
2-3 February 2006

S A N D I E G O S U P E R C O M P U T E R C E N T E R

ii

SDSC Technical Report
SDSC TR-2006-1

Editor
Reagan W. Moore

Program Chair
Wayne Schroeder

SRB Technical Committee
Arcot Rajasekar

Michael Wan
Wayne Schroeder

iii

Storage Resource Broker - Workshop on SRB Applications

Thursday Morning – February 2
Session 1:
Managing NOAO Distributed Archive using SRB.. 1

Irene Barg (National Optical Astronomy Observatory)

Purdue Multidisciplinary Data Management Framework Using SRB .. 6
Lan Zhao, Taezoon Park, Rajesh Kalyanam, Wonjun Lee, Sebastien Goasguen
(Purdue University)

Globally federated SRB zones ... 12
Yoshimi Iida (KEK Computing Research Center and JST/CREST)
Stephen J. McMahon (ANU Supercomputer Facility)
Glenn Moloney (University of Melbourne)
Yoshiyuki Watase (KEK Computing Research Center)
Takashi Sasaki (KEK Computing Research Center)

SRB Data Grid and Compute Grid Integration via the EnginFrame Grid Portal 15
Francesco Beltrame (DIST, Università di Genova)
Paolo Maggi (DAUIN, Politecnico di Torino)
Maurizio Melato (Nice S.r.l.)
Elisa Molinari (DIST, Università di Genova)
Riccardo Sisto (DAUIN, Politecnico di Torino)
Livia Torterolo (DIST, Università di Genova)

The Storage Resource Broker and e-Science in the UK... 21
L. Blanshard, R. Downing, G. Drinkwater, D. Hanlon, K. Kleese van Dam, L.
Roberts, R. Tyer (CCLRC Daresbury Laboratory)
 P. Berrisford, G. Brown, K. Haines, C. Moreton-Smith, A. Hasan (CCLRC
Rutherford Laboratory)

Session 2:
Storage Resource Broker Actors and Applications in Kepler .. 25

Nandita Mangal, Efrat Jaeger-Frank, Ilkay Altintas, Chien-Yi Hou, Lucas Gilbert,
Arcot Rajasekar (San Diego Supercomputer Center)

Integration of HDF5 and SRB for Object-level Data Access... 29
Peter X. Cao, Mike Folk (University of Illinois, Urbana)
Mike Wan (University of California, San Diego)

SRB Interfaces to the Antelope Environmental Monitoring System: The Antelope
ORBserver, Datascope Database System, and Deployable ROADnet Point-Of-Presence 34
 Kent G. Lindquist (Lindquist Consulting, Inc.)

Arcot Rajasekar, Frank L. Vernon, John Orcutt (University of California, San Diego)

iv

Data Grid Services Based on SRB for National Digital Archives Program in Taiwan 38
Wei-Long Ueng, Hui-Min Lin, Eric Yan (Grid Computing Centre, Academia Sinica,
Taiwan)

Thursday Afternoon – February 2
Session 3:
SRB Image Archive with Cropping and Scaling for Environmental Niche Modeling....................... 45

David Stockwell, Bing Zhu, Haowei Liu (University of California, San Diego)

VOSpace and VOStore Design .. 50
Reagan W. Moore (San Diego Supercomputer Center)

Near-real-time Backup of Large Seismic Waveform Datasets with Storage Resource Broker 55
Kent G. Lindquist (Lindquist Consulting, Inc.)
Jennifer Eakins, Frank L. Vernon, Arcot Rajasekar (University of California, San
Diego)

Some Tools for Supporting SRB Production Services .. 59
R. Downing (CCLRC-Daresbury Laboratory)
A. Weise, C. Koebernick (University of Reading)
A. Hasan (CCLRC-Rutherford Appleton Laboratory)

Demonstration Prototype for the Preservation of Large-Scale Multimedia Collections.................. 63
A. Rajasekar, R. Marciano, R. Moore, C.-Y. Hou, F. Berman (San Diego
Supercomputer Center)
B. Schottlaender, L. Declerck, B. Westbrook, A. Hutt, A. Kozbial, C. Frymann, V.
Chu (UCSD Libraries)
L. Burstan, S. Anderson, M. McEwen, B. Bornheimer (UCSD-TV)
H. Kreisler (UCTV-Berkeley)

Friday Morning - February 3
Session 4:
A Review of SRB Gridbrick Administration.. 68

Geoffrey Avila (University of California, San Diego)

Performance Optimization of SRB Hardware Configurations... 71
Peter Ashford (Ashford Computer Consulting Service)

SRB Portlet Development for the Grid Portals .. 75
Mary Thomas, Tarun Bansal, Tushar Gupta, Dave Thomas (San Diego State
University)
Akhil Seth (University of Texas at Austin)

Managing NOAO Distributed Archive using SRB*

Irene Barg
National Optical Astronomy

Observatory
ibarg@noao.edu

Abstract*

The NOAO Data Products Program (DPP) data flow
system [1] combines new data storage, data reduction
pipelines, VO portals, and a transport system to link
these together. This integrated system is NOAO’s first
step towards establishing a data center that is relevant in
the Virtual Observatory (VO) era. The core piece of this
integrated system is the data management and transport
system (DTS). A prototype DTS, was commissioned in
August 2004, with the San Diego Supercomputer Center
(SDSC) Storage Resource Broker (SRB) as the core
technology for managing NOAO’s physically distributed
resources. The prototype ran successfully for a year.
During this time, design of the NOAO Science Archive
(NSA) Data Service (DS) evolved and some of the
functional requirements of the DS could be met by the
DTS migrating to the federated MCAT, SRB zone model.
After running several proofs of concept tests, the task to
extend the DTS into SRB zone model, began in June
2005, and deployed in early November. This paper
describes the DTS zoneSRB architecture, and the
accompanying client software.

1. Introduction

One key requirement of the NSA is to maintain
holdings in an access controlled, volume-managed,
replicated repository. This will be accomplished through
the use of a Data Service [2]. The Data Service provides
mechanisms by which data can be transported, stored,
managed, replicated, provided, and retrieved. The Data
Service will provide a common interface to the NOAO
data holdings across multiple domains which include: Kitt
Peak National Observatory (KPNO) and NOAO
headquarters in Tucson, Arizona; Cerro Tololo Inter-
American Observatory and NOAO headquarters in La

* This research was sponsored by a funding agency. Views and
conclusions contained in this report are the authors’ and should not be
interpreted as representing the official opinion or policies, either
expressed or implied, of the Government, or any person or agency
connected with them.

Serena, Chile, and our offsite NSA partner the National
Center for Supercomputing Applications (NCSA) at the
University of Illinois at Urbana-Champaign (UIUC). The
DTS has successfully used SRB as the core technology
for file transport and replica management since August
2004. The NSA team wanted to leverage the experience
gained from the DTS and extend the current use of SRB
to a federated MCAT SRB zone model, which will
become the underlying infrastructure of the Data Service.

2. Background

 In April 2004, the Data Cache Initiative (DCI) [3] was
designed to combined the use of existing software
products:
 NOAO Save-the-Bits (STB) project. STB relies on

the BSD UNIX line printer daemon, lpd, to provide
queued network data transfers from instruments in the
various NOAO telescopes, to a central mountain
cache.

 NCSA BIMA Archive Real Time Transferor [4] an
rsync-based queuing mechanism, used to mirror the
mountain cache to downtown data centers.

 SDSC SRB [5] for transport and management of
replicas from each hemisphere's data center to NCSA
for off-site storage.

 Why SRB? The need for a distributed storage system
and data management system was identified in 2002. Then
in summer 2003, two replication middleware products
were evaluated:
o Lightweight Data Replicator (LDR) [6] - a collection

of tools provided by the Globus project. The Globus
pieces include: GridFTP, Resource Location Service
(RLS) and the Metadata Catalog Service (MCS).

o SDSC Storage Resource Broker (SRB) - a client-
server middleware that provides a uniform interface
for connecting to heterogeneous data resources over a
network and accessing replicated data sets. SRB, in
conjunction with the Metadata Catalog (MCAT),
provides a way to access data sets and resources based

1

on their attributes and/or logical names rather than
their names or physical locations.

 There were pros and cons to both packages, but SRB
was chosen over LDR because:
o SRB provides an ‘out-of-the-box’ data grid solution;
o SRB was a more mature package at the time of

evaluation;
o LDR had only 2 developers.

 January 2004, the NSA began discussions on
prototyping a location independent data management
system. In March 2004, a proposal [7] to use existing
software products (STB, rsyncer, SRB) to build a proto-
type data transport system was accepted by NOAO. In
August 2004, DCI was commissioned as a prototype data
transport system.
 February 2005, DCI began to experience growing
pains. Within the first six months, a 4TB data brick was
near capacity. The NOAO NEWFIRM instrument was
on the horizon, and would contribute an additional 40
Gbytes average per night. At the same time, design
discussions for the R3 Data Service began. The DCI
design choices were re-evaluated. Alternatives to SRB
were briefly evaluated in a trade study [8], and no single
solution was a clear winner. Our experience with SRB
had so far, been well. We began studying and testing
Federated MCAT (SRB zone) models, and once again, we
believe SRB was the best choice at the time due to:
o Three zone use case tests were promising;
o Short-comings found could be mitigated through

smart coding;
o Momentum in current DCI implementation;
o Mature package;
o Track record - large deployments (BIRN, NARA,

NASA IPG).

 In November 2005, the DCI was successfully
converted to a modified replicated data zone model and
renamed as the Data Transport System (DTS). Further
references to DCI and DTS represent the same system,
but at different phases.

3. NOAO Data Flow

 Figure 1 illustrates the NOAO data flow system [3],
where data and metadata flow from NOAO telescope
instruments and related facilities such as pipelines.

Figure 1. NOAO Data Flow

DCI was originally designed to provide a temporary
safe-store (cache) for data collected at NOAO telescope
facilities, and to guarantee three copies (Tucson, La
Serena, and NCSA). It met this minimum requirement by
using one central SRB MCAT server in Tucson that used
storage resources in La Serena and NCSA to store
replicas. This had two major disadvantages:

o Single point-of-failure
o Single site dependency

 As the design of the R3 Data Service evolved, it
became clear, that with a few changes, the DCI could lay
the infrastructure to support much of the Data Service,
but it needed to be extended to provide:
 Location independency

o Mountain caches, downtown data centers,
must function as independent components.

 Location transparency
o Request for a file can be obtained from any

location, even if the file no longer resides at
that location.

 The ability to make each site independent and robust
was crucial. Each zone needs to continue to function even
if another site goes down, and pick up where it left off,
before communication was lost. Location independency
became possible with the introduction of Federated
MCAT (SRB zones) in SRB R3.0 [9]. Some highlights
of SRB zones include:
 Multiple MCATs:

o MCAT ZONE – Defines a federation of
SRB resources controlled by a single MCAT

o Each Zone has its own sys admin - local
control of users and resources.

 Peer to peer zone architecture.

2

o Each Zone can operate entirely
independently from other zones.

 Data and Resource sharing across zones.
o Use storage resources in foreign zones
o Access data stored in foreign zones
o Copy data across zones

3.1. NOAO-NCSA zone Architecture

 Figure 2 illustrates the relationship of the DTS
components under the federated MCAT architecture:

Figure 2. NOAO-NCSA SRB zones
 Figure 2 illustrates the robustness of this zone
configuration:
o Zclient operates in a ‘pull’ fashion, reducing the

amount of network activity.
o Zclient communicates with local SRB server and

transfers are executed between zone SRB servers
for efficiency.

o Zones that are unreachable do not affect other
zones. Users can still obtain data from the local
MCAT, and a transfer between other zones is not
affected.

o Each zone has a c o p y of each other’s data.
o All transfers will be threaded for efficiency.
o The DTS is fully automated.

 The next revision of DTS will have NCSA as the data
hub between Northern/Southern hemispheres. This will
increase file transfer efficiency and get the data into a
permanent storage as soon as possible.

4. DTS Component Description

 The goal was to implement SRB zones with as little
code modifications as possible while retaining the basic
functionality of the DCI:
o Save-the-Bits (STB) – no change
o DciArchT – message queue client – no change
o DciTrackD - message queue – no change
o Zclient – File transfer client - Perl SRB API client

methods replaced rsync.
o SRB – complete re-design to support zones

4.1. Save-the-Bits

Data can enter the system anywhere through the
message queue (DciTrackD), but the main point-of-entry
is through STB. The Save-the-Bits program has been
running for more than a decade at NOAO [3]. Data are
captured at the instrument, simple remediation and
additional meta-data are added to the FITS headers, then
STB passes the ‘file path, md5sum, file size’ to the
DciArchT (not shown in Figure 2).

4.2. Message Queue Client (DciArchT)

The DciArchT is simply an interface to the DciTrackD
message queue. If DciArchT cannot connect to the
daemon, it re-tries every 10 seconds until a successful
connection is made.

4.3. Message Queue (DciTrackD)

The DciTrackD is a Perl implementation of a TCP
server daemon. It manages the list of tracks that need to
be transferred. A track is simply a string containing the
file path of the file we want transferred along with its
md5sum and file size. The daemon listens to a non-
privileged port, and responds to one of four requests: add
track; remove track; list tracks in queue; and shutdown the
message queue daemon. Figure 3 illustrates the
Point2Point (P2P) message system.

3

Figure 3. DTS P2P Message System

The P2P message system was chosen because:
o Wanted to keep it simple:

o Each message has only one consumer.
o A sender and a receiver of a message have no

timing dependencies. The receiver can fetch
the message whether or not it was running
when the client sent the message.

o The receiver acknowledges the successful
processing of a message by making a remove
request.

o Wanted to make it robust:
o Upon any successful request, the message

queue dumps to file.
o Message daemon runs continuously.

4.4. File Transfer Client (Zclient)

The simple reliable rsync calls have been replaced with
SRB API code, which has advantages and disadvantages:
o Cons:

o More bookkeeping involved.
o We must implement our own transaction

management.
o Database interfaces functions are often slow

(srbObjStat), and sometimes confusing
(srbModifyDataset).

o Pros:
o Support for collections.
o Data location transparency.
o Fast file transfer using parallel I/O.

 Zlcient operates in a pull (copy) fashion. It requests
tracks from a designated message queue. The track
message (a string containing “file path md5sum file size”)
constitutes a contract. The file path may be an SRB
object (SRB copy operation) or file system path (SRB

register operation). The receiving Zclient connects to the
local SRB MCAT enable server, and request the file be
copied or registered. In a copy operation, the actual file
transfer is done between the two SRB servers. Once the
transfer is complete, the Zclient compares the local copy
md5sum against what was sent in the track message. If
there is a miss-match, Zlcient flags an error, rolls-back
the transaction, and leaves the file in the queue.

4.5. Testing

Testing was conduct at three levels prior to deploying
the system:
o Installation tests – Multiple volunteers tested

SRB and Zclient distribution bundles.
o Integration tests – full-up simulation of the data

flow between mountain, downtown and remote
site.

o Workload tests – Nagios was used to capture
network, and CPU load statistics.

o File transfer tests – parallel (threaded) I/O is
important and can improve transfer rates by a
factor of 5 or more.

4.6. Monitoring

 At the time of this writing, we have 5 zones
operational, and another one pending at Cerro Pachon in
Chile. Monitoring is very important. We currently
monitor:

o SRB HotPage (under utilities/ping) in the SRB
distribution starting with SRB3.3.

o Daily reports generated during the NOON
rotation period provides a status of files queued
within the last 24-hour period.

o A file status checker runs every 72 hours and
compares the number of files entered into the
STB system, with each DTS zone.

o Other miscellaneous management reports.

4.7. Conclusions

 Please direct any questions regarding NOAO DTS
project to i b a r g @ n o a o . e d u .

5. Acknowledgements

 The DTS project is a team effort. I would like to
thank: Rob Seaman for creating STB. Nelson Zarate who
developed the DCI SRB proto-type, and wrote DTS
monitoring code. Nelson Saavedra for getting our Apple
Xserve RAID system just in the nick of time. Chris
Smith for his leadership. Stanley Yao, who conducted
trade, studies on distributed storage systems, and proof-of-

4

concept tests for SRB zones. NSCA team members Ray
Plante, Ramon Williamson and David Fleming for
providing the NCSA Mass Storage System interface.
Michal Wronski, creator of SRB Perl API. All the
people who took time to respond to my post to srbChat.
Finally, to the SRB team at SDSC for creating SRB.

