euclidean distance in supervised learning tasks
with histogram features. In [69], it was demonstrated that HIK
could also be used in an unsupervised manner to significantly
improve the generation of visual codebooks. A histogram kernel
k-means algorithm was proposed, which was easy to implement
and worked almost as fast as k-means.

Rubner et al. [53] used the earth mover’s distance (EMD)
to define the difference between two distributions with sparse
structures (e.g., color histograms). The only drawback of this
method is the computational cost of the EMD, which is more
than O(N 3), where N is the number of histogram bins in the im-
age. A fast algorithm “EMD-L1” was then proposed for comput-
ing the EMD between a pair of histograms [35]. To perform the
EMD-L1 computation, an efficient tree-based algorithm “Tree-
EMD” was presented. Tree-EMD exploited the fact that a basic
feasible solution of the simplex algorithm-based solver formed
a spanning tree when interpreting EMD-L1 as a network flow-
optimization problem.

Lowe proposed the scale-invariant feature transform (SIFT)
for object recognition [38]. SIFT has a keypoint descriptor that
used a set of 16 histograms, aligned in a 4 by 4 grid, each
with eight orientation bins. The object recognition depends on
the agreement of SIFT feature vectors (known as keys) that
were used in a nearest neighbors approach to correspond the
objects. Dalal and Triggs [13] proposed histogram of oriented
gradients (HOGs) descriptors for object detection. These de-
scriptors were extracted by dividing the image into small con-
nected regions, called cells, and for each cell compiling a his-
togram of gradient directions or edge orientations for the pixels
within the cell. The combination of these histograms then forms
a descriptor. Similarly, shape context [3] was introduced to form
a distribution of the distance between a point and the others on
the same contour.

B. Gabor Filtering

Potzsch et al. [45] described a biologically motivated object-
recognition system with Gabor wavelets as basic feature type.
The region surrounding a given pixel in the image was described
by the responses of a set of Gabor filters of different frequen-
cies and orientations, all centered at the pixel position. This set
of responses is called a jet. Objects are described by graphs,
whose vertices were labeled by jets and whose links describe
topograph.

Working toward the problem of recognizing people from their
averaged gait images, Tao et al. [60] presented three different
Gabor-function-based image representations: 1) GaborD is the
sum of Gabor filter responses over directions; 2) GaborS is the
sum of Gabor filter responses over scales; and 3) GaborSD is



ZHOU AND SADKA: COMBINING PERCEPTUAL FEATURES WITH DIFFUSION DISTANCE FOR FACE RECOGNITION 579

Fig. 1. Real, imaginary, and frequency components of a complex Gabor function in the spatial domain. (a) Real, (b) imaginary, and (c) frequency component.
S = 0.2 cycles/pixel and Q = 0◦.

the sum of Gabor filter responses over scales and directions.
Ilonen et al. [29] presented an improved algorithm for image-
feature localization. This method was based on complex-valued
multiresolution Gabor features and their ranking using multi-
ple hypothesis testing. On the other hand, Gabor-based region
covariance matrices can be used as local descriptors to discrim-
inate human faces [43].

Liu and Wechsler introduced a Gabor–Fisher classifier (GFC)
for face recognition [37]. The GFC method was robust to
changes of illumination and facial expression. It applied the
enhanced Fisher linear discriminant model (EFM) to an aug-
mented Gabor feature vector derived from the Gabor wavelet
representation of face images. An augmented Gabor feature
vector had a dimensionality further reduced using the EFM by
considering both data compression and recognition (generaliza-
tion) performance. The development of a GFC for multiclass
problems was also proposed. Later on, a Gabor-based kernel
PCA method was proposed, integrating the Gabor wavelet rep-
resentation of face images and the kernel PCA method for face
recognition [36]. Similar work on Gabor-based kernel PCA and
its simplification was reported in [10] and [70].

