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Abstract

The balanced vehicular traffic model is a macroscopic model for vehicular traffic flow. We use this model to study the traffic
dynamics at highway bottlenecks either caused by the restriction of the number of lanes or by on-ramps or off-ramps. The coupling
conditions for the Riemann problem of the system are applied in order to treat the interface between different road sections
consistently. Our numerical simulations show the appearance of synchronized flow at highway bottlenecks.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The balanced vehicular traffic model [1] (BVT model) generalizes the macroscopic traffic model of Aw, Rascle
[2,3] and Greenberg [4] by introducing an effective relaxation coefficient into the momentum equation of traffic
flow. This effective relaxation coefficient can become negative, resulting in multivalued fundamental diagrams in the
congested regime. Such negative effective relaxation coefficients follow from finite reaction and relaxation times of
drivers [1]. For related ideas, see Greenberg–Klar–Rascle [5], Greenberg [6].

In a previous work [7] we studied the behavior of the BVT model at a bottleneck. There, we manipulated the partial
differential equations describing traffic flow at the bottleneck by artificially resetting the average velocity in order to
model a speed restriction. The results obtained in that study showed the basic behavior of the BVT model and its
potential to explain the observed patterns of traffic flow [8] that were discussed (with other models [9,10]) elsewhere.
Although the procedure of resetting quantities, i.e. the average velocity in that case, was locally restricted, it leaves
the question whether the model can adequately describe synchronized flow at a bottleneck. In order to show this,
the current paper systematically studies the traffic dynamics at highway bottlenecks in the BVT model by numerical
means. To do this in agreement with the underlying partial differential equations, we use the coupling conditions for
the Riemann problems at the interfaces between different highway sections. We focus the discussion on two setups:
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In the first setup we study a bottleneck caused by the narrowing of a highway from three lanes to two lanes. In the
second setup we study a two-lane highway with an on-ramp and an off-ramp.

The outline of the paper is as follows. In Section 2 we summarize the theory of the coupling conditions for the
Riemann problem at intersections. Whereas Section 3 presents numerical results for a highway bottleneck caused by
the restriction of the number of lanes from three lanes to two lanes, Section 4 presents the numerical results for a two-
lane highway with an on-ramp and an off-ramp. In Section 5 we introduce the possible generalization to an arbitrary
junction. We finally summarize our results in Section 6.

2. Coupling conditions

Before we have a closer look at the coupling conditions, let us repeat the principal equations of the BVT model. The
evolution equations for the density ρ of vehicles and the average velocity v are described by the following hyperbolic
system of balance laws

∂ρ

∂t
+
∂(ρv)

∂x
= 0, (2.1)

∂(ρ(v − u(ρ)))

∂t
+
∂(ρv(v − u(ρ)))

∂x
= b(ρ, v)ρ(u(ρ)− v). (2.2)

Here, u(ρ) denotes the equilibrium velocity, therefore the expression v−u(ρ) = w describes a distance to equilibrium.
The quantity b(ρ, v) is the effective relaxation coefficient. For the case where b(ρ, v) becomes negative, there are
additional equilibrium velocities, i.e. high-flow branch and the jam line. Whereas the high-flow branch is metastable
for intermediate densities and unstable for high densities, the jam line is unstable for intermediate densities and
metastable for high densities [7]. The precise expressions of u(ρ) and b(ρ, v) are recalled in Section 3. Note that the
pseudo-momentum ρ(v − u(ρ)) is not conserved due to the nonvanishing term on the right-hand side of Eq. (2.2).
This source term plays an essential role for the traffic dynamics on road sections, but it is neglected for the situation
where one is interested in the Riemann problems at intersections, since it is never a delta-function.