References

[1] NOAO DPP: http://www.noao.edu/dpp/software-
changes.html

[2] A. Granados, “Overview HLA” (NSA presentation,
February 2005)

[3] R. Seaman, et al, “The NOAO Data Cache Initiative –
Building a Distributed Online Data store”, ASP
Conference Series, Vol. XXX, ADASS XV

[4] Mehringer, D. 2001, "The BIMA Data Archive Real
Time Transfer System",
http://bimaarch.ncsa.uiuc.edu/RTT.html

[5] SRB - “The Storage Resource Broker Web Page”,
h t t p : / / w w w . n p a c i . e d u / D I C E / S R B /

[6] LDR – “Lightweight Data Replicator” web page,
http://www.lscgroup.phys.uwm.edu/LDR/overview.ht
ml

[7] R. Seaman, N. Zarate, I. Barg, "Save the Bits+Storage
Resource Broker Interim Data Transport System",
(March 2, 2004 Proposal to NOAO Data Products)

[8] S. Yao, I. Barg, "SRB Federated MCAT - NSA R3 SRB
Alternatives and Recommendation", (NOAO White
Paper, February 23, 2005)

[9] M. Wan, "An Overview of Federated MCAT Design
(SRB 3.0)", (September2003)

5

Purdue Multidisciplinary Data Management Framework Using SRB*

Lan Zhao, Taezoon Park, Rajesh Kalyanam, Wonjun Lee, Sebastien Goasguen
Purdue University

Rosen Center for Advanced Computing
Email: lanzhao@purdue.edu

Abstract*

This paper describes the design and implementation of
the Purdue multidisciplinary data management framework.
As part of the TeraGrid Resource Provider program, this
framework provides a generic infrastructure for managing
data collections from different data sources with multiple
accessing points, serving local and national users across
application domains. The framework’s base component is
Storage Resource Broker (SRB), a client-server
middleware developed at SDSC that provides a uniform
interface to heterogeneous resources. On top of SRB,
domain-specific data servers such as OPeNDAP (Open-
source Project for a Network Data Access Protocol) and
THREDDS (Thematic Realtime Environmental
Distributed Data Services) are integrated into the
framework to provide additional server-side data
processing. A Gridsphere based data portal has been
developed which consists of customized JSR-168-
compliant SRB portlets, enabling easy data discovery,
access, and sharing. Our framework has been successfully
applied to the management of various datasets from
remote sensing images, real-time satellite and radar
streaming data, to large-volume scientific datasets from
climate modeling. It has made an immediate impact on
the corresponding research activities enabling the
development of powerful data-driven applications.

1. Introduction

Today’s researchers face significant challenges in
taking full advantage of large volume of data with
increasing complexity generated from a wide variety of
sources including remote sensors, instruments, and
experiments. It also presents a great challenge for the
administrators to collect, process, archive, and publish

* This research was sponsored by the National Science Foundation

through the Purdue TeraGrid Resource Provider award #SCI-0503992.
Views and conclusions contained in this report are the authors’ and
should not be interpreted as representing the official opinion or
policies, either expressed or implied, of the Government, or any
person or agency connected with them.

different types of data in a timely manner. As a result,
data management has become a major road block in many
cases where research activities require time-critical,
efficient data discovery, access, and sharing. As part of the
TeraGrid initiative at Purdue University, we address this
challenge by developing and deploying a cross-
disciplinary data management infrastructure that provides
national access to local data collections. The primary
goals are to make the infrastructure generic and
extensible. It should be easily extendable to manage data
collections from different scientific disciplines and capable
of handling new data types and storage strategies as
technology evolves. In addition, it is important that the
system provides easy access to the data with multiple
accessing points.

SRB, an open source middleware developed at SDSC
[1], is the base component of our data framework. SRB
provides a uniform interface to distributed and
heterogeneous data resources. It also allows users to
discover data based on logical attributes instead of
physical file names and path names [2]. To further
facilitate data discovery and processing which are often
domain-specific, we have built another layer of
application servers including OPeNDAP (Open-source
Project for a Network Data Access Protocol) and
THREDDS (Thematic Realtime Environmental
Distributed Data Services) servers on top of SRB [3, 4].
This allows researchers to transform, combine, or subset
datasets directly with existing OPeNDAP/THREDDS-
enabled tools such as Integrated Data Viewer (IDV) and
MatLab.

As the starting point, the framework has been
successfully applied to the management of a number of
datasets of different types in earth, atmospheric, and
environmental research. Our framework has made a
positive impact on the research activities that previously
required the data curator to locate the DVD or CDR that
contains the data being requested and to mail it to the
user. A general purpose data portal has been developed,
which will be used to access climate modeling data and
Doppler radar data in undergraduate courses to be taught in

6

the Spring semester of 2006. In the second phase, we
plan to extend this framework to manage spectral imaging
and confocal microscopy data from bioscience and medical
fields as well as to provide support for data services and
workflow management.

The remainder of the paper is organized as follows:
Section 2 describes different data collections currently
hosted by the data management framework. Section 3
presents the design and deployment of our data
management framework at Purdue University. Section 4
describes our effort in metadata design. Using NWS and
climate modeling datasets as examples, Section 5
describes how data are managed and accessed through the
system. Section 6 explains the multiple data access
interfaces, and Section 7 describes our future work.
Finally, Section 8 presents the conclusions.

2. Data Collections

As part of the TeraGrid Resource Provider, Purdue
provides access to traditional High Performance
Computing resources such as Linux clusters and storage
area. Moreover, Purdue also strives to offer a new set of
resources that is seamlessly integrated with the TeraGrid
infrastructure: Data collections. It is in this context that
the data framework was developed and recently deployed.
Currently, multiple data collections from a number of
application domains have been successfully integrated
into the system.

2.1. LARS Dataset

Provided by Laboratory for Applications of Remote
Sensing (LARS) at Purdue University, the LARS image
data collection includes multi-spectral (3 to 15 or so
wavelength bands) and hyper-spectral (dozens to hundreds
of wavelength bands) image data that are being used for
education and research purposes [5]. Most of the image
data are for locations in the State of Indiana, dated from
1972 to 2004. The data have been collected by satellite-
borne and aircraft-borne sensors. Each band of data in a
data set represents the energy received by the sensor that
is within the wavelength range of that band. Different
sensors cover different portions of the optical spectrum.
The primary data formats are ERDAS LAN, Leica
Geosystems Imagine, GeoTIFF, and HDF. In addition,
some are in LARSYS MIST format.

2.2. PTO Satellite Dataset

Provided by Purdue Terrestrial Observatory (PTO), the
PTO image data sets currently include data from the
GIVSSR sensor on the GOES-12 (also called GOES-
East) satellite [6]. These data are collected every 15 to 30

minutes covering different portions or sectors of the earth
disk. A full disk scan sector is obtained every 3 hours.
The current data products published online include the
most recent JPEG-formatted images for the eastern United
States and images for the continental United States.

2.3. NWS (National Weather Service) Doppler
Radar Data

Purdue University is one of the country's four top-
level distributors of high-resolution radar data from the
national network of Next Generation Radar (NEXRAD)
[7]. The NEXRAD Radar system comprises 159 Weather
Surveillance Radar-1988 Doppler (WSR-88D) sites across
the United States and in selected overseas locations.
Using the Unidata Local Data Manager (LDM)
technology, NWS data are collected and redistributed in
real time. It is composed of Level II and III data. Level II
data are in three meteorological base data quantities:
reflectivity, mean radial velocity, and spectrum width.
These quantities are further processed to generate
numerous meteorological analysis products known as
Level III data.

2.4. Climate Modeling Data

This dataset is provided by Professor Matt Huber’s
research group in the Department of Earth and
Atmospheric Sciences at Purdue University. The data are
output from the Community Climate System Model
(CCSM) to simulate global climate changes [8]. It
consists of four dynamic geophysical models simulating
the atmosphere, ocean, land surface and sear-ice, and one
central coupler component. It facilitates fundamental
research on the earth’s past, present, and future climate
states. This set of data is in NetCDF file format [9].

3. Data Management Framework

To accommodate the various data in different
application domains described in Section 2, we have
designed and developed a general-purpose data
management framework at Purdue University. The main
objective is to build a flexible and extensible
infrastructure that can (1) be used to manage different data
sources across different scientific disciplines and (2)
provide multiple interfaces for users to easily discover,
access, and share data in a timely manner. All resources in
the framework are connected to the high-speed TeraGrid
network. The architecture of the data management
framework is shown in Figure 1. It is based on SRB,
which provides a uniform interface to heterogeneous and
distributed data resources. Our framework is composed of

7

four modular, extensible software layers: data capture
layer, SRB layer, application layer, and presentation layer.

Data Capture Layer

SRB Layer

Application Layer

Presentation Layer

SRB Server
Metadata Catalog

(MCAT)

OPeNDAP
Server

SRB Tools
(MySRB , InQ,
S-commands,

JARGON)

Customized
Portals

SRB
Portlets

OPeNDAP
Clients

THREDDS
Clients

LARS Data PTO Data NWS Data
Climate

Modeling Data

THREDDS
Server

Centera
System

Unix Based
File System

Figure 1 . Architecture of Purdue
Data Management Framework

3.1. Data Capture Layer

Several data drivers have been developed based on the
type of data sources and temporal/spatial requirements.
The data drivers connect the data sources to the SRB
engine. Programs are developed to automatically extract
meta-data, register meta-data in the Metadata Catalog
Server at SDSC, and ingest data into the local SRB
server. Tools are developed to normalize application-level
meta-data to be compliant with the meta-data standards in
the corresponding communities. To solve the problem of
accessing the high-volume climate modeling data, a 32
TB Centera storage system donated by EMC has been
deployed to provide quick online data access.

3.2. SRB Layer

Both raw data and post-processed products are stored in
SRB, making them available to users. The data are stored
in logical data collections, associated with domain-
specific meta-data, which facilitate information discovery
and exchange. For the real-time PTO satellite streaming
data, SRB shadow directory objects are used to provide
access to the latest data that are updated in a near-real-time
manner. For Doppler radar and Climate Modeling data,
SRB HTTP URL objects are used to integrate
dynamically-generated THREDDS data catalog and
OPeNDAP server-side processing capabilities with
logical-attribute-based query functions provided by SRB
metadata catalog.

3.3. Application Layer

Some of the datasets are further processed on the server
side by sub-setting, aggregation, or other analysis
methods before they are sent to the user. This is achieved
by integrating OPeNDAP server with SRB for the
climate data, and by integrating THREDDS server with
SRB for the Doppler radar data. As a result, users can
conveniently access both the data and meta-data using
OPeNDAP/THREDDS-enabled clients such as IDV,
MatLab, web browser, and Excel. In addition, the size of
the data that need to be transferred over the network is
significantly reduced after server-side processing.

3.4. Presentation Layer

While each research community has its own means of
data presentation, several general-purpose interfaces are
provided to users for easy data access. Users are able to
access data directly via SRB clients including Unix-like
SRB commands, Java Interface, web interface, and
Windows GUI. In addition, a more user-friendly data
portal is currently under development. In the first phase
we have developed a data portal that consists of several
JSR-168-compliant SRB portlets based on the GridSphere
Potal Framework [10, 11]. It enables researchers to
browse, search, and download data without having to learn
about the underlying system. The data portal has created
an immediate impact on the research communities that
generate and utilize the data and will soon be used for data
access in college-level course work.

4 . M e t a d a t a E x t r a c t i o n and
Standardization

Standardized descriptive metadata can substantially
improve the effectiveness of data discovery. For each file
registered in SRB, there are system-level metadata
automatically generated and registered on primitive
attributes such as file name, path, size, date, access
control. In addition, users can define their own
application-level metadata. All metadata are registered in
the MCAT server. Users can easily construct queries based
on the metadata. For example, a simple scenario is to
search for all Landsat 7 images captured in May 2004
covering the State of Indiana, and to download them from
the SRB server.

In the case of LARS datasets, the metadata are
processed in two steps. First, several programs are
developed to harvest the metadata from various places.
The main part of metadata comes from the file header
which contains information about the image type, image
size, pixel resolution, channel information, etc. A utility
called MultiSpec is extended to extract the internal

8

metadata for each image. In addition, there is also
information scattered on the LARS web site such as
sensor name, satellite, row/path numbers, location, as
well as separate text files with description on how the
datasets were generated. A Java tool has been developed to
collect and enter the information as much as possible
before manual processing.

One of the goals of integrating data collections into
our data management infrastructure is to facilitate the
discovery, access, and sharing of data sets. To achieve
this, the application-level metadata are further transformed
and standardized. There are several metadata standards in
the geo-science and remote sensing community. We have
chosen “Content Standard for Digital Geospatial
Metadata” (CSDGM) Version 2 and “Content Standard for
Digital Geospatial Metadata: Extensions for Remote
Sensing Metadata” (FGDC-STD-012-2002), which have
the widest acceptance within the community [12, 13].
Both are proposed by Federal Geographic Data Committee
(FGDC). Since the LARS dataset has a lot of legacy data
that lack some of the mandatory information specified in
FGDC standard, we have decided that the final format of
LARS metadata will follow a template that is a
simplified version of the FGDC standard. We have also
developed a detailed document describing the LARS
metadata template. In addition to the user-defined
attributes registered in the SRB metadata catalog which
enables query-based search, there is an XML metadata file
associated with each LARS image file, which enables the
IndianaView portal [14] to provide users with the
metadata file together with the original image.

5. Case Studies

An overview of the current deployment of our data
management framework is shown in Figure 2. It
demonstrates how different datasets are managed by our
common framework and how users could easily access the
data via different interfaces. In the case of the NWS data,
real-time streaming data are archived in the local file
system of a server running THREDDS and LDM. The
data are organized based on the name of the source radar
station. Each station collection is registered as an HTTP
URL object in the SRB MCAT server. The registered
URL is the address of a dynamically generated data catalog
on the THREDDS server. A user first searches SRB to
locate the station of interest. She will then be redirected
to a dynamically generated data and metadata catalog
managed by the THREDDS server which has native
support for the compressed Level II radar data. From
there, it is very easy for the user to access and analyze the
data.

The climate modeling data are in NetCDF file format,
an array-oriented self-describing portable data format. It is

a common scenario to append data along one dimension
or access a small subset of a large dataset specified by
variables. To accommodate this, HTTP URL object is
used to link the MCAT metadata with the real data
managed by an OPeNDAP server. Similar to the NWS
data, a user first searches MCAT to find the modeling data
she is interested in. From there, the user is redirected to
the WWW interface of the OPeNDAP server which
provides services for data attribute description, data
download, and data sampling. A user may choose to
sample the dataset simply by appending a constraint
expression to the URLs given to her visualization or
analysis program. It greatly reduces the amount of data
that the local program needs to process, as well as the
network load for data transfer.

Figure 2. Current Data Collections,
Data Management System, and Data
Access.

6. Data Access

As demonstrated by the examples in Section 5, one of
the key advantages of our data management framework is
that there exist multiple ways to access the data sets from
various platforms, meeting the needs of various users.

6.1. SRB Clients

Users can interact directly with the SRB server via
client-side tools provided by the SRB group, including
MySRB, InQ, S-commands. They can also develop

9

customized programs using the client libraries in C, Java,
Python, and Perl [15].

6.2. OPeNDAP/THREDDS Clients

In addition to various SRB clients, researchers also
wish to use their existing tools to access data. With the
added benefit of distributed data management and attribute-
based query provided by SRB, the Doppler radar data may
be accessed directly using THREDDS-enabled tools such
as NetCDF-Java as shown in Figure 3. The NetCDF-
formatted climate modeling data are accessible via
OPeNDAP-enabled clients, a common way to access data
in the environmental research community.

Figure 3 . Data Access using a
THREDDS Client

6.3 . Purdue Environmental Observatory Data
Portal

As a single access point to various datasets, we have
developed the Purdue Environmental Observatory Data
Portal that allows researchers in the field and students in
environmental engineering to easily access the data
without having to learn the underlying software
technology [16].

The data portal is developed and deployed using the
Gridsphere Portal Framework – an open source web
portlet container which allows users to develop and
deploy JSR-168-compliant portlets onto a standard portal
container like Apache Tomcat. It consists of customized
SRB portlets that are web applications providing dynamic
content from SRB using JARGON API [17]. The portlets
are designed such that it is easy to reuse the portlet
modules. Currently, the data portal supports collection
browsing, metadata display, metadata query, file
download, and preview for HTTP URL SRB objects. The
critical requirement is to design the interface to meet the

need of end users. For example, we found that the
traditional way of searching files via a SQL-like query is
not acceptable to most end users who have little
knowledge of the query syntax and keyword to choose.
We are working on redesigning the query interface by
working closely with real-world end users.

F i g u r e 4 . P u r d u e E n v i r o n m e n t a l
Observatory Data Portal

6.4. IndianaView Web Portal

In addition to the general-purpose data portal discussed
in 6.3, some specialized web interface has also been
developed to access data in the framework. For example,
the IndianaView web portal has been developed in
collaboration with the LARS group [13]. It allows users
to access, preview, and download the LARS data as well
as its associated metadata. The web server accesses the
data on behalf of the user via a group account. The
IndianaView project is part of the AmericaView initiative,
a nationwide program to promote the sharing of satellite
remote sensing data and technologies [18].

Figure 5. IndianaView Portal

10

7. Future Work

In the second phase of our data portal development, we
will focus on the implementation of features including
account management, grid integration, and domain-
specific portlet customization. To support data security
and collaboration among researchers, we also plan to
leverage the built-in features of accounting and zone
federation in SRB. In addition, domain-specific work flow
and data services will be built to integrate data generation,
capture, archive, analysis, and visualization. In the
meantime, we are in the initial stage of applying our data
management framework to new data sources in the
bioscience domain. We also expect to develop drivers that
provide real-time data integration into the SRB system.

8. Conclusions

We have presented the Purdue multidisciplinary data
management framework. The contributions of our
framework include: (1) A generic distributed architecture
for effective management of data from different data
sources across scientific disciplines, (2) multiple access
points for users with different backgrounds and expertise,
(3) the integration of OPeNDAP, THREDDS, and SRB
functionalities which offers additional server-side post
processing capabilities, allowing integrated, efficient data
access using existing programs, and (4) a user-friendly
data portal consisting of customized SRB portlets serving
as a gateway to the datasets.

References

[1] C. Baru, R. Moore, A. Rajasekar, M. Wan, "The SDSC
Storage Resource Broker," Proc. CASCON’98
Conference, 1998.