III. FEATURES FOR FACE RECOGNITION

In this section, we will briefly introduce the features and
related techniques that will be used in our approach. In the pro-
posed algorithm, the Gabor features can be obtained after we
apply a Gabor-filtering function to the image. These features are
extracted from a set of face images, which are then used to com-
pute diffusion distance over pair-wise face images. Diffusion
distance is a dissimilarity measure between histogram-based
descriptors, which is defined in a temperature field. Histogram
difference is measured by heat diffusion and is treated as the
initial condition of a heat diffusion process. As a result, diffu-
sion distance is derived as the sum of dissimilarities over scales.
It has been justified that using diffusion distance is capable of
handling deformations as well as quantization effects [34].

A. Gabor Filtering

Gabor filters include a filter bank with various scales and
rotations. The filters are convolved with the image, resulting in
a Gabor space. This entire process simulates the response of the

2-D receptive field profiles of the mammalian simple cortical
cell [14].

In the spatial domain, a Gabor filter can be treated as a com-
plex exponential modulated by a Gaussian function. Each Gabor
consists of two functions in quadrature (out of phase by 90◦),
located in the real and imaginary parts of a complex function as
follows (see Fig. 1 for a simulation):

g(x, y) = K exp(−π(a2(x − x0)2
q + b2(y − y0)2

q ))

exp(j(2π(α0x + β0y) + Q)) (1)

or in polar coordinates

g(x, y) = K exp(−π(a2(x − x0)2
r + b2(y − y0)2

r ))

exp(j(2πS0(x cos ω0 + y sin ω0) + Q)) (2)

where K is the magnitude of the Gaussian envelope, (a, b) are the
two axis of the Gaussian envelope, (x, y) are the pixel position
in the spatial domain, (x0 , y0) are the location of the peak of the
Gaussian envelope, (α0 , β0) are the spatial frequencies of the
sinusoid carrier in Cartesian coordinates (expressed as (S0 , ω0)
in polar coordinates), and Q is the phase of the sinusoid carrier
[41].

Given a gray-level image I(x, y), the convolution of I(x, y)
and g(x, y) is given as follows:

G(x, y) = I(x, y) ∗ g(x, y) (3)

where ∗ denotes the convolution operator. The convolution can
be computed efficiently by applying the fast Fourier transform
(FFT), followed by point-by-point multiplications, and finally,
the inverse FFT (IFFT). Therefore, we obtain the 2-D Fourier
transform of (1) as follows:

ĝ(u, v) =
K

ab
exp(j(−2π(x0(u − α0) + y0(v − β0)) + Q))

exp
(
−π

(
(u − α0)2

r

a2 +
(v − β0)2

r

b2

))
(4)

where (u, v) denote the coordinates in the frequency domain. Or
in polar coordinates

‖ ĝ(u, v) ‖ =
K

ab
exp

(
−π

(
(u − α0)2

r

a2 +
(v − β0)2

r

b2

))

Phase(ĝ(u, v)) = −2π(x0(u − α0) + y0(v − β0)) + Q. (5)
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Fig. 2. Examples of applying four directions’ Gabor filtering to a profile face
image. (a) Original, (b) 0, (c) π/4, (d) π/2, and (e) 3π/4. S = 0.2 cycles/pixel
and Q = 0◦.

In this paper, similar to [70], we only utilize the magnitude of
Gabor representations, which provide a measure of the local
properties of an image and is less sensitive to the illumination
changes. The Gabor representations, denoted as Φi,j , form a
feature vector for face recognition as follows:

Φ = [Φ1,1 ,Φ1,2 , . . . ,Φm,n ]T (6)

where m and n are numbers of scales and orientations used
in the Gabor filter. Fig. 2 illustrates examples of applying four
directions’ Gabor filtering to a profile face image. Fig. 2(a)–(e)
reveals that different image representations correspond to the
oriented filters. Note that only one phase is utilized here in this
example for simplicity.