2.1. Background

Piccoli and Garavello [11] appear to have been the first to propose an intersection modeling by using the Aw–Rascle
“second-order” model [2] of traffic flow. In their approach, only the mass flux is conserved but not the pseudo-
momentum. Herty and Rascle [12] proposed another approach in which mass flux and pseudo-momentum are
both conserved. But they maximized the mass fluxes at the intersection with some arbitrary given homogenization
coefficients. The latter approach has been generalized by maximizing the total mass flux at the junction without
fixing any condition [13]. In fact, the homogenization coefficients are not arbitrary but obtained directly from the
mass flux maximization. Another approach is also based on the mass flux maximization [14,15]. Our approach in
the current paper is similar to the latter one, in particular we maximize the total flux at the junction, at the same
time we approximate properly the resulting pseudo-momentum of the original “Aw–Rascle” system on the outgoing
roads. Here, we are particularly concerned with the BVT model [1]. We note that our treatment of the homogenization
problem which naturally arises in a merge junction differs from earlier work [12,13], where the modeling is rigorously
described from microscopic considerations, but it leads to formulas which are a bit more complex. Here our description
of the coupling conditions is simpler and in practice is a good approximation of the previous ones, see Section 2.5.

2.2. Junction consisting of one incoming and one outgoing road

In the following we restrict the discussion to the Riemann problem at the interface between two road sections. The
road section 1 is located upstream and the road section 2 downstream of the interface, where the flux functions have
to be determined. Let U−1 = (ρ−1 , ρ

−

1 v
−

1 ) be the state vector at the interface upstream in the road section 1 and let
U+2 = (ρ

+

2 , ρ
+

2 v
+

2 ) be the state vector at the interface downstream in the road section 2 (see panel (a) of Fig. 1). For
each road section j we introduce the function w j of the state variable U = (ρ, ρv)

w j (U ) = v − u j (ρ). (2.3)



Author's personal copy

F. Siebel et al. / Mathematical and Computer Modelling 49 (2009) 689–702 691

Fig. 1. Definition of the quantities at junctions, which are necessary to construct the boundary fluxes. The junction in (a) consists of one incoming
and one outgoing road. The panels (b) and (c) display a merge junction and a diverge junction, respectively. The direction of the flow is from left to
right.

According to Herty and Rascle [12] the fluxes at the interface between the two road sections (see Eqs. (2.1) and (2.2))

f̂ = q

(
1

w1(U
−

1 )

)
(2.4)

can be calculated from the expression

q = min(d1(ρ
−

1 ), s2(ρ
Ď
2)), (2.5)

where the demand and supply functions d1(ρ) and s2(ρ) and the density ρĎ2 are defined below.

The density ρĎ2 is defined as the intersection point of the two curves v = v+2 , w2(U ) = w1(U
−

1 ) and can be
obtained by solving the implicit equation

u2(ρ
Ď
2)− v

+

2 + w1(U
−

1 ) = 0. (2.6)

Let us define the function

ηd1(ρ) = ρu1(ρ)+ ρw1(U
−

1 ). (2.7)

For a monotonously decreasing, differentiable function u1(ρ) the function ηd1(ρ) has a single maximum at location
ρ̃1, which can be obtained by solving the implicit equation

η′d1(ρ̃1) = ρ̃1u′1(ρ̃1)+ u1(ρ̃1)+ w1(U
−

1 ) = 0. (2.8)

It is now possible to define the demand function1

d1(ρ) =

{
ηd1(ρ), if ρ ≤ ρ̃1,

ηd1(ρ̃1), if ρ > ρ̃1.
(2.9)

Let us define the function

ηs2(ρ) = ρu2(ρ)+ ρw1(U
−

1 ). (2.10)

1 Note that in a previous work [16] we exchanged the terms demand and supply in comparison to the standard notation used here. The demand
describes the maximum flow that the road section 1 can deliver to the road section 2.
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For a monotonously decreasing, differentiable function u2(ρ) the function ηs2(ρ) has a single maximum at location
ρ̃2, which is determined by solving the implicit equation

η′s2(ρ̃2) = ρ̃2u′2(ρ̃2)+ u2(ρ̃2)+ w1(U
−

1 ) = 0. (2.11)

With this function we define the supply function as

s2(ρ) =

{
ηs2(ρ̃2), if ρ < ρ̃2,

ηs2(ρ), if ρ ≥ ρ̃2.
(2.12)

We numerically solve the implicit equations (2.8) and (2.11) using the method of nested intervals. With the expression
for the fluxes at the interface between the two road sections (see Eq. (2.4)), we obtain the necessary boundary values
at the interface for the conservative update scheme [1].