[2] MCAT, "MCAT: Metadata Catalog, " SDSC
http://www.sdsc.edu/srb/mcat.html.

[3] T. Sgouros, "OPeNDAP User Guide," Version 1.14, July
2004.

[4] B. Domenico, J. Caron, E. Davis, R. Kambic, S.
Nativi, "2002: Thematic Real-time Environmental
Distributed Data Services (THREDDS): Incorporating
Interactive Analysis Tools into NSDL," Journal o f
Digital Information, 2.

[5] Laboratory for Applications of Remote Sensing,
http://www.lars.purdue.edu .

[6] P u r d u e T e r r e s t r i a l Observatory,
http://www.itap.purdue.edu/pto / .

[7] P u r d u e L e v e l I I R a d a r Data,
http://roskilde.eas.purdue.edu/~level2/index.html .

[8] M. Huber, R. Caballero, "Eocene El Niño: Evidence for
robust tropical dynamics in the “hothourse”," Science,
299 (2003) 877-881.

[9] The NetCDF Users’ Guide, Data Model,
Programming Interfaces, and Format for Self-
Describing, Portable Data, NetCDF Version 3.6.1,
May 2005.

[10] J. Novotny, M. Russell, O. Wehrens, "GridSphere: An
Advanced Portal Framework, " EUROMICRO 2004,
412-419.

[1 1] J S R 1 6 8 : P o r t l e t Specification
http://www.jcp.org/jsr/detail/168.jsp .

[12] Content Standard for Digital Geospatial Metadata”
(CSDGM) Version 2 (FGDC-STD-001-1998),
http://www.fgdc.gov/standards/documents/standards/m
etadata/v2_0698.pdf .

[13] Content Standard for Digital Geospatial Metadata:
Extensions for Remote Sensing Metadata (FGDC-STD-
012-2002),
http://www.fgdc.gov/standards/documents/standards/re
mote_sensing/MetadataRemoteSensingExtens.pdf .

[14] IndianaView portal, http://www.indianaview.org / .
[15] A. Rajasekar, M. Wan and R. Moore, "MySRB & SRB -

Components of a Data Grid," The 11th International
Symposium on High Performance Distributed
Computing (HPDC-11) July 24-26, 2002.

[1 6] Purdue Environmental Observatory Data Portal,
http://gridsphere.rcac.purdue.edu/gridsphere .

[17] Java API for Real Grids On Networks (JARGON) -
v e r s i o n 1 . 4
h t t p : / / w w w . s d s c . e d u / s r b / j a r g o n / i n d e x . h t m l .

[18] AmericaView program, http://www.americaview.org/ .

11

Globally federated SRB zones*

Yoshimi Iida
KEK Computing Research Center

and JST/CREST
Yoshimi.Iida@kek.jp

Stephen J. McMahon
ANU Supercomputer Facility

stephen.mcmahon@anu.edu.au

Glenn Moloney
Univ. of Melbourne

glenn@physics.unimelb.edu.au

Yoshiyuki Watase
KEK Computing Research Center

Yoshiyuki.Watase@kek.jp

Takashi Sasaki
KEK Computing Research

Center
and JST/CREST

Takashi.Sasaki@kek.jp

Abstract*

A world-wide federation of SRB servers was
demonstrated successfully among KEK, ANU, KNU,
IHEP, ASCC, Krakow and SDSC. We have measured the
performance of parallel transfer between the sites and the
results are compared with the WAN emulation.

1. Introduction

KEK hosts various accelerator science programs
including High Energy Physics, Nuclear Science,
Material Science, Bio-medical and so on. These research
projects are done by international collaborations and have
strong world-wide demands on sharing archived data.

KEK Computing Research Center is continuing
efforts on using SRB in a medical application and the
Belle experiment. In a project for developing simulation
software for particle-based therapy, SRB will be used to
share necessary information, e.g. cross section tables,
input files and simulation output. The Belle experiment
is one of the biggest HEP experiments. They already
store two Peta Bytes of data, and are accumulating one
Terabyte per day while the accelerator is operating.

Comparing with simple server-client models, SRB
zone federation promises independent operation among
sites. Every thing is done locally to access local files. It
is not necessary to contact servers at any other sites even
if they are sharing the single file name space. Only when
accessing remote files does remote server access happen.
This feature is very attractive for world-wide
collaborations who sometimes experience interruption of
network connections to other sites.

* This research was partially sponsored by JST/CREST. Views and

conclusions contained in this report are the authors’ and should not be
interpreted as representing the official opinion or policies, either
expressed or implied, of the Government, or any person or agency
connected with them.

To demonstrate the capabilities of the SRB, KEK
sponsored a workshop in December 2004. People from 7
sites in Australia, Taiwan, China, Korea, Poland, United
States and Japan joined it and worked on installing and
establishing a world-wide zone federation with great help
from Michael Wan from SDSC.

Here we report our experience on world-wide zone
federation. Some of our results are already reported in [1].

2. The testbed and the federations of zones

People from 7 sites, ANU, ASCC, IHEP, KNU,
Krakow, SDSC and KEK worked together to set up the
testbed. In Figure 1, the geographical locations of each
sites are shown.

Figure 1: Participating sites

For sites where SRB was not yet installed, they
started from scratch during the workshop. At this time, a
bug was found in the zonesynch script, but it was fixed
quickly by SDSC. After some trial and error, we
established the zone federation. We confirmed that zone
federation was working among sites during this workshop
as shown in Figure 2.

The network connections are normal production lines
from KEK to other sites. The associated bandwidths are
shown in Figure 2. At each site, a SRB server, a storage

12

resource, and an MCAT server were installed. For this
test, SRB version 3.1.2p was used at all sites and each
site was set up as a separate SRB zone. At the KEK
local SRB zone, the MCAT server was configured using
an IBM DB2 database management system. We also
configured a SRB server for the Belle data files with NFS
access to the Belle data server. The necessary ports were
opened on the KEK firewall to allow connections from
the fixed IP addresses of the other sites

Figure 2: Federated zones

.

3. Performance Measurement

The data transfer performance was measured among 6
sites excluding SDSC.

 A detailed study of the data transfer performance was
previously conducted between the KEK and ANU zones.
These two sites have a very long transfer distance and
correspondingly high latency for network
communications. Initial tests showed a transfer rate
between these zones of about 120KB/s for a single
threaded transfer. This transfer rate wasn't enough to
support the Australian share of the simulations. In order
to improve the data transfer performance the TCP window
size was increased to 4MB on the ANU server and 8 MB
on the KEK server. With a higher TCP window size, idle
time will decrease since more data is shipped between
packet acknowledgements. For high latency networks,
this was expected to improve the performance and the
result shows that the data transfer rate increased to about
260KB/s.

 Tests were then carried out using the parallel transfer
feature of SRB that is enabled through the '-m' option of
the Sput and Sget commands. Parallel transfers are the
default for server-to-server transfers such as Sreplicate and

Scp commands in SRB. Files ranging from 0.5MB to
500MB were used in the tests as the number of threads
that SRB chooses to use is determined by the file size.
SRB server parameters controlling the number of threads
are SizePerThread and MaxThreads. By default
SizePerThread is set to 30MB and MaxThreads is set to 4.
After some test was done with these default settings,
SizePerThread was then set to 2MB and MaxThreads was
set to 16 and the tests were repeated. The results for
some parallel transfer testing between ANU and KEK are
shown in Figure 3 with

0

0.5

1

1.5

2

2.5

3

3.5

0.5 2 10 50 100 500

File size Mb

T
ra

ns
fe

r
R

at
e

M
b/

s

Sput bcs20, default
settings

Sget bcs20, default
settings

SizePerThread 2Mb,
MaxThread 16, Sput
gl01
SizePerThread 2Mb,
MaxThread 16, Sput
bcs20

SizePerThread 2Mb,
MaxThread 16, Sget
bcs20

Figure 3: Parallel transfer performance between
ANU and KEK

We obtained better results with SizePerThread of 2MB
and MaxThread 16 than the default values. The following
federation tests between all 6 sites was carried out with a
100MB data file transfer utilizing SRB’s 16-thread
parallel transfers. The results of data transfer from KEK to
remote sites for various sizes of data file are shown in
Figure 4. Also the transfer tests with a fixed data size of
100MB among 6 sites are listed in Table 1.

Figure 4: Transfer performance with various file
sizes

13

 Destination
Source

KNU ASCC ANU Krakow IHEP
KEK 9.65 5.89 3.06 2.69 0.59
KNU - 5.68 4.45 4.47 0.61
ASCC 7.54 - 2.84 5.09 0.64
ANU 4.79 2.53 - 3.44 0.58
Krakow 1.21 1.64 4.19 - 0.60
IHEP 0.70 0.39 0.44 0.25 -

Table 1: Transfer rates among sites with a file with
100MB in size (MB/sec)

 In Table 2, the measured transfer rate versus the latency
(Round Trip Time) is shown. As expected, although
ANU has higher bandwidth than other sites, the
performance rate was not good enough because of higher
latency.

Destination RTT(msec)
Nominal
Bandwidth
(Mbps)

Transfer
Rate
(Mbytes/s)

IHEP 502 10 0.59
Krakow 327 100 2.69
ANU 292 622 3.06
ASCC

Taiwan 33 100 5.89

KNU 23.6 100 9.65

Table 2: Transfer performance between KEK and other
sites. The latency was measured in December 2004.

The setting of TCP window size means that the specified
value was requested for use but actual size is determined
by best effort. Once a packet loss happens, the size is
reset to the default one. The TCP logic for increasing the
window size after packet loss recovers the specified
window size very slowly. For high latency networks, this
process takes more time (slower negotiations) and the
transfer rates go down. If the quality of the networks is
not good enough, packet loss happens often and this
becomes the reason for a lower transfer rate then the
nominal bandwidth. We confirmed this behavior by
measuring performance under WAN emulation using the
NIST Net [2].

4. Conclusions

A federation of SRB servers in world-wide was
demonstrated successfully among 7 sites. The
functionality of SRB is very rich for use in WAN
environments. We have measured the performance of
parallel transfer provided in SRB among those sites. The
result shows that the latency and quality of the network is

the key to obtain better performance and that higher
network bandwidth alone is not sufficient.

5. Acknowledgements

We would like to thank following people who joined
the workshop at KEK and contributed to this work.

Michael Wan (SDSC, US),
Gang Chen(IHEP,Beijing),
Ma Mei (IHEP, Beijing),
Henryk Palka (Krakow, Poland),
Huimin Lin (ASCC, Taiwan),
Kihwan Kwon (CHEP, Korea) and
Nobu Katayama (IPNS, KEK)

Especially, the authors are very much grateful to Michael
Wan and the SRB team at SDSC. Mike prepared the
lectures and helped us very much to establish the zone
federation. The SRB team provided us very fantastic
support on their software.

References

[1] Y. Iida et al., “SRB SYSTEM AT BELLE/KEK”, KEK-
PREPRINT-2004-57, Oct 2004. Computing in High Energy
and Nuclear Physics (CHEP'04), Interlaken, Switzerland,
September, 27 - October 1, 2004.

[2] Mark Carson and Darrin Santay, NIST Net - A Linux-based
Network Emulation Tool, June 2003, Computer
Communication Review.
http://snad.ncsl.nist.gov/itg/nistnet/

.

14

 1

SRB Data Grid and Compute Grid Integration via the EnginFrame Grid Portal

Francesco Beltrame
DIST, Università di Genova

Genova, Italy
francesc@dist.unige.it

Paolo Maggi
DAUIN, Politecnico di Torino

Torino, Italy
paolo.maggi@polito.it

Maurizio Melato
Nice S.r.l.

Cortanze (AT), Italy
maurizio@nice-italy.com

Elisa Molinari
DIST, Università di Genova

Genova, Italy
elisa@bio.dist.unige.it

Riccardo Sisto
DAUIN, Politecnico di Torino

Torino, Italy
riccardo.sisto@polito.it

Livia Torterolo
DIST, Università di Genova

Genova, Italy
livia@bio.dist.unige.it

Abstract

Support for distributed computation has been one of
the earliest areas of exploration in Grid computing and
many tools have been developed in order to allow people
to run jobs or use services on distributed and
heterogeneous computing resources.

In this paper we will show how the EnginFrame Grid
portal can be used to integrate this kind of tools with the
data Grid capabilities of the Storage Resource Broker
(SRB).

In particular, we will describe how to use the
EnginFrame Grid portal to develop innovative services
making use of both the SRB capabilities of sharing and
managing data and metadata in an heterogeneous and
distributed environment, and the power and flexibility
provided by a computational Grid.

We will also present two demonstrative services
exploiting the described EnginFrame-SRB integration:
a fire propagation simulation and a neuroscience
application.

1. Introduction

Grid computing is one of the most important topics
appeared in the computing field in the last decade. This
is due to the increasing needs arising in the IT world: the
need for more computational power in order to solve
very complex problems in a variety of scientific or
industrial fields and the need to leverage the usage of the
information technology resources owned by
organizations.

Support for distributed computation has been one of
the earliest areas of exploration in Grid computing and

in the last years many tools have been developed to allow
people to take advantage of distributed and
heterogeneous computational environments.

However, the Grid is not only a computing
infrastructure for computationally-intensive applications,
but it is also a technology that allows the controlled
sharing and management of large amounts of distributed
data. Very large volumes of archived data can be exposed
on the Grid in a secure, authorized and efficient way.

 One of the greatest challenges of Grid computing is
the complete integration of heterogeneous computing
systems and data resources with the aim of providing a
global computing space. The achievement of this goal
will involve revolutionary changes in the field of
computation, because it will produce innovative services
that, at the same time, will be able to exploit the great
computational power and flexibility offered by a
computational Grid and have access to large amounts of
geographically distributed data. We can envision, for
example, Grid enabled applications that will be able to
cope with problems like protein folding, financial
modeling, earthquake simulation, climate/weather
modeling, etc.

Grid portals can help to reach this aim because they
provide the user community with an intuitive and
simplified interface to exploit the Grid, its services and
resources while supplying the developers with tools that
can greatly simplify the integration of data Grid and
computational Grid components.

In this paper, we will show how the EnginFrame Grid
portal1 can be used to develop innovative services that
integrate applications that are not only computationally-

1 http://www.enginframe.com

15

reaganmoore
Rectangle

 2

intensive, and so particularly suited for a computational
Grid, but also require controlled access to large amounts
of geographically distributed data as provided by the
Storage Resource Broker (SRB) [1], thanks to its data
Grid capabilities.

In particular, in section 2, we will first introduce the
EnginFrame Grid portal. Then, in section 3, we will
explain how EnginFrame can be extended to add support
for SRB.

Section 4 describes a couple of demonstrative services
we have developed to test and evaluate our EnginFrame-
SRB integration. The first one is a service for the
dynamic simulation of fire propagation in a building and
has been developed to show how our EnginFrame-SRB
integration enables legacy applications to run in a data
and computational Grid environment. The second one is
an application in the neuroscience area for the analysis
of PET images for the early diagnosis of the Alzheimer's
Disease. It shows how our EnginFrame-SRB integration
can be used to easily add a friendly user interface to
existing data Grid enabled applications and, at the same
time, to make them run in a computational Grid
environment.

Section 5 summarizes conclusions and future
enhancements.

2. The EnginFrame Grid Portal

EnginFrame is a Web-based innovative technology, by
the Italian company Nice S.r.l.2, that enables the access
and the exploitation of Grid-enabled applications and
infrastructures.

It allows organizations to provide application-
oriented computing and data services to both users (via
Web browsers) and in-house or ISV applications (via
SOAP/WSDL based Web services), hiding all the
complexity of the underlying Grid infrastructure.

In particular, EnginFrame greatly simplifies the
development of Web portals exposing computing services
that can run on a broad range of different computational
Grid systems (including Platform LSF3, Sun Grid
Engine4, Altair PBS5, Globus6, LCG7 and EGEE gLite8).

EnginFrame supports several open and vendor-
neutral standards and seamlessly integrates with JSR168
compliant enterprise portals, distributed file systems,
GUI virtualization tools and different kinds of
authentication systems (including Globus GSI).

2 http://www.nice-italy.com
3 http://www.platform.com/Products/Platform.LSF.Family/
4 http://gridengine.sunsource.net/
5 http://www.altair.com/software/pbspro.htm
6 http://www.globus.org/
7 http://lcg.web.cern.ch/LCG/
8 http://glite.web.cern.ch/glite/

Because EnginFrame greatly simplifies the use of
Grid-enabled applications and services, it has already
been adopted by numerous important companies all over
the world.

EnginFrame is also well known in the Grid research
world for being the technology on which is based
GENIUS[2], the official Grid portal of the European
project EGEE[3].

Thanks to the specific grant provided by the INFN
Grid Project9 and to the agreement between INFN and
Nice S.r.l., the GENIUS code is open source and the
EnginFrame license is free of charges for the academic
and research organizations.

As we said, EnginFrame allows exposure of
computing services solutions on the Web. This is done by
simply developing XML-based descriptions of the
services and scripts representing the actual services
implementations.

EnginFrame receives incoming requests from the
Web, authenticates and authorizes the requests and then
executes the required actions into the underlying Grid
computational environment.

Then, EnginFrame gathers the results and transforms
them into a suitable format before sending the response
to the client. Transformation of results is performed
according to the nature of the client: HTML for Web
browsers and XML for Web services client applications.

For each submitted service, a data area staging the
service input and output files is created on the file
system. This area is called Spooler.