B. Diffusion Distance

Histogram-based local descriptors (HBLDs) have been
widely used in computer vision for shape matching, image re-
trieval, and categorization, e.g., [28] and [46]. Currently, most of
the available approaches can only deal with the case where the
corresponding histograms in different images have been aligned.
As a consequence, these methods are very sensitive to distortions
and quantization effects in the extracted local descriptors [34].

Consider two l-dimensional histograms h1(s) and h2(s),
where s ∈ Rl is a vector. The distance between them is defined
as D̂(h1 ,h2). Using a temperature field, we treat the distance
to be the evolution of a temperature field T (s, t) at time t = 0.
According to the heat diffusion equation

∂T

∂t
= �2T (7)

which has a unique solution as

T (s, t) = T0(s) ∗ f(s, t) (8)

with an initial condition

T0(s) = D̂ (9)

where

f(s, t) =
1

(2π)l/2t
exp

(
− sT s

2t2

)
. (10)

To efficiently compute the histogram distance, a distance func-
tion based on the Gaussian pyramid is adopted. This is due to the
fact that the Gaussian pyramid is an efficient discretization of
the diffusion process T (s, t). Therefore, the diffusion distance

Fig. 3. Image examples and computational results of diffusion distance.
(1) Image 1. (2) Image 2. (3) Image 3. (4) Image 4. (5) Diffusion distance
over two images. For example, (1,4) indicates image pairs 1 and 4.

to be computed is as follows:

D(h1 , h2) =
M∑

m=0

D̂(|dm (s)|) (11)

where

dm (s) = [dm−1(s) ∗ f(s, σ)] ↓2 (12)

where m = 1, . . . , M . Equation (12), different layers of the
pyramid, has an initial condition as d0(s) = h1(s) − h2(s). The
notation ↓2 is half-size down sampling. M is the number of the
pyramid levels and σ is the standard deviation of the Gaussian
filter f .

The computational complexity of D(h1 , h2) is O(L), where
L is the number of histogram bins. Equation (11) can be sim-
plified as follows:

D(h1 , h2) =
M∑

m=0

|dm (s)|. (13)

Fig. 3 denotes example of the computational results of diffusion
distance over three pairs of images. It is observed that the dif-
fusion distance is antiproportional to the similarity between the
images.

IV. GABOR DIFFUSION DISTANCE FOR FACE RECOGNITION

Like pyramid-matching kernel (PMK) [25], the computation
of diffusion distance involves the sum of the histogram dif-
ference over different scales of the original images. Diffusion-
distance-based algorithms have not considered the spatial struc-
ture information that has been proved to be valuable in face
recognition (e.g., [11]). For this reason, some approaches have
been developed to extract the spatial structure information of
face images. For example, Brunelli and Poggio [6] introduced
a geometric-feature-based template-matching algorithm. Gao
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et al. [21] applied spatial structure circular descriptor (SSCD)
for content-based 3-D model analysis. In the meantime, Ga-
bor features can be effectively extracted from the images, being
shape contexts for the recognition purpose. In this section, we
investigate a new approach by incorporating the Gabor filtering
into the scheme of diffusion-distance-based similarity search.
First, we introduce the use of Gabor features in the scope of
diffusion-distance calculation.

A. Perceptual Features for Image Representation

A filter bank of Gabor functions are normally used for de-
scriptions of cell receptive fields in V1 of the primate visual
cortex [17]. This is obtained by convolving the image I with the
filter bank to produce a vector of filter response

Î(x, y) = I(x, y) ∗ f̃(x, y) (14)

which characterizes the image patch centered at (x, y) (f̃ is a
filter function). The filter bank consist of a number of scales and
orientations.

To select appropriate discrete frequencies that define the
scales, it is common to use the following exponential sam-
pling [15]:

Fk1 = c−k1 F0 (15)

where k1 = {0, . . . , m − 1}. Fk1 is the k1th frequency and c is
the frequency scaling factor (>1). In this paper, we utilize three
scales for spatial frequency selectivity that has been reported to
be effective in the literature [48].