2.3. Merge junction

We are now interested in the boundary fluxes at a merge junction, see panel (b) of Fig. 1. In order to define the
demand functions on the incoming road sections i = 1, 2 we first define the functions ηdi (ρ) as follows,

ηdi (ρ) = ρui (ρ)+ ρwi (U
−

i ). (2.13)

Let us denote the maxima of the corresponding curves as ρ̃i . We can then define the demand function of the road
section i as

di (ρ) =

{
ηdi (ρ), if ρ ≤ ρ̃i ,

ηdi (ρ̃i ), if ρ > ρ̃i .
(2.14)

In order to define the supply function in the road section 3, we first introduce quantities βi describing the fraction
of cars entering from the road section i into the road section 3. When we assume that the incoming fluxes passing
through the junction are proportional to the incoming demands, we have

βi =
di (ρ

−

i )

2∑
j=1

d j (ρ
−

j )

. (2.15)

With this definition, we follow the work of Haut and Bastin [14,15] and do not consider these fractions as part of the
optimization problem [13]. We define the homogenized value w∗3 for the quantity w defined in Eq. (2.3), i.e.

w∗3 =

2∑
j=1

β jw j (U
−

j ), (2.16)

and with the latter the function

ηs3(ρ) = ρu3(ρ)+ ρw
∗

3 (2.17)

which reaches its maximum value at ρ̃3.
We are now able to define the supply function

s3(ρ) =

{
ηs3(ρ̃3), if ρ < ρ̃3,

ηs3(ρ), if ρ ≥ ρ̃3.
(2.18)

This function will be evaluated below at the intersection point of the two curves v = v+3 and w3(U ) = w∗3 , which

corresponds to a density ρĎ3 fulfilling the implicit equation

u3(ρ
Ď
3)− v

+

3 + w
∗

3 = 0. (2.19)
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Finally, we define the downstream boundary fluxes in the road section i as

f̂ −i = qβi

(
1

wi (U
−

i )

)
(2.20)

and the upstream boundary fluxes in the road section 3 as

f̂ +3 = q

(
1
w∗3

)
, (2.21)

where

q = min

(
2∑

j=1

d j (ρ
−

j ), s3(ρ
Ď
3)

)
. (2.22)

Note that the above boundary fluxes are conserved through the intersection, and are bounded from above by the
demands and supplies.

2.4. Diverge junction

In this section we study the boundary fluxes at a diverge junction, see panel (c) of Fig. 1. Again we set

ηd3(ρ) = ρu3(ρ)+ ρw3(U
−

3 ) (2.23)

and denote the maximum of that function as ρ̃3. The demand function in the road section 3 is defined as

d3(ρ) =

{
ηd3(ρ), if ρ ≤ ρ̃3,

ηd3(ρ̃3), if ρ > ρ̃3.
(2.24)

For the definition of the supply function we first have to prescribe the fractions of cars intending to enter from road
section 3 into road section 1 and road section 2, which we describe with the quantities α31 and α32. We stress that
these quantities – in contrast to the work of Haut and Bastin [14,15] – need not agree with the actual percentages of the
flow from road section 3 entering into road section 1 and road section 2, see Eqs. (2.31)–(2.34). Under the assumption
that all cars remain in the network, i.e. α31 + α32 = 1, we can set

α31 = α, (2.25)

α32 = (1− α), (2.26)

with α ∈ [0, 1]. For the outgoing road sections k = 1, 2 we define

ηsk = ρuk(ρ)+ ρw3(U
−

3 ) (2.27)

and denote the maxima of these functions ρ̃k . The supply function on the outgoing road section k then reads

sk(ρ) =

{
ηsk(ρ̃k), if ρ < ρ̃k,

ηsk(ρ), if ρ ≥ ρ̃k .
(2.28)

We also have to determine the densities ρĎk , at which these supply functions are evaluated. These densities are
calculated from the intersection of the curves v = v+k and wk(U ) = w3(U

−

3 ), which reduces to the implicit equations

uk(ρ
Ď
k )− v

+

k + w3(U
−

3 ) = 0. (2.29)