Most of the information managed by EnginFrame are
described by dynamically generated XML documents.
The source of such information is typically the service
execution environment: an XML abstraction layer aims
to submit service actions and translate raw results
coming from the computational environment into XML
structures.

The XML abstraction layer is designed to decouple
EnginFrame from the actual Grid working environment,
hiding the specific Grid technology solution.

This characteristic, together with other important
ones, makes possible to easily extend EnginFrame
functionalities by developing ad-hoc plugins for specific
computational and data Grid middlewares or legacy
applications.

To support the integration of data Grid middleware
solutions, EnginFrame introduces the concept of Virtual
Spoolers. Virtual Spoolers represent distributed data
areas that reside outside the EnginFrame spoolers file
system, but that can be remotely accessed by
EnginFrame itself through the targeted data Grid
technology. The structure and the content of a Virtual

9 http://grid.infn.it/

16

reaganmoore
Rectangle

 3

Spooler is described by a dynamically generated XML
document.

3. EnginFrame-SRB integration

While designing the integration of SRB with the
EnginFrame framework we envisioned two possible
solutions. The first one is a light, low-coupling
integration consisting of a simple plugin that interacts
with SRB

Figure 1. SRB enabled Remote File
Browsing.

through the S-commands provided by SRB itself. The
second one is a tighter integration requiring an extension
to the EnginFrame spooler concept in order to
seamlessly and directly embrace SRB collections. In this
case, the EnginFrame core would see SRB collections as
“standard” spoolers.

The first approach is well decoupled from the
EnginFrame internal architecture but less reliable and
robust since parsing of raw S-commands’ output and
transformation to XML is required. Nevertheless, it
quickly provides valuable results for a first prototype
implementation.

The second is a cleaner and more robust approach but
implies more development efforts to write new Java
modules to be plugged into the EnginFrame core
architecture.

For the integration prototype presented in this paper
we considered the first approach more adequate to
quickly exploit the technology and build some test cases.

The first task we targeted was to extend the
EnginFrame feature called Remote File Browsing (RFB)
in order to support the SRB data Grid. EnginFrame RFB
allows users to browse remote file systems and select
files from within a standard Web browser. The files
selected by the user are then used as parameters at the
service submission phase.

To extend standard RFB functionalities to make RFB
work with a different data provider, a simple script must
be written. In our case a shell script has been developed.
This one interacts with SRB using the S-commands
Scd, Spwd and Sls and then parses the commands’
raw output through standard Unix tools like awk and
sed in order to produce a XML document representing
the required collection in the SRB virtual file system (
Figure 1).

In a similar way, by exploiting the Virtual Spoolers
feature we previously described, the standard
EnginFrame spooler view has been extended to
seamlessly show files and collections stored in an SRB
virtual file system (Figure 2).

Both the SRB RFB and Virtual Spooler features
support the view of metadata associated to SRB files.
Metadata are queried via the Smeta command and the
result is structured into a custom XML representation
that is transformed into a piece of JavaScript and HTML
code by applying an ad-hoc XSL transformation.

Finally, the plugin allows to send files to SRB
through the Sput command and retrieve data through
Scat. Files can thus be uploaded from the user’s local
host through the Web browser and EnginFrame into
SRB; in the same way files can be downloaded from
SRB through EnginFrame and the Web browser into the
user’s local file system. Using the streaming download
feature of EnginFrame, files can also be streamed from
SRB to the user's Web browser. This feature can be
especially useful when, as in the case reported in Figure
2, the streamed file contains a video clip.

One of the major values of the integration work we
presented is that, from a user point of view, it does not
change the usual way EnginFrame manages data. The
end user can be so totally unaware about SRB since all
the SRB complexity is completely hidden by
EnginFrame.

By using the SRB plugin it is also possible to enhance
the standard data management functionalities of
EnginFrame by means of the SRB metadata. The user,
through specific services or service options, can add
metadata to files stored in SRB and view/query metadata
when remotely browsing SRB data from RFB or from
EnginFrame spoolers.

17

reaganmoore
Rectangle

 4

Figure 2. SRB enabled Virtual Spooler.

4. Demonstrative services

In order to test and evaluate our SRB plugin, we
have developed two different demonstrative services.
The first one is meant to demonstrate how EnginFrame
together with our SRB plugin can be used to enable the
execution of legacy applications in data and
computational Grid environments. The second one,
instead, shows how EnginFrame can be used to add a
Web interface to data Grid enabled applications and
how our solution enables the easy integration of such
applications in a computational Grid environment.

4.1. The FDS demonstrative service

The first demonstrative service we have developed
implements the following scenario: a couple of
engineers, working in different sites, collaborate to
analyse the fire propagation dynamics in a building
using the Fire Dynamics Simulator (FDS)10, a tool
developed and maintained by the Fire Research
Division in the Building and Fire Research Laboratory
(BFRL) at the National Institute of Standards and
Technology (NIST).

The first engineer is the designer of the building,
while the second one is a specialist in fire propagation
analysis.

The Grid portal Web interface provides the first
engineer with a service to upload the design of the

10 http://fire.nist.gov/fds/

18

reaganmoore
Rectangle

 5

building and store it into the SRB data Grid. To better
describe the files contents, the same service allows to
attach to the files SRB metadata about the project.

To run the fire propagation simulation, the Grid
portal exposes another service for the second engineer.

The simulation service allows to select the building
design file via the extended EnginFrame Remote File
Browsing for SRB and to submit the simulation to a
computational Grid. While browsing and looking for
files in SRB, the user can take advantage of the SRB
metadata system.

Service implementation performs some preliminary
operations to get the input file from SRB and then it
runs a FDS simulation. At the end of the simulation,
FDS output files are stored into SRB and post-processed
to produce a video file containing a graphical
representation of the fire propagation in the building.

EnginFrame Grid portal provides both the engineers
with a Web interface to access the simulation output
files and to stream the video file (Figure 2).

4.2. The SPM demonstrative service

The second service we created consists in the
“Webification” of an innovative data Grid enabled
application for neuroscientists developed by the Bio-Lab
of the University of Genoa and based on the Statistical
Parametric Mapping (SPM)11 software developed by the
Institute of Neurology at the University College in
London and largely used by the neurological scientific
community [4].

The application has been designed to help
neuroscientists in the early diagnosis of Alzheimer’s
disease (AD) through the quantitative comparison of
PET images of non pathological cases stored in a SRB
data Grid [5].

Our service allows the physicians to easily access to
a large set of PET/SPECT images stored on distributed
SRB servers in different hospitals and run the SPM-
based tool for the analysis.

It is worth noting that SRB plays a crucial role in
this application. In fact, normally a very few PET
images of healthy subjects to use for the comparison are
owned by a single hospital. Hence, the capability of
SRB to aggregate in a single virtual file system data
objects stored in distributed and heterogeneous physical
resources is very useful for giving the physicians
seamless access to a distributed set of images that is
large enough to guarantee accurate results without the
need of actually storing all the needed images in all the
hospitals.

11 http://www.fil.ion.ucl.ac.uk/spm/

Furthermore, SRB satisfies all the security and
privacy requirements of this kind of applications.

The application by Bio-Lab has been first developed
as a command line application that makes use of the

Figure 3. Functional description of the
SPM service.

SRB API to get access to the SRB data Grid. Then, it
has been integrated into EnginFrame using the SRB
plugin we presented in this paper in order to provide
the physicians with a very friendly user interface that
hides all the inherent complexity of the underlying Grid
architecture.

The integration with EnginFrame has also allowed
to easily extend the original application to execute the
analysis phase as a job in a computational Grid
environment.

As shown in Figure 3, the resulting service provides
the physicians with the following functionalities:

User Access: users can log on the portal and access
to SPM service through a user authentication
mechanism. The system is able to define specialized
authorization rules that give different users different
permissions within the system based on their Grid
identities.

Data uploading: users can upload through the
EnginFrame portal PET images of pathological patients
in order to analyse them with the SPM tool and put new
PET images in the SRB space in order to increase the
number of healthy cases for comparison.

Data visualization: by queries the Metadata catalog,
users can search PET studies and patient informations
stored on distributed and heterogeneous SRB servers,
download them from the portal on the users’ local
machines and visualize them.

Job submission: the Grid portal submit the SPM
analysis as a job for a computational Grid. The job first
extracts PET image information needed by the SPM

SPM GR ID SERVICESPM GRID SERVICE

PATHOLOGIC AL
PET or SPECT IMAGE

STATISTICAL
ANALYS IS of THE
UPLOADED IMAGE

EF GRID PO RTAL

JOB JOB
SUB MISSIONSUBMISSION

SRB Server 1SRB Server 1
SET of CONTROLS 1

(PET, SPECT IMAGES)

SRB Metadata SRB Metadata
CatalogCata log

SRB Server nSRB Server n
SET of C ONTROLS n

(PET, SPECT IMAGES)

SEARCH SEARCH -- IN SERT INSERT
DATA / METADATADATA / METADAT A

resultsresults

19

reaganmoore
Rectangle

 6

tool from different SRB servers using the SRB API and
then uses these results to run statistical analyses.

Result visualization: when a job is terminated, the
user can download the resulting images from the portal
on his local machine and visualize them.

5. Conclusions

In this paper we have proposed a method to integrate
SRB data Grid and compute Grid components via the
EnginFrame Grid portal.

Two different demonstrative services have been
described to show how it is possible to exploit this type
of integration.

The SRB plugin we presented is still a prototype. We
are still working on it both for improving its overall
quality and for adding new features.

We expect it will be useful in the construction of
general data exchange infrastructures for wide range of
different application areas.

It will be also very useful for the development of
innovative services that need to make use of both the
SRB capabilities of sharing and managing data and
metadata in an heterogeneous and distributed
environment, and the computational power and
flexibility provided by a computational Grid.

References

[1] A. Rajasekar, M. Wan, R. Moore, “MySRB & SRB –
Components of a Data Grid”, 11th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-11 2002), 301.
[2] A. Andronico, R. Barbera, A. Falzone, P. Kunszt, G. L.
Re, A. Pulvirenti, and A. Rodolico, “Genius: a simple and
easy way to access computational and data grids,” Future
Gener. Comput. Syst., vol. 19, no. 6 (2003), 805–813.
[3] R. Berlich, M. Kunze, K. Schwarz, “Grid computing in
Europe: From research to deployment,” in Australasian
Workshop on Grid Computing and e-Research
(AusGrid2005), ser. CRPIT, R. Buyya, P. Coddington, A.
Wendelborn, Eds., vol. 44. Newcastle, Australia: ACS, (2005)
21–27.
[4] Y. Jeong, S. S. Cho, J. M. Park, S. J. Kang, J. S. Lee,
E. Kang, D. L. Na, S. E. Kim, “18F-FDG PET Findings in
Frontotemporal Dementia: An SPM Analysis of 29 Patients”,
Journal of Nuclear Medicine, Vol. 46 No. 2, 233-239.
[5] K. Herholz, H. Schopphoff, M. Schmidt, R. Mielke, W.
Eschner, K. Scheidhauer, H. Schicha, W.D. Heiss, K.
Ebmeier, “Direct comparison of spatially normalized PET and
SPECT scans in Alzheimer’s disease”, Journal of Nuclear
Medicine, Vol. 43 (2002), 21-26.

20

reaganmoore
Rectangle

The Storage Resource Broker and e-science in the UK

L. Blanshard, R. Downing, G. Drinkwater, D. Hanlon, K. Kleese van Dam, L. Roberts, R. Tyer.

CCLRC Daresbury Laboratory

P. Berrisford, G. Brown, K. Haines, C. Moreton-Smith, A. Hasan.

CCLRC Rutherford Laboratory

Abstract*

The e-science Data Management Group is tasked with
providing advice, software and support for the data
management needs for all UK e-science projects and the
Storage Resource Broker plays an important role in many
of the projects. In this paper we describe some of the
projects that use the SRB and describe the approach and
our experience in using the SRB for these projects.

1. Introduction

The UK e-science program [1] aims to provide the
information technology infrastructure necessary to allow
UK-funded scientific projects to make the most use of
their findings, by allowing cross-collaboration to occur
and by providing sufficient computing capacity to exploit
large-scale data-sets.

The Data Management Group (DMG) [2] is part of the
UK Council for the Central Laboratory for the Research
Councils (CCLRC) e-science centre and is tasked with
providing data management solutions for all e-science
projects. The DMG must provide systems that can be
readily adapted to projects from a wide-variety of
disciplines ranging from Geology, Chemistry, Physics to
Biology. A key component of the data management
system is the Storage Resource Broker (SRB) [3] which
provides the underlying management of data.

In this paper we describe a few of the projects the
DMG works on and how the SRB was implemented to
help with the data management of those projects. We also
describe our experience in using the SRB.

* This work has been funded by a range of UK agencies incl. the

e-Science Programmes of the Natural Environmental Research
Council, the Engineering and Physical Science Research Council, the
Council of the Central Laboratory of the Research Councils, the
Biotechnology and Biological Sciences Research Council and the Joint
Information Systems Committee.

2. The e-minerals/e-materials Projects

The e-minerals project [4] is aimed at providing a
mini-grid test-bed to allow Earth scientists and Chemists
to simulate environmental problems at the molecular
level, such as the transport of pollutants, weathering and
the containment of high-level radioactive waste.

The mini-grid comprises of computational clusters and
storage devices housed at collaborating institutes, figure 1
shows a schematic of the setup.

Figure 1: A schematic showing the layout of the e-
minerals mini-grid (taken from [5]).

The mini-grid uses Condor pools and PBS (Portable
Batch System) managed clusters to carry out the
simulations and makes use of SRB resources at each site
to hold the simulated data. The SRB holds the logical-to-
physical file mapping ensuring that the user does not need
to know the physical location of the data. All the SRB
resources are GSI-enabled and are registered in the
metadata catalogue at Daresbury Lab. The mini-grid is
accessed through the e-minerals web-portal [6] and

21

provides a thin-client that hides much of the complexity
of dealing with grid-middleware tools. The e-minerals
portal integrates the CCLRC data portal used to locate the
data and the CCLRC HPC portal used to submit jobs to
the grid.

The data portal is used to seamlessly access the e-
minerals metadata catalogue and the SRB MCAT to locate
data-sets of interest. The HPC data portal is used to create
and submit jobs using Condor tools to create workflows
including post- and pre- processing steps that contain
retrieval and storage of SRB data.

The e-materials project [7] is dedicated to providing the
IT infrastructure to aid in the simulation of complex
materials. The project’s architecture is similar to that of
the e-minerals project: containing an SRB to hold
simulated data and a computational grid to perform the
simulations. Before the data is stored in the SRB a subset
containing information on crystal structures is extracted
and stored in a relational database to allow easier display
and comparison of crystal properties.

Currently over 200,000 files have been stored in the
SRB amounting to more than 160GB of data.

3. The ISIS and Diamond Projects

The ISIS facility [8] is currently the world’s leading
pulsed neutron and muon source and is located at
Rutherford Appleton Laboratory in the UK. The facility
provides muon and neutron beams to experimenters from
such diverse fields as physics, geology, biology and
engineering. The ISIS computing group provides a data
acquisition system that stores the experimenter’s data on a
central NT disk farm where the data is then copied daily to
the RAL tape system (Atlas Data Store, ADS) for
archival.

The computing group is currently developing a system
where the SRB will manage the process of archiving the
data to the ADS. The system comprises of an SRB
server on the NT disk farm, a server for the ADS and a
metadata catalogue (ICAT) [9] containing experiment-
specific information. The data will then be accessed
through the data portal that will interface to the SRB and
ICAT. As many of the data-sets are small in size the use
of containers is essential in order to make efficient use of
the tape resource. Currently, more than 5620 files stored
in more than 700 containers is stored in the test system.

The new Diamond facility [10] will provide a
synchrotron light source to allow scientists to study the
structure of materials in much more detail than ever
before. As with the ISIS facility, Diamond will host
scientists from a wide variety of fields. The facility will
become operational in 2007.

The DMG is currently working with the Diamond
computing staff to develop a system capable of managing

the experimental data covering ingestion at the beam-lines
through to archival in the RAL data store. A first phase
test system (figure 2) is now in place allowing
performance testing for data ingestion and movement and
providing the necessary infrastructure for primarily Java-
based application development.

Figure 2: Schematic of the first phase test system for the
Diamond facility (courtesy of P. S. Berrisford).

As with the ISIS facility, a large number of small files
are expected making the use of containers important.
Typically, approximately 1TB of data per day will be
produced by the facility. Federation of the ISIS and
Diamond SRB systems is considered, as it is possible
that a researcher may be interested in data from both
facilities.

4 . The National Grid Service and the
Integrative Biology Project

The National Grid Service (NGS) [11] went into
production in September 2004 and provides a production
grid of computing and data resources for a wide-range of
UK research activities. The resources are provided by
universities and computing centres spread throughout the
UK. The data grid comprises of SRB resources at Leeds,
Manchester, Oxford and CCLRC-RAL with the MCAT-
enabled server at RAL and provides multiple terabytes of
disk space to NGS users. Users who register to use the
NGS are automatically registered to use the SRB and
authentication using GSI certificates or passwords is
allowed. There is currently more than 800GB of data
stored in the NGS SRB corresponding to more than
800,000 files.

The integrative biology project [12] aims to provide
an IT infrastructure to facilitate the modeling of
biological processes, initially modeling heart arrhythmia
and tumor growth. The project includes access controlled
secure data management through the SRB and tools to
provide visualization of the simulation as well as tools to

22

provide interactive control of the simulation. A high-level
diagram of the services is shown in figure 3.