The selection of discrete rotation angles θk follows the pro-
posal of Kyrki et al. [30], where the orientations must be spaced
uniformly, i.e.,

θk2 =
k22π

n
(16)

where k2 = {0, . . . , n − 1}. Here, n is the number of orienta-
tions to be used. As suggested, the computation can be reduced
to half, since responses on angles [π, 2π] are 90◦ shifted from
responses on [0, π] in real values. For example, we obtain the
results of Gabor filtering, as illustrated in Fig. 4.

Using (4), we shall have a response matrix G as a result of
the Gabor filtering [30]

G(x, y) =

⎛
⎜⎜⎜⎝

rx,y ,s0 ,θ0 rx,y ,s0 ,θ1 · · · rx,y ,s0 ,θn −1

· · · ·
· · · ·
· · · ·

rx,y ,sm −1 ,θ0 rx,y ,sm −1 ,θ1 · · · rx,y ,sm −1 ,θn −1

⎞
⎟⎟⎟⎠

(17)

where r is the response element in the matrix, sm are the interest
frequencies, and θn are the orientations. To minimize the effects
of illumination changes, we can normalize the response matrix
as follows:

‖ G ‖= G√∑
i,j |Gi,j |2

. (18)

Fig. 4. Filter bank of 36 filters consisting of two phases (even and odd), three
scales (spaced by half-octaves), and size orientation (uniformly spaced from 0
to π).

B. Bayesian Model

We now look at the available features out of the Gabor fil-
ters and their corresponding model distribution p(β), where β
is a set of model parameters of the distribution. In face recog-
nition, a face is associated with the feature appearance A and
spatial structures χ. Let Ad and χd be the appearance of the
detected feature and spatial structures, respectively. The simi-
larity between two histograms (or images) can be determined
by a Bayesian decision B (S indicate that two faces refer to the
same person and S̄ is the opposite)

B =
p(S|A,Ad , χ, χd)
p(S̄|A,Ad , χ, χd)

=
p(A, χ|Ad , χd,S)p(S)
p(A, χ|Ad , χd, S̄)p(S̄)

≈
∫

p(A, χ|β,S)p(β|Ad , χd,S)dβ∫
p(A, χ|β, S̄)p(β|Ad , χd, S̄)dβ

. (19)

The larger the B becomes, the more similarity between the
two faces holds. In addition, we can have an approximation
p(β|Ad , χd, S̄) ≈ p(β|Ad , χd).

The model parameters β is subject to a posterior distribution
p(β|Ad , χd) that consist of parameters Ad and χd . The ratio
between S and S̄ can be considered to be 1 in practice. We
consider a mixture model of constellation models [65] with J
components. Let cJ be a mixing coefficient, μAd

and μχd
be

means of appearance and structures, respectively, ΩAd
and Ωχd

be precision matrices of appearance and structures. Using the
definition of [19] while assuming the independence of image
patches, we have

p(β|Ad , χd)

= p(cJ )
∏

p(ΩAd
)p(μAd

|ΩAd
)p(Ωχd

)p(μχd
|Ωχd

) (20)
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where p(cJ ) is a symmetric Dirichlet. We have{
p(ΩAd

) = W(ΩAd
|αAd

,ΓAd
)

p(Ωχd
) = W(Ωχd

|αχd
,Γχd

) (21)

which are two Wishart distributions that act as the weights,
depending on the Gabor responses, and

p(μχd
|Ωχd

) = N (χd |mχd
, λχd

Ωχd
) (22)

whereN is a Gaussian with parameters (mχd
, λχd

). Unlike [19],
which can adapt itself according to the residual tails, we here
define p(A, χ|Ad , χd,S) to be a multivariate Gaussian rather
than Student’s T distribution

p(A, χ|Ad , χd,S)

=
∑

i

∑
j

c0N (Aj |αAi
,mAi

,ΓAi
)N (χj |αχi

,mχi
,Γχi

)

(23)

where c0 is a constant. Using Gaussian instead of Student’s
distributions is driven by the fact that, first, the computational
efficiency can be improved; second, less parameterization is
required (the latter needs to define confidence intervals that can
vary in different circumstances). The case with S̄ is very similar
and omitted here.