Finally, we define the downstream boundary fluxes of road section 3 as

f̂ −3 = q

(
1

w3(U
−

3 )

)
(2.30)
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and the upstream boundary fluxes in road section 1 as

f̂ +1 = q1

(
1

w3(U
−

3 )

)
, (2.31)

and in the road section 2 as

f̂ +2 = q2

(
1

w3(U
−

3 )

)
, (2.32)

where

q1 = min
(
αd3(ρ

−

3 ), s1(ρ
Ď
1)
)
, (2.33)

q2 = min
(
(1− α)d3(ρ

−

3 ), s2(ρ
Ď
2)
)
, (2.34)

and

q = q1 + q2. (2.35)

Note again that the above boundary fluxes are conserved through the interface, and are bounded from above by the
demands and supplies.

2.5. Comparison to earlier work

In this section we compare the above treatment of the coupling conditions to earlier approaches [12–15].
The approach of Haut and Bastin [14,15] differs from our approach in the treatment of a diverge junction. Using

our notation the percentage of the flow α̃ which enters from section 3 into section 1 is fixed in the work of Haut and
Bastin [14,15]. Instead of Eqs. (2.33)–(2.35) the optimization problem reduces to

q1 = α̃q, (2.36)

q2 = (1− α̃)q, (2.37)

and

q = min

(
d3(ρ

−

3 ),
s1(ρ

Ď
1)

α̃
,

s2(ρ
Ď
2)

1− α̃

)
. (2.38)

As a consequence of this treatment, if only one of the outgoing roads is jammed up, the outflow of the other road will
be zero as well.

The approach taken in the work of Herty, Moutari and Rascle [12,13] differs from our approach in the treatment
of a merge junction. Whereas we take the homogenization coefficients βi proportional to the respective demands (see
Eq. (2.15)), the quantities are either fixed [12] or considered as part of the optimization problem [13]. Moreover, in
Eq. (2.17) we assume that the velocity on road 3, near the junction, is given by v = u3(ρ) + w

∗

3 . This is in contrast
with the work of Herty, Moutari and Rascle [12,13], where the mixture of cars from both incoming roads 1 and 2 is
assumed to produce a homogenized flow, with a nonlinear relation between ρ and v which expresses that the cars from
roads 1 and 2 microscopically share the available space. The resulting mixture rule is more appropriately described in
Lagrangian (mass) coordinates, but is definitely not in the above form.

In other words, rigorously speaking, the assumptions of Herty, Moutari and Rascle [12,13] are incompatible with
the (simpler) formula (2.17), which we use here. In practice the latter is a good approximation of the former since the
difference is not necessarily significant. We will come back to this point elsewhere.

3. Lane reduction on a highway

We study the traffic dynamics for the setup depicted in Fig. 2. The highway under study consists of two 7 km long
road sections. The road section 1 consists of three lanes whereas the road section 2 consists of two lanes. Note that in



Author's personal copy

F. Siebel et al. / Mathematical and Computer Modelling 49 (2009) 689–702 695

Fig. 2. Sketch of the highway under study. The highway consists of two road sections of 7 km length. The road section 1 consists of three lanes
whereas the road section 2 consists of two lanes. We use periodic boundary conditions, i.e. the road section 1 is also located downstream of the
road section 2.

the mathematical description the transition from two to three lanes is immediate, the length of the merging segments
is neglected. We further prescribe periodic boundary conditions. Hence, the evolution is fully determined by the initial
data on the two road sections. As in our previous work [7] we use the equilibrium velocity function of Newell

u(ρ) = um

(
1− exp

(
−
λ

um

(
1
ρ
−

1
ρm

)))
(3.1)

with parameter values um = 160 km/h, λ = 3600 (1/h/lane), ρm = 160 (1/km/lane) and an effective relaxation
coefficient

b(ρ, v) =


ac

u − v
, if β̃(ρ, v)(u(ρ)− v)− ac ≥ 0,

dc

u − v
, if β̃(ρ, v)(u(ρ)− v)− dc ≤ 0,

β̃(ρ, v), else,

(3.2)