Figure 3: Schematic of the services comprising the
Integrative Biology project (taken from [13]).

The current release uses the NGS to provide security,
grid computing nodes to facilitate the simulation and
visualization and data storage by means of the SRB.
Currently, the project has stored more than 300GB of
simulated data in SRB collections and has approximately
ten people actively accessing the data.

5. Experience with the SRB

For all projects the SRB fills a desperate need: for easy
access to data residing at geographically distributed data
resources. The system has proved to be relatively simple
to setup and use. Some of the projects have simply taken
Scommands and incorporated them into scripts to provide
tools that the clients of the system can more easily use;
other projects have a requirement of platform
independence for client-side tools requiring tools to be
developed using Jargon the Java API.

Many of the projects require access to an additional
metadata catalogue and we have found the use of the data
portal developed by Drinkwater, Sufi et al [14] to be
invaluable in providing a common interface to both the
SRB and the project-specific metadata catalogues making
it possible to extract data by querying the project metadata
catalogue.

Almost all the projects are stressing the SRB in
different ways: large quantities of small files stored in
containers requiring large containers to be constructed and
bulk operations to ingest the data, complex collection
names and many large-scale operations within SRB space
(such as moving a file from one resource to another). In
some cases projects have highlighted problems within the
SRB that the SRB developers have been quick to resolve
providing advice or patches. We have found the SRB

bugzilla system and the srb-chat mailing list to be a good
resource for problem solving with suggestions coming
from the SRB developers and also from the other
members of the SRB community.

Initially, we found upgrades from one version of SRB
to another to be difficult, but the SRB developers have
worked hard on architecting the system such that upgrades
are relatively simple with patches that can be applied to
the MCAT, and, in more recent cases, even allowing
backwards compatibility so clients are not forced to
upgrade their code.

We have found the need to develop a number of tools
to aid in providing a production system based on the
SRB. Some of these tools are the topic of other papers
[15] and we are looking at providing these tools back to
the SRB so they can be of benefit to others. We have also
found it essential to provide good documentation
complete with examples on the SRB for potential and
existing users so that they can understand the capabilities
of the system and how to use it.

The introduction of zones and extended schema to the
SRB are features that a number of projects are interested
in using. Zones allow more federation of one SRB
system with another making it possible for a user to
access a remote SRB system without having to remember
the new SRB hostname and other attributes. The extended
schema allows the MCAT schema to be extended to
include tables containing project-specific metadata, or
more file-specific information allowing for a much richer
metadata catalogue, this can be of interest where the
extended metadata is very closely coupled to the SRB
metadata and does not merit access outside of the SRB.

There is also interest in investigating the Matrix web-
services to see how they could be used in a number of
projects possibly simplifying the architecture of some
systems.

6. Conclusion

The Data Management Group is responsible for
providing data management solutions for e-science
projects. One of the key elements of these solutions has
proved to be the SRB. In this paper we have described a
sample of the projects, some of them are in production
and some under development and we have described our
experience in using the SRB both in production and in
development. We have found the SRB to provide the
basis for a data management system and have developed a
number of tools to provide a production system. We have
found the SRB developers and the SRB community to be
extremely helpful in suggesting solutions to problems
and have found the SRB developers more than willing to
listen to new requirements and to implement them in a
very timely manner.

23

References

[1] http://www.rcuk.ac.uk/escience
[2] h t t p : / / w w w . e - s c i e n c e . c l r c . a c . u k / w e b / g r o u p s / D a t a -

M a n a g e m e n t / D a t a - M a n a g e m e n t
[3] h t t p : / / w w w . s d s c . e d u / s r b
[4] h t t p : / / w w w . e m i n e r a l s . o r g
[5] h t t p : / / w w w . e m i n e r a l s . o r g / h i g h l i g h t s / m i n i g r i d / i n d e x .

h t m l
[6] h t t p : / / w w w . e m i n e r a l s . o r g / h i g h l i g h t s / d a t a p o r t a l / i n d e

x . h t m l
[7] h t t p : / / w w w . e -

s c i e n c e . c l r c . a c . u k / w e b / p r o j e c t s / c o m p l e x m a t e r i a l s
[8] h t t p : / / w w w . i s i s . r l . a c . u k / a b o u t I s i s / i n d e x . h t m
[9] h t t p : / / w w w . i s i s . r l . a c . u k / d a t a a n a l y s i s /
[10] h t t p : / / w w w . c c l r c . a c . u k / A c t i v i t y / D i a m o n d
[11] h t t p : / / w w w . n g s . a c . u k /
[12] h t t p : / / w w w . i n t e g r a t i v e b i o l o g y . o x . a c . u k /
[13] h t t p : / / w w w . i n t e g r a t i v e b i o l o g y . o x . a c . u k / s o f t a r c h . h t m

l
[14] h t t p : / / w w w . e -

s c i e n c e . c l r c . a c . u k / w e b / p r o j e c t s / d a t a p o r t a l
[15] R. Downing et al, “Some Tools for Supporting SRB

Production Services“, SRB Users Meeting, Feb 2005.

24

Storage Resource Broker Actors and Applications in Kepler

Nandita Mangal, Efrat Jaeger-Frank, Ilkay Altintas, Chien-Yi Hou, Lucas Gilbert and Arcot Rajasekar

San Diego Supercomputer Center, UCSD, 9500 Gilman Drive,
92093-0505 San Diego, California

{nmangal, efrat, altintas, chienyi, iktome, sekar }@sdsc.edu

Abstract

We present a set of SRB actors implemented in the
Kepler scientific workflow management system to
develop solutions to data grid issues arising in various
scientific domains. Today, scientists in many scien-
tific disciplines require applications for handling large
data sets as well as performing complex analysis on
this data. Kepler, together with the SRB framework,
provides a scientific workflow environment for coordi-
nating grid resources using storage brokering and file
access technologies. Kepler and SRB together offer
convenient and efficient data access, interaction and
management in scientific workflows.

1 Introduction

Data Grid applications can easily evolve into large
inflexible applications with varying levels of com-
plexity and limitations from anywhere like the size of
the data that can be handled, the proper maintenance of
such data (such as adding/updating datasets) or simply
the varying formats of data from different sources. As
these data-intensive applications often require transfer
of huge amounts of data, another big issue is the
efficiency in data management among all shared parties
and applications.

Storage Resource Broker (SRB) [2] is a storage
management system designed for Data Grid environ-
ments. The SRB provides secure and optimized file
transfer functionalities including transparent data repli-
cation; archiving, caching, and backup. Using logical
name spaces, the SRB provides a uniform mechanism
for seamlessly accessing data from various physical
resources. Moreover, SRB offers bulk data ingestion,
version control and Metadata query functionalities
through a MetaData Catalog (MCAT).

Data Grid workflow is the automated process of in-
gesting, transferring and processing data in the Grid
environment. Kepler [1, 3], a cross-project collabora-
tion to develop a scientific workflow system for mul-
tiple disciplines, provides a workflow environment for
scientists, in which they can design and execute Data
Grid workflows and applications. Kepler builds on top
of the mature Ptolemy II software developed at UC

Berkley [4]. Ptolemy II is a Java-based system along
with a set of APIs for heterogeneous hierarchical mod-
eling. The focus of Ptolemy II is to build models
based on the composition of existing components,
which are called ‘actors’. Actors are encapsulations of
parameterized actions performed on input data to pro-
duce output data. Inputs and outputs are communicated
through ports within the actors. Kepler implements
SRB functionality by adding SRB actors, which per-
form SRB operations such as data access, metadata-
based querying, update, file, storage, data transfer
functions as well as server side processing of data
using Sproxy commands. Within Kepler, SRB pro-
vides data access to diverse repositories using a single
name space across all storage systems.

In the rest of the paper, we describe the Kepler SRB
actors and models of their use in order to demonstrate
Data Grid applications with Kepler-SRB.

2 SRB Actors in Kepler

Several SRB actor interfaces have been developed in
Kepler to provide efficient storage functionality in
Grid workflows. These actors are available in Kepler
using the SRB JARGON java API [5]. Two special-
ized actors were created for connecting and disconnect-
ing to and from a user’s SRB space. Namely, the
SRBConnect actor creates an authenticated socket
connection using a connections pool. The connection
is specified by a SRB host, port, username, password
and domain. The SRBDisconnect actor releases the
connection back to the shared pool. Within a scientific
workflow all components/SRB actors accessing the
same SRB space share the same connection socket by
passing a connection token through actors input and
output ports via channels. Other implemented SRB
actors can be classified into the following categories:
data access and transfer, server side processing of data,
and an efficient search functionality using MCAT.
Below we elaborate on each of these categories.
Data access and transfer actors. Kepler pro-
vides several components for data access and transfer,
such as StreamPut and SPut, and StreamGet and SGet
to enable streaming and parallel upload and download
respectively. The streaming actors read and write files

25

from and to SRB as a sequence of bytes arrays,
whereas the SPut and SGet use a parallel put and get
approach provided by the JARGON API. A failure in
parallel Put/Get automatically activates the streaming
mode for data transfer. Another actor, called SProxy
coordinates several common proxy commands in a
single actor interface. Currently the following com-
mands are supported: list directory, copy, move, re-
move, replicate, create directory, remove directory and
change mode. More functions can be added based on
necessity.
Server side processing actor. A special actor,
called SRBProxyCommand was developed wrapping
the SRB Spcommand. This actor enables executing
any server side command, deployed on an SRB space,
on SRB stored data.
Metadata actors. The last set of actors implement
the SRB metadata functions. Through the workflow
environment a user can add metadata to a file or a

collection, get the metadata and also query for files
satisfying a specific set of metadata conditions. These
provide Kepler with an efficient Grid resources search
functionality.

3 SRB Workflows

3.1 Accessing Large Distributed Datasets

With SRB native actors such as SRBGet and
SRBQuery Metadata we are able to gain access to
many forms of sensor data and information including
ecological, oceanographic and hydrological data. The
accessed sensor data is used in scientific applications
to visualize and analyze environment conditions and
phenomenon.

Fig. 1. Accessing Sensor Data with a Logical View

Such applications pose the need for quick real time
and up to date sensor information access as well as
efficiency in interaction with large datasets. An exam-
ple workflow that is able to seamlessly access sensor
data registered into a logical file name space, regardless
of physical resource locations and data formats is
given in Figure 1. The important operations that were
used in building the workflow are as follows:
• Logical Querying Using the SRBQuery

Actor. Metadata Querying is not constrained by
various data packet forms or locations, however it
can be based on the data’s attributes or logical
names.

• Accessing Data from Different Sources
Using the SRBGet. With SRB actors in Ke-
pler, we can access data from heterogeneous
physical resources or repositories through a logi-
cal namespace. Properties can be associated with

each file, such as format type, creation date, ac-
cess controls, checksums, replica locations.

• Getting Real Time Data via a Web Serv-
ice. In order to make sure the data being analyzed
is real time and up to date, the above Kepler
workflow can be executed as a web service and
hence re-executed and updated with new incoming
sensor data.

3.2 Data Transfer and Processing

With large datasets comes an equally challenging issue
of processing the real time data as per the application
needs as well as transferring and sharing the retrieved
data and/or produced results to other third party appli-
cations and workflows.

The first issue is the overhead of retrieving large
datasets. Common methods of saving datasets on the
local hard drive and then processing or transferring data

26

can cause great amounts of inefficiency and thereby
affect application performance As a solution to this
problem, SRB Proxy and SRB query actors in Kepler
offer the capability of server side file processing as
well as storage of files on the SRB storage space
itself. Secondly with the datasets saved on the SRB

storage space, the data can be easily transferred to other
applications/workflows or even separate internal
workflow components. Legacy applications can easily
gain access to such data again via SRB Get and further
process and analyze data.

Fig. 2. Data Transfer and Visualization among Workflow Components

The workflow in Figure 2 demonstrates data access
and processing (in this case: visualization) using the
actors and sub-workflows explained below:

• Data Storage and Reuse using the
SRBProxyCopy Actor. Utilizing the
functionality of SRB Proxy commands we
can copy and store the retrieved sensor data af-
ter performing query operations thereby creat-
ing a backup archive of the specific sensor
data retrieved during the given time.

• Data Transfer. While saving the sensor
data on the SRB Storage space at all times,
we transfer the data to another image manipu-
lation and processing composite actor in Fig-
ure 2. This approach can also be utilized in
transferring data to various other third party
applications/workflows.

• Sharing Application Results using
the SRBPut Actor. The graphical images
produced as a result of data visualization in
the above application can be further saved for
future reuse / act as input sources to other
applications.

3.3 Archiving and Management of Data Sets

Data Grid applications require the need of archiving
data for long-term storage purposes as well as data
reusability in other possible applications. SRBPut

actor provides the capability to put back data sets on
the SRB storage. On the other hand the functionality
to manage such data archives can be used by SRB
Proxy command actors available in Kepler. SRB
Proxy commands include Scommands functionality
such as data replication, copying, removing
files/directories as well as changing file/directory per-
missions. Data from different resources can be further
archived and maintained via the SRB Query metadata
functionality.

UCSD-TV Digital Media Archival. “Con-
versations with History”, hosted by Harry Kreisler,
Executive Director of UC Berkeley's Institute of Inter-
national Studies, is a long-running UCSD-TV series
that has interviewed hundreds of prominent people,
including Nobel Laureates, economists, historians,
etc. In order to ensure that future generations can bene-
fit from these intellectual legacies, these media files
need to be archived for long term storage. The collec-
tion has three hundred one-hour programs, and each
program, about 15GB in size, is preserved in three
different formats: mov, mpeg, and rm. Our goal is to
design a system to help UCSD-TV people to transfer
and make replications on long term preservation re-
sources easily without obvious impact on content
production and dissemination.

We use a scientific workflow approach using Ke-
pler with SRB as a middleware to provide a reliable
parallel replication of the data to long-term replica
machines such as HPSS or SANQFS. As access to

27

these machines from a local machine may be very
slow or unavailable, the following approach is used:
the data is first internally staged from the local ma-
chine to an SRB zone at SDSC using the SPut actor,
providing a parallel replication of the data. A check-
sum is performed on both ends to verify a successful
upload. If the checksum fails the workflow persis-
tently tries to re-upload the data. Once the data is
successfully uploaded, it is being staged from the SRB
zone to its long term storage replica and again a
checksum is used to verify a successful replication.
The benefits of using SRB as a middleware staging
area are as follows:
• SRB provides a parallel upload which makes

staging of the data much faster.
• Staging of data between SRB and their final desti-

nation is done to and from machines on the same
network (SDSC).

• The long term storage may be unavailable or
having problems, thus while the data is already
replicated on SRB, a persistent staging of the data
from SRB to its final destination can be done in
the background.

4 Conclusions and Future Work

Kepler SRB actors have been designed with Data Grid
computing in mind and hence provide efficient solu-
tions in common scenarios in Grid environment appli-
cations today. Within a workflow system like Kepler,
which enables efficient design and execution of
workflows as common desktop applications, third
party applications or web services, SRB is providing
scientists with flexible as well as powerful Data Grid
applications environment.

Currently Kepler supports a few SRB Proxy com-
mands which help in data archive management and
retrieval. However we are planning to add more SRB
SCommands (e.g. Serror to display error and SgetColl
to display information on SRB data objects) function-
ality to existing native Kepler-SRB actors. We also
plan to design an experimental SRB domain in Kepler,
which optimizes data transfers and provides connec-
tions at the system level so that the user doesn’t have
to concentrate on details of the interaction of the
workflow system with SRB.

References

1. Ludäscher, B., Altintas, I., Berkley, C., Higgins,
D., Jaeger-Frank, E., Jones, M., Lee, E., Tao, J.,
Zhao, Y.: Scientific Workflow Management and
the Kepler System. Concurrency and Computa-
tion: Practice & Experience, Special Issue on Sci-
entific Workflows, 2005.

2. Baru, C., Moore, R., Rajasekar, A., Wan, M.: The
SDSC Storage Resource Broker, Proc.
CASCON'98 Conference , Nov.30-Dec.3, 1998,
T o r o n t o , C a n a d a .
http://www.sdsc.edu/dice/Pubs/srb.ps .

3. Kepler Website: http://kepler-project.org
4 . P t o l e m y I I Website:

http://ptolemy.eecs.berkeley.edu/ptolemyII/
5. Java Api for Real Grids On Network (JARGON),

http://www.sdsc.edu/srb/jargon/

28

Integration of HDF5 and SRB for Object-level Data Access*

Peter X. Cao
Univ. of Illinois, Urbana

xcao@ncsa.uiuc.edu

Mike Wan
Univ. of California, San Diego

mwan@sdsc.edu

Mike Folk
Univ. of Illinois, Urbana

mfolk@ncsa.uiuc.edu

Abstract*

Fast partial access to objects from very large files in
the SDSC Storage Resource Broker (SRB[5]) can be
extremely challenging, even when those objects are
small. The HDF-SRB model integrates the SRB and
NCSA Hierarchical Data Format (HDF5[6]), to create an
access mechanism within the SRB that is more efficient
than current methods for accessing object-based file
formats.

This model integrates two successful technologies, the
SDSC SRB and the NCSA HDF, to create a new, more
sophisticated distributed data service. The SRB serves as
standard middleware to transfer data between the server and
client. HDF5 provides interactive and efficient access to
datasets or subsets of datasets in large files without
bringing entire files into local machines. A new set of
data structures and APIs have been implemented to
support such object-level data access. A working
prototype of the HDF5-SRB data system has been
developed and tested.