C. Similarity Measure

Similarity measure is necessary for face recognition. For his-
togram similarity, it is often to compute “distances” between
two faces, and then, use a defined distance metric for similar-
ity measure. On the other hand, kernel-based schemes can be
used for face recognition, where an inner product is performed.
Our proposed approach, alike the former, is to describe a set of
Gabor features in a histogram.

Perceptual features can be extracted using the Gabor filtering
(see the previous section). The logarithm of B directly links
(19) back to the computation of diffusion distance between
two faces. In the previous section, recognition for two face
images have been discussed. For face recognition of multiclass
face images, we first conduct pair-wise similarity measures,
which is followed by a classification procedure (k-means) that
categorizes the overall faces into corresponding classes. We
could use other classifiers that may or may not end up with
better recognition rates. Nevertheless, our main attention in
this study is to justify the superiority of the proposed feature-
extraction scheme to the state of the art, rather than the classi-
fier’s performance. Therefore, the proposed algorithm for mul-
ticlass face recognition is shown in the following tabulation
(see Algorithm 1).

V. EXPERIMENTAL WORK

In this section, we describe the experiments on two databases
for face recognition. The first experiment will be performed
on the Sheffield face images, which is a publicly accessible
database [24]. This database consists of 564 images of 20 indi-
vidual persons (mixed race/gender/appearance). Each person is

Fig. 5. Image examples of the Sheffield face database.

Fig. 6. Image examples of the MIT-CBCL Face database.

photographed in a range of poses from profile to frontal views—
each in a separate directory labeled 1a, 1b, . . .,1t and the face
images are numbered consecutively as they were acquired. Each
image is of approximately 220-by-220 pixels with 256-bit gray
scale. Example images of this database are illustrated in Fig. 5.

The second experiment will use the MIT-CBCL face-
recognition database that contains face images of ten subjects.
We will only use the test set in this database, which has 200
images per subject. The illumination, pose (up to about 30◦ of
rotation in depth that causes partial occlusions), and the back-
ground changes do apply [66]. Example images of this database
can be found in Fig. 6, where occlusions due to the pose changes
often appear.

To evaluate the proposed perceptual features-based face-
recognition algorithm, we compare the proposed approach with
several competing methods. These techniques (and the pro-
posed one) consists of the classical diffusion-distance-based
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Fig. 7. Illustration of the face images superimposed by the detected SIFT keypoints, where the length and orientation of an arrow indicate the scale of a keypoint
and the corresponding orientation. Better view in color.

Fig. 8. Histogram illustration of PHOG features extracted from Fig. 5.

voting (“DD-V”), SIFT matching [38] plus k-means classifi-
cation (“SIFT-KM”), pyramid histogram of orientation gradi-
ents (PHOGs) [5] plus multiclass SVM (“PHOG-SVM”), inner-
distance shape context [35] plus k-means classification (“IDSC-
KM”) algorithms, and the proposed Gabor diffusion distance
plus k-means classification (abbreviated as “GDD-KM”). All
the algorithms involved in the evaluation have not been opti-
mized for the efficiency purpose.

A. Image Representations

SIFT feature detection intends to find the key locations that
are defined as maxima and minima of the outcomes of differ-
ence of Gaussians function applied to a smoothed and resampled
image. Low-contrast candidate points and edge response points
along an edge will be discarded. Dominant orientations are then
assigned to localized keypoints. SIFT keypoints of Fig. 5 are
denoted in Fig. 7. For the sake of feature matching, Lowe pro-
posed to use a modification of the k-d tree algorithm that allows
us to assign the nearest neighbors with high probability as the
best matches.