β̃(ρ, v) =
1

T̂ um
(|u(ρ)− v + a1∆v| + a2∆v) (3.3)

and

∆v(ρ) = tanh
(

a3
ρ

ρm

)(
u(ρ)+ cρm

(
1
ρ
−

1
ρm

))
, (3.4)

with parameters ac = 2 m/s2, dc = −5 m/s2, T̂ = 0.1 s, a1 = −0.2, a2 = −0.8, a3 = 7 and c = −14 km/h.
Thus the maximum density of the road section 1 is 480 vehicles/km. The road section 2 can support 320 vehicles/km
at maximum. The initial data to start the numerical simulations consist of equilibrium data on the two road sections.
We prescribe a constant vehicle density ρ0 in both road sections, setting the initial velocity to v = u(ρ0). We choose
the constant ρ0 to be independent of the number of the lanes, the corresponding scaled densities in each road section
follow from dividing ρ0 by the number of lanes of that road section.

3.1. Parameter study

In the following we perform a parameter study of ρ0, varying the quantity between 50 (1/km) and 300 (1/km) in
steps of 50 (1/km). Fig. 3 displays the simulation results for the density (left column) and velocity (right column) for
simulations covering two hours. Note that, although the initial data are in equilibrium in each road section, the coupling
conditions at the interface between the two road sections do not guarantee the equilibrium during the evolution.

For a density ρ0 = 50 (1/km), a small region of higher density and lower velocity forms between about 5.5 km
and 7 km. This region corresponds to data located in the fundamental diagram on and scattered around the jam line.
Clearly, this congested region is fixed at the bottleneck and therefore cannot correspond to a wide moving jam. The
structure is supported by the bottleneck, i.e. the insufficient capacity of the road section 2 to carry the corresponding
free-flow rates in the road section 1. This region corresponds to synchronized flow. For a density ρ0 = 100 (1/km),
the dynamics becomes more complicated, but finally a synchronized flow region of extended width (ranging from
about 2 km to 7 km) forms. Only in a small region of the road section 1 (between 0 km and 2 km) traffic is in free
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Fig. 3. Traffic dynamics at the bottleneck caused by the reduction of the number of lanes on a highway. The column on the left shows the evolution
of the vehicle density in units (1/km/lane), the column on the right the corresponding evolution of the velocity in units (km/h). The different rows
correspond to different simulation runs varying the initial density ρ = ρ0 as indicated. See the text for a detailed description.

flow. For a density ρ0 = 150 (1/km), the synchronized flow region covers the entire road section 1. Moreover, a wide
moving jam travels through the two road sections, see the bright pink structure in the velocity plot. Increasing the
density still further leads to even wider wide moving jams. The velocities inside these jams decrease with the increase
of the initial density ρ0. For ρ0 = 300 (1/km) velocities of less than 1 (km/h) are reached inside the wide moving
jam. Note that the wide moving jams are not affected by the interfaces between the two road sections of the highway.
They travel upstream with an almost constant speed.
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3.2. Static solutions

In order to obtain a better understanding on the appearance of synchronized flow in front of the bottleneck we study
static solutions for the setup. Steady-state solutions are found for an appropriate coordinate system (t̃, z) = (t, x−ŵt),
when all time derivatives with respect to t̃ vanish [7]. Here, the speed ŵ is a constant. It follows from (2.1) and (2.2)
that steady-state solutions fulfill the following set of equations [7]2

q = ρ(v − ŵ), (3.5)

dv
dz
=

b(ρ, v)(u(ρ)− v)

v + ρu′(ρ)− ŵ
, (3.6)

with a constant flow q. From these equations we derive an ordinary differential equation for the density of steady-state
solutions,

dρ
dz
=
ρ2

q

b(ρ, v)(ρŵ + q − ρu(ρ))

q + u′(ρ)ρ2 . (3.7)