1. Introduction

Storing massive data presents two big challenges:
management of distributed data systems and efficient
access to complex data content. The NCSA Hierarchical
Data Format (HDF) and the SDSC Storage Resource
Broker (SRB) have addressed the two issues. The SRB is
client-server middleware (or grid data software) that
provides a uniform interface and authorization mechanism
to access heterogeneous data resources (UNIX FS, HPSS,
UniTree, DBMS, etc.) distributed on multiple hosts and
diverse platforms. The HDF is a file format and software
library for storing all kinds of data, simple integers and
floats or complex user-defined compound data types. The
HDF employs a common data model with standard library
APIs, providing efficient data storage and I/O access.

* Sponsored by NLADR[1], NFS PACI[2] project
 in support of NCSA[3] and SDSC[4] Collaboration.

The HDF and the SRB offer valuable and
complementary data management services, but they have
not previously been integrated in an effective way.
Earlier work had the SRB accessing HDF data either (a)
by extracting entire HDF files, or (b) by extracting byte-
streams through the SRB’s POSIX interface. Approach
(a) fails to take advantage of HDF’s ability to offer
interactive and efficient access to complex collections of
objects. Approach (b) has been shown to be far too low-
level to perform reasonably for some data extraction
operations.

In discussions between NCSA and SDSC, it has been
determined that a more effective approach is possible, one
that uses modified HDF APIs on the server side to extract
data from large files at the instruction of client-side HDF
APIs and SRB as middleware to transfer data between the
server and client. This approach would insert the HDF
library and other object-level HDF-based libraries (such as
HDF-EOS) between the SRB and a data storage source
(such as a file system), making it possible to extract
objects, rather than files or byte streams. Furthermore,
these libraries typically offer query, subsetting, sub-
sampling, and other object-level operations, so that these
services might also be available.

2. Overview of SRB and HDF5

This section is a brief introduction of SRB and HDF5.
For more information, you can visit the SRB and HDF5
websi tes a t h t tp: / /www.sdsc.edu/srb/ and
http://hdf.ncsa.uiuc.edu/.

2.1. What is SRB

SRB is client-server middleware (or grid data software)
that provides a uniform interface and authorization
mechanism to access heterogeneous data resources (UNIX
FS, HPSS, UniTree, DBMS, etc.) distributed on multiple
hosts and multiple platforms. It is a distributed file
system, a data grid management system, a digital library,
and a semantic web.

29

2.2. What is HDF5

HDF5 is a general-purpose library and file format for
storing scientific data. At its lowest level, HDF5 is a
physical file format for storing scientific data. At its
highest level, HDF5 is a collection of utilities and
applications for manipulating, viewing, and analyzing
data in HDF5 files. Between these levels is the HDF5
software library that provides high-level APIs and a low-
level data interface. HDF5 is a file format for storing all
kinds of data and a library with standard APIs. It provides
efficient data storage and I/O access and software and
tools.

HDF5 can store two types of primary objects: datasets
and groups. A dataset is essentially a multidimensional
array of data elements, and a group is a structure for
organizing objects in an HDF5 file. Using these basic
objects, one can create and store almost any kind of
scientific data structure, such as images, arrays of vectors,
and structured and unstructured grids. You can also mix
and match them in HDF5 files according to your needs.

3. The HDF-SRB model

We have designed a new mechanism, the HDF-SRB
model to support object-level data access. The two basic
requirements of the HDF-SRB model are simple and
efficient. The HDF-SRB model has minimum changes
the SRB code. It uses one set of objects for both server
and client. It should have efficient data access by
transferring only the required data (no redundant member
object within an object) between client and server.

3.1. The HDF-SRB architecture

The HDF-SRB model consists of four basic
components: the client (HDF client application or SRB
client), the HDF-SRB module, SRB server, and the HDF
library. Figure 1 illustrates the basic architecture of the
HDF-SRB model.

Client applications are implemented using a set of
APIs provided by SRB for sending requests and receiving
responses to/from the SRB servers. The requests and
responses are packed with HDF objects. The critical
component is the HDF-SRB module, which connects the
HDF clients to the HDF library on the server. The HDF-
SRB module is responsible for packing and unpacking
messages, or HDF objects, between the SRB and HDF
components. The HDF library is installed with the SRB
server for interactive access to HDF files on the server
side.

Figure 1 The HDF-SRB Model.

3.2. HDF data objects

In the HDF-SRB model, data objects are passed
between the client and server rather than the entire file.
There are several advantages for object level access. First,
passing objects is more efficient than passing an entire
file especially for large files. For example, if we want to
access a small subset of a gigabyte dataset, we just bring
the selected data to the client instead of the whole file.
Second, it is easy to pass complex requests such as sub-
setting. Because messages passing between the client and
server are packed in data objects, there is no need to
specify the format of the messages; messages, simple or
complex, are self-explained in the object. Thirdly, it is
easy to maintain the source code and extend to support
new objects and new functions. Adding a new function to
the object will not require any change to the data model.

There are three basic HDF5 objects (C structures):
H5File, H5Dataset and H5Group. H5File is used to hold
metadata about the file and the root group of the file. The
file structure can be constructed by following the links
that flow from the root group. H5Dataset contains data
values and information about the data, such as data type
and data space. H5Attribute is similar to H5Dataset, but
contains user-defined metadata for groups and datasets.
H5Datatype contains information about the data type of
the dataset, such as data type class, order and size.
H5Dataspace contains sizes of the dimensions of dataset.
It is also used to calculate the data size and pass the
subsetting information.

SRB Server

HDF5 file

MCAT

HDF5 Library

HDF5-SRB Module
(unpackMsg/packMsg)

HDF5 Object
(File, Group, Dataset)

Attribute)

Client Application

HDF5-SRB Module
(unpackMsg/packMsg)

HDF5 Object
(File, Group, Dataset)

Attribute)

30

3.3. Client side API

h5ObjRequest() is the client side API, which is
responsible for sending a client request to the server and
for processing the response from the server. Request and
response messages are packed in the HDF object
structures.

3.4. Server side API

h5ObjProcess() is the server side API, which processes
client request and sends results to back the client. The
server side API does not call the HDF5 library directly. It
calls unpackMsg() to construct the data object passed
from the client. The data object then takes the operation
and calls the HDF5 library.

3.5. Pack/Unpack routine enhancements

The packMsg() and unpackMsg() routines exchange
structured data between client/server. A data structure is
packed into a single byte stream before sending cross the
network. Byte stream received is unpacked back into the
data structure based on its definition. The enhanced
packMsg() and unpackMsg() routines handle complicated
data structures – string, pointers, pointers to arrays, arrays
of pointers, etc.

3.6. General proxy functions

In SRB, proxy functions allow the execution of
certain functions on the servers to improve performance.
Examples of the use of proxy functions include data
subsetting and filtering type operations where they can
most efficiently be carried out on the servers where data
reside.

To make it easier to implement and handle object-level
HDF5 requests which can be quite complex, a new and
more general SRB proxy function framework has been
added. This framework can also be used by other
developers to implement their own proxy functions.

In this framework, a client calls a new client API -
srbGenProxyFunct() to make proxy request. Inputs for the
srbGenProxyFunct function include:
• int functType - the type of proxy function. e.g.,

HDF5_OPR_TYPE
• void *inputStruct - Pointer to input struct.
• FormatDef inputFormat - packing instruction for

inputStruct.
• void **outputStruct - Pointer to output struct.
• FormatDef outputFormat - packing instruction for

outputStruct.

Inputs for the proxy function are given in an
"inputStruct" which is a pointer to an arbitrary data struct
and a "inputFormat" which is a character string
containing the instruction for serializing the "inputStruct"
into a single byte stream before sending across the
netwotk to the server.

For example, an "inputStruct" may contain an "int"
and a pointer to a string:

struct foo {
int myIndex;
char *myName;

};
The serializing instruction is a string containing "int

myIndex; str *myName;" which instructs the serializing
routine to treat the first member of the struct as an integer
and the second member as a pointer to a string.

 Similarly, the "outputStruct" and "outputFormat"
specify the output and packing instruction for the output
of the proxy function.

On the server side, the genProxyFuncEntries[] table
defined in genProxyFunct.h is a switch table used by the
server to determine the handling function for each proxy
function type. Currently, the genProxyFuncEntries[] is
defined as follows:

genProxyFunc_t genProxyFuncEntries[] = {
 {HDF5_OPR_TYPE, (func_ptr) h5ObjProcess},
};
The table contains only one entry, the HDF5 type

(HDF5_OPR_TYPE) proxy funct ion. The
h5ObjProcess() function will be called to handle the
HDF5_OPR_TYPE request. To implement a new type of
proxy function, one needs to simply add one more entry
to the genProxyFuncEntries[] table and a function to
handle this type of request on the server.

4. Client application: the HDFView

The HDFView is a visual tool for browsing and
editing NCSA HDF4 and HDF5 files. Using HDFView,
you can
• view a file hierarchy in a tree structure
• create new file, add or delete groups and datasets
• view and modify the content of a dataset
• add, delete and modify attributes
• replace I/O and GUI components such as table

view, image view and metadata view
For more details on HDFView, visit the NCSA

HDFView webpage at http://hdf.ncsa.uiuc.edu/hdf-java-
html/hdfview/index.html.

Supporting HDF-SRB in HDFView requires
implementing HDF-SRB Java Native Interface(JNI) and
adding new GUI components and data object

31

4.1. The HDF-SRB JNI

The HDF-SRB Java Native Interface (JNI) consists of
an Java class and dynamically linked native library. The
Java class declares static native methods, and the library
contains C functions which implement the native
methods. The C functions call the standard HDF-SRB
client module.

The HDF-SRB JNI class contains only one native
interface, h5ObjRequest(). h5ObjRequest () does two
things: load the dynamic library and pass client requests
to the C function.

public synchronized static native int h5ObjRequest
(String srb_info[], Object obj, int obj_type) throws
Exception;
The dynamic library (C implementation of the native

interface) wraps the SRB client and converts data object
between C and Java. When client calls the Java interface
h5ObjRequest(), the dynamic library does the following
tasks:
• Make connection to the SRB server
• Decode the Java object and construct C structure
• Send requests to the server in the form of C

structure
• Encode server result in to Java object

4.2. The Java HDF-SRB objects

HDFView is implemented based on the HDF object
package, a Java package which implements HDF4 and
HDF5 data objects in an object-oriented form. The HDF
Java object package provides a common standard Java API
to access both HDF4 and HDF5 files. For more
information on the HDF Object Package, visit
http://hdf.ncsa.uiuc.edu/hdf-java-html/hdf-
object/index.html.

To support HDF-SRB data objects, we have
implemented the following Java package,
ncsa.hdf.srb.obj, which contains:
• H5SrbFile extends FileFormat
• H5SrbGroup extends Group
• H5SrbScalarDS extends ScalarDS
• H5SrbCompoundDS extends CompoundDS
• H5SrbDatatype extends Datatype
These objects implement methods to deal with the

client requests and data from the server. The native call,
h5ObjReques(), passes the information through the
objects. For example, the following code is how the we
read data from remote file using H5SrbScalarDS::read().

 public Object read() throws Exception
 {
 String srbInfo[] =
 ((H5SrbFile)getFileFormat()).getSrbInfo();
 if (srbInfo == null || srbInfo.length<5)

 return null;
 opID = H5DATASET_OP_READ;
 H5SRB.h5ObjRequest (srbInfo, this,
 H5SRB.H5OBJECT_DATASET);
 return data;
 }

4.3. The GUI components

Since HDFView is built on modular fashion, the GUI
components are transparent to data access. There is not
much change to the GUI components. We added
SRBFileDialog class to the GUI. SRBFileDialog class is
used to make server connection by using the Java API for
Real Grids On Networks (JARGON). JARGON is a pure
java API for developing programs with a data grid
interface. The API currently handles file I/O for local and
SRB file systems, as well as querying and modify SRB
metadata. For more information on JARGON, read
h t t p : / / w w w . s d s c . e d u / s r b / j a r g o n / i n d e x . h t m l .

Figure 2 shows two examples of accessing HDF5 files
on the SRB server in HDFView. The first file, extdat-
srb.h5, contains one dataset of size about seven gigabytes
(25*3000*22728*4). With SRB support, we can have
instant access to subset of the seven gigabyte dataset.
Without SRB support, it would take hours to transfer the
whole file to local machine.

The second example, weather.h5, shows how we can
have instant access to the file structure. With SRB
support, we can browse through the file structure without
bringing the content of the file to local machine.

Figure 2 The SRB File Access in HDFView

32

4.4. Conclusions

The HDF-SRB model integrates two successful
technologies, the SDSC SRB and the NCSA HDF, to
create a new, object-lvel distributed data service. The SRB
serves as standard middleware to transfer data between the
server and client. HDF5 provides interactive and efficient
access to datasets or subsets of datasets in large files
without bringing entire files into local machines. A new
set of data structures and APIs have been implemented to
the SRB support such object-level data access.

A working prototype of the HDF5-SRB data system
has been developed and tested. The HDF-SRB has been
proved to be very efficient in large files. We have
implemented SRB support in HDFView. Using
HDFView, we can have instant access to file structures
and fast access to subset of large dataset. Without HDF-
SRB support, it might take hours to bring the file to a
local machine.

This project has been a very successful team effort
between SDSC and NCSA. Both SRB and HDF5 are very
complex and the implementation of such a server/client
system requires a full understanding of the two
technologies. The SDSC SRB and NCSA HDF teams
have worked together on all parts of the project, including
designing, coding and testing.

References

[1] http://www.nladr.org
[2] http://www.npaci.edu/
[3] http://www.ncsa.uiuc.edu/
[4] http://www.sdsc.edu/
[5] http://www.sdsc.edu/srb/
[6] http://hdf.ncsa.uiuc.edu/

33

SRB Interfaces to the Antelope Environmental Monitoring System: The Antelope
ORBserver, Datascope Database System, and Deployable ROADNet Point-Of-

Presence

Kent G. Lindquist
Lindquist Consulting, Inc.

kent@lindquistconsulting.com

Arcot Rajasekar
Univ. of California, San Diego

sekar@sdsc.edu

Frank L. Vernon
Univ. of California, San Diego

flvernon@ucsd.edu

John Orcutt
Univ. of California, San Diego

jorcutt@ucsd.edu

Abstract*

As part of the ROADNet project, we have developed two
new interfaces for the Storage Resource Broker, one to the
Antelope ORBserver and one to the Datascope relational
database system (Antelope and Datascope are products of
Boulder Real-Time Technologies, Inc.). The ORBserver
is a real-time, event-driven node that can be used for
highly reliable transport of packetized, labeled streams of
environmental monitoring data. Network transparency
allows the ORBserver to mediate near-real-time distributed
processing of such packet streams. The associated
Datascope database system allows near-real-time archival
of such data streams into a fully generic relational
database system. The two new Storage Resource Broker
(SRB) interfaces allow ORBserver and Datascope
resources to be registered, then accessed through SRB
mechanisms. Recently we have begun development of a
deployable Sun-Solaris machine and software stack called
the ROADNet Point-Of-Presence (RPOP), which
integrates Antelope, the Storage Resource Broker, and
several other cyberinfrastructure components into a
production-quality standalone server. This will give
RPOP simultaneous, interconnected presence in several
data- and sensor-grid paradigms. The RPOP can be seen
as the fundamental, intelligent “atom” in a distributed
real-time sensor-, data-, and processing-grid. The multi-
signal-domain acquisition capability provided by the rest
of the ROADNet and Antelope tools will optionally
allow RPOP to be a leaf node in the acquisition system.
RPOP may also be used as a data concentrator or data-
access point at participating laboratory sites, and the

* This research was sponsored by a funding agency. Views and

conclusions contained in this report are the authors’ and should not be
interpreted as representing the official opinion or policies, either
expressed or implied, of the Government, or any person or agency
connected with them.

processing capabilities inherent with Antelope and
ROADNet tools will allow it to be used in distributed,
near-real-time processing of the acquired data streams.

1. Introduction

Real-time, gridded sensor networks such as ROADNet
[1] collect large volumes of multidisciplinary sensor data
that must be buffered (held in accessible storage) for
immediate analysis and redistribution, as well as archived
for future re-examination for long-term trends and
comparison of recent to historic events. In order to be
useful to the wide range of users, data contributors,
science teams and monitoring operations, these diverse
datasets need to be accessible in some kind of centralized
manner, though with component data sets often
distributed amongst different research groups. Data access
methods must be straightforward for end-users and for
authors of analysis, processing, and display operations.
Furthermore, any such system must be able to handle the
diverse system and domain metadata, which may vary
widely from subdiscipline to subdiscipline, often blurring
the boundary between data and metadata. Finally,
although the resultant system may be used for research-
based prototypes and short-term (low investment)
monitoring experiments, the need for constant availability
and for support of large-scale, mission-critical scientific
and monitoring operations requires a robust
cyberinfrastructure characteristic of a hardened production
system.

1.1. ROADNet

The ROADNet project is a testbed for real-time
integration of multidisciplinary sensor networks, together

34

with development and integration o f the
cyberinfrastructure technologies needed to process and
maintain them. The sensors collected include a wide range
from seismic [2], infrasound, Global Positioning System
[3], meteorological, high-frequency-radar ocean surface-
current, remote cameras [4], and numerous others. The
cyberinfrastructure components include the Antelope
Environmental Monitoring System, custom additions to
the above, the Storage Resource Broker (all described
below), and the Kepler scientific workflow system [5].