The PHOG descriptors [5] can be used to describe object
shapes. The motivation of using these descriptors is driven by
the fact that human beings do consider the shape properties
when they attempt to classify different faces, e.g. hair, nose,
or mouth. The underlying feature of these PHOG descriptors
is an edge map that can be calculated using the Canny’s edge-
detection method [8]. The extracted vector represents the image
by local shapes and spatial layouts of the shapes. Local shapes
are captured by the distribution of the edge orientations within
a region and spatial layouts by tiling the image into regions

Fig. 9. Illustration of inner distance shape-context features, where (a) and
(d) are shape path, (b) and (e) are longest contour, and (c) and (f) are inner
distance shape context.

at different resolutions. Therefore, the descriptors are a set of
histograms of orientation gradients over each image subregion at
each resolution level. Fig. 8 shows histograms of PHOG features
related to the subfigures of Fig. 5. It is observed that the two
rows posses very similar histograms due to the similarity of the
two faces in shape.

IDSC deploys the inner distance to build shape descrip-
tors [35]. The inner distance is articulation insensitive, while
being optimal for complicated shapes. The articulation invari-
ant signatures of 2-D shapes can be generated by combining
the inner distance and multidimensional scaling (MDS). After-
ward, the shape context is integrated with the inner distance to
formulate a new descriptor. This is followed by a dynamic-
programming-based optimization method that pursues shape
matching. The IDSC descriptors can be extended to capture
texture information. In this paper, before calculating the inner
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Fig. 10. Illustration of diffusion distance maps by different algorithms. (a) and (c) Classical diffusion distance. (b) and (d) Proposed Gabor diffusion distance.
(a) and (b) Result from Fig. 5. (c) and (d) Results from Fig. 6. Histograms indicate the calculated diffusion distance against image numbers (1, 2, . . . , 12).

distance, we apply a k-means clustering algorithm to produce
binary images from the original face images. Fig. 9 denotes the
inner-distance shape-context features of the first column images
of Fig. 5. Fig. 9(c)–(f) illustrates the resulting IDSCs of two
different faces.

In Fig. 10, given two groups of face images similar to as
shown in Fig. 5, the proposed Gabor diffusion-distance method
leads to more discriminative representations [see Fig. 10(a)
and (b)]. Fig. 6 shows two sets of significantly varied faces
and the proposed Gabor diffusion-distance method produces
large variations [see Fig. 10(c) and (d)]. In the meantime,
the histograms of the computed diffusion distance against im-
age numbers further enhance these observations, where the
proposed Gabor diffusion-distance method reduces the dif-
ference within the same class while augmenting the differ-
ence between the two classes. Therefore, the proposed feature-
representation algorithm is better than the classical diffusion-
distance scheme in these examples in terms of the discriminative
capability.

B. Classification Accuracy

1) Experiment 1—Sheffield Faces: The proposed strategy is
evaluated here using the Sheffield face database. Features can be
extracted, and then, categorized using the previously mentioned
algorithms, i.e., “GDD-KM,” “DD-V,” “SIFT-KM,” “PHOG-
SVM,” and “IDSC-KM.” The overall classification operates
without any supervision. The classification performance can be
measured using confusion matrices and mean recognition rates
over the individuals.

Here, we use two examples to demonstrate how the obtained
confusion matrices present the systematic performance. Table I
shows the results of the confusion matrix using the “PHOG-
SVM” algorithm. We observe that, in general, this algorithm
leads to very low-recognition rates. For example, the diagonal
elements of classes 6 and 11 possess the lowest rates, which is

Fig. 11. Examples of classified Sheffield face images. First three columns—
correctly categorized face images. Remaining columns—incorrectly categorized
face images.

21% due to the strong intra- and intersimilarity of face images.
These two groups have been confused with classes 13 and 1, re-
spectively. The highest rates (89%) appear on class 19, which is
somehow influenced by class 20. Most of the remaining recog-
nition rates are less than 50%. Comparably, Table II illustrates
the results of “GDD-KM” with the range of (47%, 84%), where
most values are around 60%–70%.