For static solutions, moreover, we have ŵ = 0 and z = x .
Having a closer look at the results in Fig. 3 for initial densities ρ0 = 50 (1/km) and ρ0 = 100 (1/km), we observe

that the dynamics finally settles and a static solution forms.
In the following we will analyze these static solutions in more detail. The upper and lower left panels of Fig. 4

display the density and flow profiles, for the initial density ρ0 = 50 (1/km) as well as for an initial density of
ρ0 = 100 (1/km). We note that apart from the location of the shock discontinuity, which is located at about 5.5
km and about 1.8 km respectively, the solutions are identical. The upper right panel of Fig. 4 displays the solution
for ρ0 = 50 (1/km) in the flow-density-diagram. In addition we indicated for each highway section the equilibrium
flow curve ρu(ρ) and the additional equilibrium curves, which correspond to the zeros of the effective relaxation
coefficient b(ρ, v), i.e. the high-flow branch and the jam line. As a result of our previous work [7], these curves can
be subdivided into stable, metastable and unstable branches, which are shown as solid, dashed and dotted curves in
this figure. Moreover, the numerical fluxes at the interface between grid cells in our conservative evolution scheme
are constant over the entire domain, and correspond to a flow q = 3743(1/h).

Shock discontinuities have to fulfill the Rankine–Hugoniot jump conditions, which are given in our system by

0 = (ρv)R − (ρv)L , (3.8)

0 = (ρv(v − u(ρ)))R − (ρv(v − u(ρ)))L . (3.9)

Here the subscripts L and R denote the states left and right of the shock. Eq. (3.8) expresses the conservation of the
vehicle number flow. The second Rankine–Hugoniot jump condition (3.9) reduces to (v − u(ρ))R = (v − u(ρ))L .
For the state on the left (upstream) of the shock we have v = u(ρ). Hence, this condition has to be fulfilled for
the state on the right of the shock (downstream) as well. As the state on the right is an unstable equilibrium state,
the solution settles to the metastable jam line corresponding to the same flow value. Up to numerical errors, the
observed transition layer is reproduced by the static solution (3.7) with ŵ = 0. At the interface between sections 1
and 2 at 14 km, which corresponds – due to the periodic boundary condition – also to 0 km, the coupling condition
(v − u2(ρ))R = (v − u1(ρ))L is trivially fulfilled, as both states are in equilibrium in their particular section. At
the interface between sections 1 and 2 at 7 km, we can determine the coupling conditions by solving the following
implicit equation for the density ρR on the right in section 2

vLρL

ρR
− u2(ρR) = vL − u1(ρL). (3.10)

The corresponding state (ρR, ρRvR) is located above the jam line in the fundamental diagram (see the upper right
panel of Fig. 4). Hence, in order to link this state with the stable free-flow section corresponding to the same flow
value, the solution has to cross the jam line. This is only possible provided that the denominator on the right-hand

2 Note that the correct equation (15) of this reference should be x = z + wt̃ .
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Fig. 4. Static solution with synchronized flow in front of the bottleneck, which is caused by the reduction of the number of lanes from 3 in
section 1 (0–7 km) to 2 in section 2 (7–14 km). The two panels on the left show the vehicle density and flow profiles for the static solutions, which
finally form for an initial density ρ0 = 50 (1/km) (solid line with circles) and ρ0 = 100 (1/km) (dashed line). Up to the location of the shock
discontinuity, the static solution is independent of the initial data. Note that for the vehicle flow, the two curves for initial density ρ0 = 50 (1/km)
and ρ0 = 100 (1/km) fully overlap. We further stress that the peaks located at about 5.5 km for ρ0 = 50 (1/km) and at about 1.8 km for
ρ0 = 100 (1/km) in the upper left panel correspond to sections of nontrivial static solutions. This can be seen in the inset of the upper left panel,
where we showed for comparison the solution of the ordinary differential equation (3.7). The situation in the flow-density-diagram is shown in the
upper right panel, where the circles correspond the the static data for ρ0 = 50 (1/km). Moreover, we added the equilibrium curves for each highway
section, that is the curves ρu(ρ) and the high-flow branch and the jam line, which correspond to zeros of the effective relaxation coefficient b(ρ, v).
The sections of equilibrium curves are plotted as solid (dashed, dotted) lines corresponding to whether sections are stable (metastable, unstable).
The static solution corresponds to a constant flow of 3743 (1/h). The lower right panel shows the difference of the theoretical value for the constant
flow 3779.80 (1/h) of static solutions and the numerical value obtained for different resolutions. Using a double-logarithmic scale, the data points
are well fitted by a straight line with a slope of about two, which is expected for the application of a second-order numerical scheme.