Figure 1. ROADNet sensor network.
A basic overview of the ROADNet real-time system
architecture is shown in Figure 2. The left half shows
Antelope-based components involved in data acquisition,
processing, and initial archiving; the right half shows
Storage Resource Broker-based deep archival, replication
and redistribution.

Figure 2. ROADNet architecture

2. Drivers for Antelope and Datascope

The Antelope Environmental Monitoring System, a
product of Boulder Real-Time Technologies, Inc. [6],
forms the basis for much of ROADNet’s real-time
dataflow, archiving and processing. Antelope consists of
several hundred Unix command-line utilities, as well as
Application Programmer Interfaces in multiple languages,
that generally divide into two classes: utilities for
handling streams of real-time packets of environmental
monitoring data (opaque binary objects labeled by stream
identifier and timestamp); and a fully general Relational
Database Management System called Datascope, which is
optimized for real-time processing. An overview of the
major classes of Antelope system components is shown
in Figure 3.

Figure 3. Antelope Components
The Storage Resource Broker supports several

different classes of drivers including filesystems,
databases, tape-stores, and more. The new Antelope
drivers are implemented as SRB Miscellaneous drivers, as
shown in Figure 4.

2.1. Datascope interface

The Storage Resource Broker drivers support several
basic types of operations, including object Create, Read,

35

Write, Open, Close and several others. The capability to
add generic procedures to miscellaneous drivers through
the “Proc” driver function is used to implement most of
the Datascope interface.

The Datascope interface supports many of the standard
calls to the Datascope database system, including
database opening and closing, creation of views, joins,
and groups, row-based queries, bulk ingestion/export
mechanisms, and translation to XML.

2.2. Orbserver interface

The orbserver interface supports basic connectivity to
Antelope real-time packet streams. An Antelope orbserver
connection is best seen as a serial packet stream which
can be continuously reaped, or rewound and probed as
necessary to find individual packets. By far the most
efficient use is to continuously read incoming packets in
an event-driven loop. Several common operations are
possible with a SRB-brokered orb connection: in addition
to opening and closing orb connections, these include
selecting or rejecting packet streams based on regular
expressions, reaping packets and unstuffing their
contents, and querying the orbserver for metadata on
available packet-streams and connected clients.

3 . The ROADNet Point-Of-Presence
(RPOP)

The cyberinfrastructure technologies involved in the
ROADNet project form a fairly complex stack of data
acquisition utilities, processing, archiving, and
management tools, as well as access mechanisms for a
variety of sensor- and data-grid paradigms. In a research-
lab setting the complexities of configuring and managing
such a conglomeration are usually manageable due to the
presence of specialized research and support staff.
However, because the grid-based architecture pre-
supposes the ability to deploy intelligent field nodes, data
concentrators and distributed access points, it is valuable
to tame the software deployment and configuration issues
by creating an operationally robust, easily deployable and
easily updated and maintained platform. Towards this end
we are building “ROADNet Point-Of-Presence” (RPOP)
machines which encapsulate all necessary Antelope,
ROADNet, and Storage-Resource-Broker components for
the ROADNet real-time sensor and data grid. The RPOP
developments are currently in prototype stage, with
several test units deployed. An image of the Sun Fire
servers currently in use for the RPOP is shown in Figure
4.

Figure 4. Sun Fire machine for RPOP

4. Conclusions

The SRB Antelope interfaces and the ROADNet
Point-Of-Presence machines promise to be a significant
step forward in the connection of real-time sensor
networks to gridded environments. Please direct any
q u e s t i o n s t o K e n t G . Lindquist,
k e n t @ l i n d q u i s t c o n s u l t i n g . c o m .

5. Acknowledgments

This work and the ROADNet project are sponsored by
grants from the National Science Foundation (OCE-
0121726), the Office of Naval Research (N00014-98-1-
0772), and with matching funds from the California
Institute of Telecommunications and Information
Technology, Scripps Institution of Oceanography, San
Diego State University, and the Cecil H. and Ida M.
Green Institute of Geophysics and Planetary Physics. The
ROADNet sensor network figure (Figure 1) is courtesy of
Todd Hansen. The image of the Sun Fire server in Figure
4 is courtesy of Sun Microsystems, Inc.,
http://www.sun.com.

References

[1] T.S. Hansen, S. Foley, K. Lindquist, N. Cotofana, L.
Ding, L. Hazard, M. Otero, E. Terrill, J. Orcutt,
“ROADNet: A network of SensorNets”, Submitted to
the Information Processing in Sensor Networks 2006
meeting.

[2] K.G. Lindquist, F.L. Vernon, T.S. Hansen, A.
Rajasekar, B. Ludaescher, J. Orcutt, J. Berger, H.W.
Braun, Y. Bock, “Generalizing Seismic Processing
Systems to Diverse Signal Domains.” In Abstracts
from the Fourteenth Annual IRIS Workshop, The IRIS
Consortium, June 12-16 (2002), 141 pp.

[3] K.G. Lindquist, Y. Bock, F. Vernon, D. Honcik, J .
Eakins. “Preliminary Integration of Real-time GPS and
Seismic Data.” I n Abstracts from the June, 2005

36

IRIS/UNAVCO Meeting, Skamania, Washington
(2005).

[4] K.G. Lindquist, T.S. Hansen, R.L. Newman, F.L.
Vernon, A. Nayak, S. Foley, T. Fricke, J. Orcutt, A.
Rajasekar. “Digital Image Support in the ROADNet
Real-time Monitoring Platform.” Eos Trans. AGU 85,
47, Fall Meet. Suppl., Abstract SF41A-0755 (2004).

[5] T.T. Fricke, B. Ludaescher, I. Altintas, K.G. Lindquist,
T.S. Hansen, A. Rajasekar, F.L. Vernon, J. Orcutt.
“Integration of Kepler with ROADNet: Visual Dataflow
Design with Real-time Geophysical Data.” Eos Trans.
A G U , 85(47), Fall Meet. Suppl ., Abstract SF41A-
0762.

[6] http://www.brtt.com

37

Data Grid Services Based on SRB
for National Digital Archives Program in Taiwan

Wei-Long Ueng
Grid Computing Centre,
Academia Sinica, Taiwan

wlueng@sinica.edu.tw

Hui-Min Lin
Grid Computing Centre,
Academia Sinica, Taiwan

huimin@gate.sinica.edu.tw

Eric Yan
Grid Computing Centre,
Academia Sinica, Taiwan

eric@sinica.edu.tw

Abstract*

Objectives of the Data Grid for the National Digital
Archive Project (NDAP) are to provide Grid services for
long-term preservation and unified data access. These
services will be built upon the e-Science infrastructure of
Taiwan, by integrating the data management components
of the underlying middleware. The services also link the
digital archive management tools and applications to take
advantage of the Grid infrastructure.

The Storage Resource Broker (SRB) Middleware
enables users to create, manage, and collaborate with
flexible, unified "virtual data collections" that can be
stored on heterogeneous data resources distributed across a
network. In early 2004, we deployed SRB nodes to
various institutes in Taiwan to handle the massive
storage, content management, and long-term preservation
requirements of the National Digital Archive Project. As
of January 2006, more than 30 TB and 1.4 million files
have been archived in the distributed mass storage
environment.

In this paper, the deployment of SRB in building a
collaborative environment for the National Digital
Archives Project are described in detail. The software tools
developed to facilitate system management tasks are also
introduced. In addition, many applications based on the
same SRB-based Data Grid services developed in Taiwan
are presented as well. For each application, the essential
data virtualization services provided by SRB to manage
the highly distributed and heterogeneous data sources are
characterized.

Keywords
Data Grid, SRB, National Digital Archives Program,

Applications

1. Introduction

Digital archives/libraries are widely recognized as a
crucial component of a global information infrastructure
for the new century. Research and development projects in
many parts of the world are concerned about using
advanced information technologies for managing and
manipulating digital information, ranging from data
storage, preservation, indexing, searching, presentation,
and dissemination capabilities to organizing and sharing
of information over networks.

Digital Archives demand reliable storage systems
for persistent digital objects, well-organized information
structure for effective content management, efficient and
accurate information retrieval mechanisms, and flexible
services for variant users needs. Hundreds of Petabytes of
digital information have been created and dispersed all
over the internet since computers were used for
information processing, and the amount still grows at the
rate of tens of Petabyte per year. Grid technology
enlightened a possible solution for processing diversified
heterogeneous Petabyte scale digital archives. Metadata-
based information representation makes specific and
relative information retrieval more accurate, makes
information resources interoperable, and paves the way for
formal knowledge discovery. By taking advantage of
advancing IT, semantic level information indexing,
categorizing, analyzing, tracking, retrieving and
correlating could be implemented. Data Grid aims to set
up a computational and data-intensive grid of resources for
data analysis. It requires coordinated resource sharing,
collaborative processing and analyzing on huge amounts
of data produced and stored by many institutions.

In Taiwan, a National Digital Archive Project (NDAP)
was initiated in 2002 with its pilot phase started in 2001.
Not only delicate and gracious Chinese cultural assets
will be accessible thru the Internet, but also a new
paradigm of academic research based on digital and
integrated information resources will be devised and

38

implemented. In this paper, ideas for utilizing Data Grid
infrastructure for NDAP will be depicted and discussed.

2. Objectives

The major goal of the program is to conduct Grid-
related R&D and integration tasks to help digitize and
network the collections and resources of different
institutes in NDAP. To achieve this goal, related Grid
framework, application and development are conceived and
designed in a comprehensive way, taking both the
standardization and commonality of development
environment and solutions into account. The digitized
resources of institutes will be well preserved and re-used
systematically. Different disciplinary institutes will be
able to build and develop their resources on the same
environment. Ultimately, the institute can share their
digitized data.

The workflow for digitizing and networking the
NDAP collections are summarized as follows.

Accumulation
Systematically accumulate media acquired during the

process of collection, research and educational
exhibitions. These media include photographs, recordings,
films, slides, literature and manuscripts.

Material Organization and Description
Classify and organize different media and materials of

all collection resources, conduct analyses on metadata, and
provide annotation and interpretation of each kind of
medium and material.

Digitization
The purpose of digitization is to use information

technology to convert collected media into forms that can
be stored, manipulated and edited.

Editing
Combine the digitized media and the description and

interpretation by professionals with multimedia
technology through graphical input interface; edit and
assemble these materials into different information
services and products to meet users' needs at all levels.

Accessing
Design multi-access methods, including browsing and

query, for users to obtain information they need quickly.
Dissemination
Provide information services and products through

computers and communication systems, such as Internet
or CD-titles.

To achieve the aforementioned goals, an
information structure that centers on integrated distributed
resources should be established. Other extensive IT
support and integration efforts are as follows.

* Standardization of digitization process and
establishment of resource management system.

* Distributed data resource and editing organization
interface

* Establishment of integrated associated index
structure

* Extensible structure of distributed data resources
* Structure of integrated data storage system
* User-friendly design of browsing guide and query

functions.

Fig 1 Workflow of Digital Archives

3. System Layout and Architecture

The Storage Resource Broker (SRB) Middleware
enables scientists to create, manage, and collaborate with
flexible, unified "virtual data collections" that may be
stored on heterogeneous data resources distributed across a
network. The SRB system in Academia Sinica, Taiwan is
used for the long-term preservation of the digital contents
produced by the digital archives projects, which are part of
the National Digital Archive Projects in Taiwan. The
system was deployed by the Academia Sinica Grid
Computing Centre (ASGC) in early 2004, which was
constituted from 7 sites in different institutes. Each site
has an 8TB STK disk array, linked by a dedicated fibre
campus network, and provides 68 TB capacity in total
(before RAID-5). In early 2006, it will expand to 120 TB.
A tape library server also has been incorporated into the
SRB system. It provides 500 TB capacity in total. The
system layout and architecture are illustrated in Figures 2
& 3.

ASGC is working on a new generation of Grid-based
research infrastructure in Academia Sinica and in Taiwan,
by using gLite and OSG as the Grid middleware. The
Data Grid is a major part of this infrastructure, and the
SRB is the first and the largest (in terms of the data
volume) Data Grid in our academy right now. As of
January 2006, more than 30 TB and 1.4 million files
have been archived in the distributed mass storage

39

environment. All files are also preserved in two copies on
different sites.

Fig 2 System Layout

.

Campus Backbone Network

ASCC
(20TB)

IIS
(8TB)

IOE
(8TB)

ITH
(8TB)

IHP
(8TB)

IMH
(8TB)

IZAS
(8TB)

Tape Library
(500TB)

Fig 3 System Architecture

4. Development

From direct operations experience, we developed the
SRB client and administration related software tools to
meet the requirements of the end users and system
manager. The software tools, including System Report
Generator (SRG), Sync Package and PHPMySRB will be
illustrated in this section.

4.1. System Monitoring (System Report
Generator)

We faced a resource management challenge as the data
grew rapidly after constructing the storage network based

on SRB among the institutes in Academia Sinica.
Therefore, we developed a software tool called “System
Report Generator”, which aims to facilitate resource
management tasks for the system manager. The system
manager can use the SRG to monitor the resource status
of the huge backend disk pool. In other words, SRG can
also be regarded as a monitoring component at the
collective layer of the grid architecture, which is
responsible for collecting the resource and user usage
information on SRB. The use case for SRG is illustrated
in Figure 4.

SRG is a set of programs based on the well known
SRB command line interface “Scommands”, written in
PERL and bash scripts. The main feature is that it allows
the users to run the command-line program with some
options to produce the desired results, whose output
format may be defined in the template. Another important
feature is the load resource management design. The
manager can set the threshold value for each resource
usage to monitor the SRB resource more efficiently. They
can receive a warning notification when the resource is
running out of space.

With regard to other SRG applications, SRG can be
easily integrated into other visualization programs. For
instance, the advanced user may parse the historical
results according to the format previously defined in the
template and then plot charts and show the aggregated
results as the system report. In addition, they may make
use of the template feature to output the visualization
codes directly.
 SRG is a kind of general-purpose SRB related software
tool, which has been successfully used in the national
digital archive project. It will be applied to other SRB
related data grid projects, such as the atmosphere databank
project, as the resource monitoring tool.

Fig 4 System Report Generator

Based on the System Report Generator, we also created
a visualization web-base monitoring interface system. It

40

can show all system and resource usage, watermark,
condition, users’ usage, data/files statistics and statistics
charts. The SRG lets system managers clear all system
conditions at a glance.

The interface is shown in Figure 5. We also integrate
with Google Earth software to show the geographic
distribution and usage of resources , see Figure 6.

Fig 5 Web-Base System Monitor Interface

Fig 6 Resources Geographic Distribute on Google Earth

4.2. Sync Package

The Sync Package is a client utility program based on
Scommands. It is designed to help the end users simplify
their backup procedures and to enable workflow tracking.
The entry-level users with limited computer knowledge
and skills can easily use this utility to ingest their data in
the backend SRB system as well. The Sync Package is
illustrated in Figure 7.

For the design of the Sync package, we packed the
powerful Srsync program in a more customized way with
logging and booking capability. The Srsync program
synchronizes the data between a local copy (local file

system) and the copy stored in SRB or between two SRB
copies. We deploy the Sync package to keep track of the
sync process from the event logs automatically generated
by Srsync program. Upon completion of the data
ingestion, the sync report can be configured to be sent to
both the users and managers. On one hand, the users will
be notified of the data transfer results to be assured that
the data transfer job is done. On the other hand, the
system manager can make use of the logs to diagnose data
transfer problems in the first place or do post-mortem
analysis about the system reliability.

We currently release two versions of the Sync package
for Windows and Linux users. The users are advised to
utilize it along with the other system utilities, such as
crontab and windows task scheduler, to execute the sync
job seamlessly and on a regular basis. Both versions have
been adopted and used by most institute users in
Academia Sinica.

Fig 7 The SRB Sync Package

4.3. Web user interface

In contrast to MySRB, we developed a more friendly
web user interface call PHPMySRB, written using PHP
scripts. Users can use the PHPMySRB Web interface on
Unix, Windows, Linux, and Mac platforms to define and
manipulate collections of files. They also can create
personal data collections and share, search, replicate, and
more, all from a Web interface without installing any
client software. The PHPMySRB is also a modularized
application; developers can use the APIs of PHPMySRB
in their own web applications. PHPMySRB is being
tested within ASGC and provided to NDAP users for use.

41

Fig 8 PHPMySRB Web User Interface

5. Applications

Based on the use of SRB Data Grid services for
NDAP, we developed a data I/O interface to integrate
applications such as Atmosphere Science and Geographic
Information System.

5.1 Atmosphere Science Applications
integration with SRB

Since 1994 the Live Access Server (LAS) has been
providing visualization and subsetting of multi-
dimensional scientific data for Web users. The LAS is a
distributed "data fusion" system designed to support
collaborative research. Users can co-plot and difference
(with regridding as required) the comparative data sets.
Binary access to remote data sets is provided transparently
by the Distributed Ocean Data System (DODS). The
DODS provides transparent access to remote data for
existing applications. Thus the use of DODS makes it
possible for Web servers such as LAS to provide access
to reference data sets without incurring any of the costs
associated with managing the data set. Sharing access to
reference data sets is reduced to exchanging the small
XML files that describe their metadata.

In the Atmosphere Databank Project, we developed a
DODS-SRB file I/O interface which integrates some
Atmosphere applications such as LAS and GrADS. The
system architecture is illustrated in Fig 9.