Taking an insight into this case, we focus on the compari-
son of the five algorithms. In Table III, it is observed that the
“GDD-KM” algorithm has significant improvements against the
others in terms of the classification rates. The performance is
closely related to the extracted features that are discriminant
for specific categories. Exemplary categorization results are
shown in Fig. 11, where “correctly” and “incorrectly” catego-
rized images demonstrate the degree of classification difficulty.
It is found that the miscategorization of the face images on the
lower row is due to the fact that the images shown on the two
rows are of very similar shapes and textures (e.g., glasses and
beards).

2) Experiment 2—MIT-CBCL Faces: All the algorithms are
evaluated using the MIT-CBCL face database in this section.
Similar to the aforementioned discussion, we use two examples
to show the performance comparison of “PHOG-SVM” and
“GDD-KM.” Tables IV and V denote the confusion matrices of
“PHOG-SVM” and “GDD-KM,” respectively. The average cat-
egorization rate of “PHOG-SVM” is approximately 50%± 7%,
while that of “GDD-KM” is 76%± 22%. Comparing the five
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TABLE I
CONFUSION MATRIX OF SHEFFIELD FACES BY “PHOG-SVM”

TABLE II
CONFUSION MATRIX OF SHEFFIELD FACES BY “GDD-KM”
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TABLE III
MEAN AND STANDARD DEVIATION OF RECOGNITION RATES OF SHEFFIELD

FACES BY DIFFERENT ALGORITHMS

TABLE IV
CONFUSION MATRIX OF MIT-CBCL FACES BY “PHOG-SVM”

TABLE V
CONFUSION MATRIX OF MIT-CBCL FACES BY “GDD-KM”

TABLE VI
MEAN AND STANDARD DEVIATION OF RECOGNITION RATES OF MIT-CBCL

FACES BY DIFFERENT ALGORITHMS

algorithms as a whole, we can obtain Table VI, which reveals
that the proposed “GDD-KM” has the best classification capabil-
ity. Interestingly, “IDSC-KM” has the second best performance,
where most distinctive shapes in the categories have captured
the attention of “IDSC-KM.” Fig. 12 shows some image ex-
amples that have been correctly or incorrectly classified. The
misclassification attributes to the significant loss of the facial
features and the proposed algorithm cannot separate it from the
other images.

VI. DISCUSSIONS AND CONCLUSION

In this paper, we have presented a new face-recognition
algorithm by combining Gabor features within the scope of

Fig. 12. Examples of classified MIT-CBCL face images. First three columns—
correctly categorized face images. Remaining columns— incorrectly catego-
rized face image.

diffusion-distance calculation. This strategy starts from the Ga-
bor filtering that consists of three scales and six orientations. It
is followed by the calculation of diffusion distance based on a
Bayesian model. This proposed algorithm has been compared
against several state-of-the-art techniques. The experimental re-
sults show that the proposed face-recognition scheme has the
best performance in accuracy.

Most classical HBLDs can only be used to deal with the
aligned shapes and are sensitive to distortion and quantization
of the images. To compound these problems, in this paper, Ga-
bor features are generated to represent the local characteristics.
These features are driven by the nature of human perception,
being of a good capability to differentiate the face images used
in this study. To enhance the performance of face recognition,
a Bayesian model was used in this study to determine the sim-
ilarity degree between two histograms. The rationale of using
this Bayesian decision model is to ensure the maximization
of likely estimation across different histograms. The available
experimental results have justified the successful usage of the
Gabor features and the Bayesian model. In spite of the promis-
ing results, we also observed less satisfactory outcomes of the
recognition. For example, the recognition rates of the proposed
algorithm in handling the occlusions due to dramatical pose
changes.

In the future, work will proceed in various areas. For exam-
ple, some categories of the face databases have witnessed some
less optimal classification rates by the proposed algorithm, e.g.,
when the subjects are bearded or wear glasses. This issue may
be solved if substantial efforts can be made to model the ap-
pearance, e.g., textures in these areas. On the other hand, Gabor
filtering process is time consuming for the time being, but an
appropriate optimization process of the proposed algorithm will
most likely lead to better computational efficiency.
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