side of Eq. (3.7) vanishes on the jam line. The numerator trivially vanishes, as b(ρ, v) = 0 on the jam line. Suppose,
the denominator has a finite value. Then, the derivate dρ/dz would change sign at the jam line, and it would not be
possible to construct a decreasing function ρ(z), which is necessary to reach a state on the free-flow branch. Note
that a similar discussion applies to the existence of wide cluster solutions in some different traffic models described
by systems of balance laws [17,18]. Setting the denominator on the right-hand side of Eq. (3.7) to zero, we obtain an
implicit equation for the density ρc at the intersection with the jam line

v j (ρc)+ ρcu′(ρc) = 0. (3.11)

Here, the velocity on the jam line, which corresponds to b(ρ, v) = 0, can be calculated from

v j (ρ) = u(ρ)+ (a1 + a2)∆v(ρ). (3.12)

The solution of Eq. (3.11) gives

ρc = 57.32 (1/km), (3.13)

and the corresponding flow value is

q = ρcv
j (ρc) = 3779.80 (1/h). (3.14)
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Fig. 5. Sketch of the simulation setup. We study the dynamics on a two-lane highway with an on-ramp between the road Sections 1 and 3 at 7 km
(bottom of the picture) and an off-ramp between the road Sections 1 and 3 at 0 = 14 km (top of the picture). For simplicity, we do not represent the
simulation results on road section 2, but we will use the incoming and outgoing fluxes on this road section to compute the results on road Sections 1
and 3, i.e. on- and off-ramp form the boundaries of the one-lane road section 2.

This value is different from the numerical value of the flow in the right upper panel of Fig. 4, where we observed
a value of 3743 (1/h). However, this difference is only a consequence of discretization errors for the numerical
solution, the numerical value approaches the theoretical value with increasing resolution, the convergence rate being,
as expected, two. This can be seen in the lower right panel of Fig. 4.

Experimental data for highway bottlenecks caused by a lane drop show a largely constant outflow [19] with values
of up to about 1800 (1/h/lane) for the British motorway M4, which is close to our observed value of 1890 (1/h/lane).
Of course, this value strongly depends on the specific situation in each country and is determined by the precise choice
of the parameter values of the equilibrium velocity curve u(ρ) and the effective relaxation coefficient b(ρ, v) within
the model. It is expected that we overestimate the flow value, as we did not account for trucks in our model. However,
the numerical results are capable of reproducing the experimental fact, that the outflow downstream of a lane drop
bottleneck on a highway is constant and significantly lower than the maximum of free flow in that section. This
experimental observation follows within the BVT model from the necessary conditions for static solutions to form at
the bottleneck.

4. Bottlenecks caused by on-ramps and off-ramps

In the second setup we analyze by numerical means a two-lane highway with an on-ramp and an off-ramp. The
simulation setup is displayed in Fig. 5. For our simulations we chose a length of 7 km for two-lane road sections 1
and 3 each, and a length of 10 km for the one-lane road section 2. For the parameterization of the equilibrium velocity
curve and the effective relaxation coefficient, we use again the values given in Eqs. (3.1)–(3.4). We start the simulations
with a constant density in equilibrium on all road sections of ρ0 = 50 (1/km/lane) and vary the percentage of cars
α aiming to enter the road section 1 from the road section 3, see Eq. (2.25). The numerical results are summarized in
Fig. 6. For small to intermediate values of the parameter α, the simulations develop a state, where the road section 1 is
almost empty, i.e. traffic is in free flow in the road section 1. This can be easily understood by realizing that for small
values of α most of the cars use the by-pass road section 2. In contrast, traffic is in the congested regime in the road
section 3. For sufficiently high values of α (see the results for α = 0.5) synchronized flow develops in front of the
on-ramp in the road section 1. For α = 0.7 there is only a small region of free flow remaining in road section 1 which
disappears after a time of about 0.8 h. For a parameter value α = 0.9 a region of narrow moving jams forms in front
of the off-ramp in the road section 3.

5. Extension to a general junction

For a given junction n, let us denote by δ−n and δ+n , respectively the set of all incoming roads to n (indexed i in
what follows) and the set of all the outgoing roads to n (indexed k in the following). We require the Eqs. (2.1) and
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Fig. 6. Traffic dynamics at highway bottlenecks caused by on-ramps and off-ramps. The plot shows the traffic dynamics on the two-lane highway,
the road section 1 corresponds to the region between 0 and 7 km, the road Section 3 corresponds to the region between 7 and 14 km. We vary the
percentage of cars intending to enter from the road Section 3 into the road section 1, i.e. the value of α, in the range between 0.1 and 0.9 (different
rows). The column on the left shows the evolution of the vehicle density in units (1/km/lane), the column on the right the corresponding evolution
of the velocity in units (km/h).

(2.2) to hold on each road of δ−n ∪ δ
+
n . The percentage of cars on the road i intending to go to the road k are denoted

by αik , such that ∀i ∈ δ−n ,
∑

k αik = 1. These coefficients are assumed to be known.
Let U−i = (ρ−i , ρ

−

i v
−

i ),∀i ∈ δ
−
n and U+k = (ρ+k , ρ

+

k v
+

k ),∀k ∈ δ
+
n , respectively the boundary values on the

incoming and outgoing roads. We denote by βik , such that ∀k ∈ δ+n ,
∑

i βik = 1, the portion of cars on the road k
coming from the road i . We set

βik =
αikdi (ρ

−

i )∑
i∈δ−n

αikdi (ρ
−

i )
∀i ∈ δ−n , ∀k ∈ δ

+
n , (5.1)

with the demand functions di as defined in Eqs. (2.13) and (2.14). The homogenized w on the outgoing roads near the
junction are as follows
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w∗k =
∑
i∈δ−n

βikwi (U
−

i ), ∀k ∈ δ
+
n . (5.2)

With these quantities we define the supply functions sk as in Eqs. (2.17) and (2.18) for arbitrary k ∈ δ+n . For all

k ∈ δ+n , the intermediate state of density ρĎk on the outgoing road is given by the intersection point between the curves
vk(U ) = v

+

k and wk(U ) = w∗k .
To obtain the flux q on each road one has to solve the following maximization problem

max
∑
k∈δ+n

qk subject to (5.3a)

0 ≤ qi ≤ di (ρ
−

i ), ∀i ∈ δ
−
n ; (5.3b)

0 ≤ qk ≤ sk(ρ
Ď
k ), ∀k ∈ δ

+
n ; (5.3c)

qi =
∑
k∈δ+n

βikqk, ∀i ∈ δ
−
n ; (5.3d)

qk ≤
∑
i∈δ−n

αikdi (ρ
−

i ), ∀k ∈ δ
+
n . (5.3e)

6. Conclusion

We have studied the balanced vehicular traffic model at highway bottlenecks caused by the reduction of the number
of lanes and the effects of an on-ramp and an off-ramp. To this aim we performed numerical simulations changing the
initial density and the routing parameter at the off-ramp respectively. For the lane reduction setup the numerical results
show that already for moderate densities, synchronized flow forms at the bottleneck. The width of the synchronized
flow region increases with increasing density. At the same time, the outflow from the bottleneck stays constant, with
a flow value below the maximum capacity of the downstream road section, thus reproducing a capacity drop. This
is a consequence of the conditions for static solutions. For large densities, wide moving jams appear which travel
with a constant velocity upstream. Wide moving jams are not affected by the interface between the highway sections,
i.e. by a change in the number of lanes on the highway. For the setup with an on-ramp and an off-ramp our numerical
simulation shows that synchronized flow can form upstream of the on-ramp, but also in front of an off-ramp, where
narrow moving jams can emerge.

The theory of the coupling conditions described in this paper can be applied to the balanced vehicular traffic model
at a general junction, thus guaranteeing the conservation of the fluxes in the corresponding Riemann problems at
intersections.
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