Fig 9 Atmosphere Databank Architecture

LAS supports collaborative research activities by
providing 1) common access to reference data sets
(without undue duplication of effort at each site); 2)
shared, mutual access (visualization and subsetting) to
distributed data sets; and 3) the ability to inter-compare
distributed data holdings. Within LAS the use of a remote
DODS data set differs from a local data set only in the
filename, which begins with “HTTP://” for a DODS data
set. The LAS uses data from the DODS-SRB interface to
plot an image as show in Figure 10.

Fig 10 LAS access to a dataset from the SRB
System.

5.2 GIS Applications integrate with SRB

Accessing, storing, and managing GIS images, maps,
and GIS metadata has just become easier and more
transparent for departmental and enterprise GIS users. The
Light Weight SRB GIS Server is a dedicated system
specifically used to access, manage, and store GIS image
data. In this case, we integrate the SRBfs module, which
was developed by BIRN, to enable client workstations to
connect to the SRB data-grid and access the entire data-

42

grid repository in a local VFS mount. This is designed to
facilitate collaborative scientific workloads, grid-
computing pipelines and distributed file system
management. The system architecture is illustrated in Fig
11.

Fig 11 The System Architecture of GIS integration
with SRB

The Light Weight GIS was developed by the GIS
Team at the Academia Sinica Computing Centre, Taiwan.
By integrating the Light Weight GIS Server, SRBfs and
SRB, all GIS data can be archived in distributed resources.
With the Light Weight GIS, the use of remote GIS data
and access to map data becomes easier. Figure 12 shows
the SRB-GIS integration.

Fig 12 The Light Weight GIS integration with SRB

Using the same ideas, GIS map data can also be
shown on Google Earth.

Fig 13 The SRB Map data show on the Google Earth

6. Future Works

We will keep improving the SRB related clients and
administration software tools to provide better data grid
services to the national digital archive program. In
addition, we plan to develop some other tools to support
content management.

As to the Sync package, we plan to add more features
for logging and booking. Besides email notification to the
manager, we will design a log repository on the server
side to keep every data transfer event of end users,
including the user identity, timestamp, data transfer rate
and other relevant information. The logs should be
uploaded into the repository through the Sync package.
Sometimes the log may be too verbose and not user
readable. Therefore, we require a log analyzer, which can
be considered as an agent to parse the logs and extract
some useful information in the log repository. Thus the
log analyzer will also be the interface between the LB
information system and the log repository, which is
responsible for transforming the log events into a well
defined user readable schema. Then users will be able to
keep track of the data ingestion information via the LB
information system.

The administration tool, System Report Generator, has
been acting as the core monitoring component in our
backend storage management framework. We will focus
on improvement of the load resource management design.
The load resource management is now available for
monitoring the physical resources defined in SRB. We
will support logical resource monitoring in the near
future.

The content search is undoubtedly essential to the
content management in the national digital archive
program. The Metadata Catalog (MCAT) provides
attribute based metadata discovery for the users to access
their dataset, but so far it does not support the feature of
full-text retrieval. Moreover, it may take a lot of effort to
implement several interfaces for the users to define the

43

attribute based metadata on a data item regarding its
content prior to conducting the search.

Therefore, we plan to propose an index service for
SRB as one of the content management solutions. We
intend to develop a SRB robot to perform batch indexing
tasks. The robot will be capable of extracting the content
of certain document types and indexing the content of
these documents as well as the system metadata
attributes, such as data name, data owner and etc. As a
result, the users can conduct full-text search via the search
engine provided by the index service. In our experience,
the index service often yields better query performance
when multiple tables are involved in the query. With the
index service, the content search for the long-term
preserved data does not necessarily rely too much on
commercial DBMS support.

7. Conclusions

Data Grid Services are becoming increasingly
important in scientific communities for sharing large data
collections and for archiving and disseminating them in
National Digital Archive Project. The Storage Resource
Broker provides transparent virtualized middleware for
sharing data across distributed, heterogeneous data
resources separated by different administrative and security
domains. In this paper we saw brief descriptions of the
use of the SRB infrastructure in the Data Grid
Architecture for building distributed data collections,
Digital Archives, and persistent archives. In the future,
more and more applications will integrate with Digital
Archives Data Grid Services based on SRB.

References

[1] Baru, C., R, Moore, A. Rajasekar, M. Wan, (1998)
"The SDSC Storage Resource Broker," Proc. CASCON
98 Conference, Nov.30-Dec.3, 1998, Toronto, Canada.

[2] Moore, R., C. Baru, A. Gupta, B. Ludaescher, R.
Marciano, A. Rajasekar, (1999), "Collection-Based
long-Term Preservation," GA-A23183, report to
National Archives and Records Administration, June,
1999.

[3] Moore, R., (2001a) "Knowledge-based Grids,"
Proceedings of the 18th IEEE Symposium on Mass
Storage Systems and Ninth Goddard Conference on
Mass Storage Systems and Technologies, San Diego,
April 2001.

[4] Moore, R., (2001b) "Knowledge-Based Data
Management for Digital Libraries", NIT2001, Beijing,
China, May 2001

[5] Rajasekar, A., M. Wan, and R. Moore, (2002),
"MySRB & SRB - Components of a Data Grid," The
11th International Symposium on High Performance

Distributed Computing (HPDC-11) Edinburgh,
Scotland, July 24-26, 2002

[6] Eric Yan, “Toward a Data Grid for Digital Archive,”
2002 PNC.

[7] SRB system monitoring tool - System Report
Generator, http://srb.grid.sinica.edu.tw

[8] Sommands – A Command Line Interface for SRB,
http://www.sdsc.edu/srb/scommands/index.htmll

[9] Arcot Rajasekar, Michael Wan, Reagan Moore,
George Kremenek, and Tom Guptill, ” Data Grids,
Collections and Grid Bricks,” 20th IEEE/ 11th
NASA .

[10] Steve Hankin, Jonathan Callahan, and Joseph Sirott,
"THE LIVE ACCESS SERVER AND DODS: WEB
VISUALIZATION AND DATA FUSION FOR
D I S T R I B U T E D H O L D I N G S " ,
http://ioc.unesco.org/oceanteacher/OceanTeacher2/06
_OcDtaMgtProc/04_VirtCtrs&DistSys/LASoverview.h
tm

[1 1] S R B f s , B I R N G r i d F i l e System,
http://www.nbirn.net/Resources/Users/Applications/S
RBfs/

[12] TWGrid. http://www.twgrid.org.
[1 3] N a t i o n a l D i g i t a l A r c h i v e s Program,

http://www.ndap.org.tw
[1 4] GIS Team, Academia Sinica Computing Centre.

http://gis.ascc.net.

44

SRB Image Archive with Cropping and Scaling
for Environmental Niche Modeling

David Stockwell
University of California,

San Diego
davids@sdsc.edu

Bing Zhu
University of California,

San Diego
bzhu@sdsc.edu

Haowei Liu
University of California,

San Diego
haoweiliu@gmail.com

Abstract

Here we describe the use of the Storage
Resource Broker (SRB) to support new data
intensive approaches to Environmental Niche
Modeling (ENM) by providing access to cropped
images from a remote SRB data store of almost
1000 global coverage data sets. The archive is
currently used in conjunction with a data mining
algorithm called WhyWhere (available at
http://biodi.sdsc.edu/ww_home.html).

Introduction

The basic architecture of the system is illustrated
below (Figure 1). ENM is a generic name for a
range of geospatial modeling methods that model
the probability of species occurrence with
respect to environmental variables (the
ecological niche), and then uses this model to
project a distribution onto the landscape.
Processing massive environmental data sources
present a challenge to existing ENM techniques.

Figure 1. Illustration of the components and operation of the SRB data archive for
ecological niche modeling. A large set of images and meta data are stored in a central
archive. The client directs the server to crop an image in the archive using a server-side
proxy operation. The cropped image is copied to the local directory and scaled by the
client to the resolution required for the prediction algorithm. Illustrated is a prediction of a
North American bird, the Cerulean Warbler.

45

Whereas in the past, ENMs were developed with
small numbers of primarily climatic variables,
such as annual average temperature and rainfall,
this approach ignores a large number of
potentially better correlates including monthly
temperatures and rainfall, functions of these
variables such as standard deviations, and those
related to water availability and
evapotransporation, soil and vegetation habitat
conditions, and topography. Extended into the
marine environment, each variable potentially
exists in 3 dimensions. Combine this with remote
sensing data, the existence of alternative versions
of variables, different scales, and temporal
factors such as time and duration and the number
of variables that a researcher might want to
examine for potential correlates expands rapidly.

The collection is called WhyWhere and can be
viewed with inQ v3.3.1
(http://www.sdsc.edu/srb/software.html) using
the following settings: Name: testuser Host:
orion.sdsc.edu, Domain: sdsc, Port: 7613,
Authorization: ENCRYPT1, Password:
TESTUSER, or by downloading and using
routines in the WhyWhere application [1].

Archive Architecture

The aim of this SRB archive was to provide a
source of environmental correlates for ecological
niche modeling (ENM) from a massive archive
of data. The second element of the architecture is
an algorithm for efficiently mining for
environmental correlates, described in [1].

Here we describe the needs and solutions that
drove the environmental data component
supplying the spatial mining algorithms to use a
server-side image cropping operation called
‘pgmcut’. By putting the ‘pgmcut’ into server
side we avoid the overhead of downloading the
whole image into the client. This remote partial
file transfer capability is accomplished by
treating ‘pgmcut’ as a proxy operation within
SRB server.

The approach of adding server-side operations to
facilitate access to parts of images in archives is
similar to that of another SRB user, the
International Virtual Observatory Alliance
(IVOA). While the IVOA have developed a
more capable Simple Image Access Specification
defining a cgi-based interface including cutting

and mosaicing, the parameters use astronomical
coordinates. The Open GIS Consortium (OGC)
has a more appropriate geographic specification
that could be used to provide a “wrapper” for
accessing the archive via a GetMap request with
latitude and longitude parameters.

Other benefits of using SRB as an archive place
include location encapsulation for archived files
and metadata, meaning that a ‘pgmcut’ client
doesn’t need to know where the actual image and
data are stored. As a distributed data
management system, SRB provides virtually
unlimited storage space for geospatial
data/images. The constraints were as follows and
are described in turn, but the fourth required the
extensions to the SRB that we describe in more
detail: (1) single format for at least 1000 data
variables, (2) all data sets of global extent but
variable scale, (3) all data described with meta
data, and (4) each variable supplied cropped and
scaled to a specific size and resolution.

Format. The format used for storing the
variables was a pgm image. This is a simple gray
scale image with one byte per pixel and a simple
text header giving the format, the extent and the
number of shades of gray in the image. For
example, below is the first few lines of a pgm
binary file with dimension 3600_1800 and 255
colors.

P5
3600 1800
255
... (binary data)

While many variables such as categorical
variables describing vegetation, landscape or soil
types contained fewer than 256 values,
continuous value variables were simply
normalized between 0 and 256 according to their
maximum and minimum values. While this trade
off for efficiency resulted in loss of information,
it is not as problematic as it might seem given
the WhyWhere algorithm used in mining the data
set is only looking for statistical associations.
The WhyWhere algorithm categorizes all
variables into less than this number of categories
anyway, and the reduced size provides both
storage and computational efficiencies.

Scale and Extent. It was also decided to restrict
the database to variables with the same global
extent and geographic projection to make

46

extracting information consistent. Given all
variables are global, all can potentially be used in
an analysis. The scale varies between 1 degree
per grid cell (i.e. 360_180 pixel image) to 1km
per grid cell, approximately 1GByte total size.

Metadata. The meta data format consists of
simple attribute/value lines as used in the Global
Ecosystem Database (GED), one of the main
sources of data. An example is shown below.
While more complex meta data would be useful,
but this format was adequate for our purposes.
The meta data documents images, provides the
dimensions to allow extraction by the cropping
algorithm so that parts of the image file can be
accessed by the SRB.

file title : Legates & Willmott Annual
Temperature (0.1C)
data type : integer
file type : binary
columns : 720
rows : 360
ref. system : lat/long
ref. units : deg
unit dist. : 1.0000000
min. X : -180.0000000
max. X : 180.0000000
min. Y : -90.0000000
max. Y : 90.0000000
pos’n error : unknown
resolution : 0.5000000
min. value : -569
max. value : 299
value units : 0.1 degrees Celsius
value error : unknown

Operations. Two main operations are needed,
exemplified in the local image processing library
netpbm as ‘pgmcut’ and ‘pgmscale’. The
‘pgmcut’ operation produces a partial image
labeled by ‘B’. In the ‘pgmscale’ operation, we
want to change the x and y extent to a given size,
either increased (B to a) or reduced the size (a to
B) (Figure 2).

aaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaa
aaaaBBBBBBBBaaaaa
aaaaBBBBBBBBaaaaa
aaaaBBBBBBBBaaaaa
aaaaaaaaaaaaaaaaaaa

Figure 2. Array of pixels for illustrating
cropping and scaling operations. In a
crop the array extent ‘a’ is cropped to ‘B’.
In scaling the entire array ‘a’ is reduced
in size to ‘B’ or the array ‘B’ is increased
in size to ‘a’.

We wanted to develop a generic approach to
accessing the geographic data sets, paying
attention to increased usage in the future. There
were a number of options to developing the right
approach to balancing the client/server load.
Based on our experience dealing with remote file
transfer software, currently no such software can
handle the requirement of a ‘pgmcut’ from SRB
in a distributed environment.

One approach could be to download whole file
into a local machine and operate on the image
locally. This is not a good solution in terms of
performance as many files are greater than
1GByte and we just need partial data.

Although grid-ftp provides partial file transfer, it
cannot be done by one function call for the above
case. So the client side (grid-ftp client) has to
repeatedly calculate offsets and then make grid-
ftp calls with new offsets and numbers of bytes
for data transfer. In this case, we create a
customized client that then assembles the
resulting lines of the data to create the image.
We tried this with the SRB using the SRB read
library function. However initial experiments
were very slow, presumably due to latency of the
Internet connections that are made and broken
for each line of the image.

Finally we extended SRB functionality by
developing a cropping function on the server
side, and kept the scaling function on the client
side. The server side reads the header of the
image file, retrieves and assembles a series of
lines from the file corresponding to the area
needed then passes it to the calling client. We
found it to be reasonable performance and is the
‘generic’ solution currently used in the
WhyWhere application.

The SRB connection is carried out as a proxy
operation on the server through the use of a
program in the client called rpgm. The
WhyWhere application iterates along a list of
image names to retrieve as selected by the user.
For each image it retrieves a version cropped
according to the latitude and longitude required.
To do this, the client side calculates the pixel
coordinates needed based on local metadata and
makes calls of the form:

$ Sinit
$ Spcommad “Spgmcut 0 0 20 20
/home/whywhere.seek/ei/Data/Terrestrial/a

47

00sd1.9.pgm” > temp.pgm
$ pnm_scale -xsize $xwall -ysize $ywall
temp.pgm >$RDIR\$DIR\t_$i.pgm”;

The above Spcommand sends the only command
line argument to SRB server. The command line
argument has the proxy program name, Spgmcut,
parameters and file name. The result is sent to
‘stdout’ which, in above example, is directed to a
local file, temp.pgm. The SRB S-commands in
‘landscape.sdsc.edu’ can be found in the
following directory of the WhyWhere
distribution – WW/cgi-bin/UTIL. While initial
tests indicated adequate performance, once a
number of people started using the service the
performance became variable according to the
size of the files (the biggest are 1GByte each) or
the load on the server. Currently a call to
Remote_All_Data is an overnight task.

Archive Contents

The data sets were collected from various free
sources on the web in a variety of formats and
processed into pgm images. The following were
major sources:

The Global Ecosystems Database (GED). The
GED project began in 1990 as an Interagency
project between the National Geophysical Data
Center (NGDC) of the U.S. National Oceanic
and Atmospheric Administration (NOAA), and
the U.S. Environmental Protection Agency’s
(EPA) Environmental Research Laboratory in
Corvallis, Oregon (ERL-C). In particular the
following variables added, many consisting of
multiple layers (e.g. monthly mean and standard
deviations of temperatures).

A01: NGDC Monthly Generalized Global
Vegetation Index from NESDIS NOAA-9
Weekly GVI Data (APR 1985 – DEC 1988).
A05: Olson World Ecosystems.
A06: Leemans Holdridge Life Zone
Classifications.
A07: Matthews Vegetation, Land Use, and
Seasonal Albedo.
A10: Wilson and Henderson Sellers Global Land
Cover and Soils Data for GCMs.
B01: Fedorova, Volkova, and Varlyguin World
Vegetation Cover
B02: Bazilevich Global Primary Productivity
B03: Bailey Eco regions of the Continents
(reprojected)

WORLDCLIM. This is a set of global climate
layers (grids) on a square kilometer grid
supported by NatureServe. The bioclimatic
variables represent physiologically relevant
annual trends (e.g., mean annual temperature,
annual precipitation) seasonality (e.g., annual
range in temperature and precipitation) and
extreme or limiting environmental factors (e.g.,
temperature of the coldest and warmest month,
and precipitation of the wet and dry quarters) as
follows:

BIO1 = Annual Mean Temperature
BIO2 = Mean Diurnal Range (Mean of monthly
(max temp – min temp))
BIO3 = Isothermality (P2/P7) (* 100)
BIO4 = Temperature Seasonality (standard
deviation *100)
BIO5 = Max Temperature of Warmest Month
BIO6 = Min Temperature of Coldest Month
BIO7 = Temperature Annual Range (P5-P6)
BIO8 = Mean Temperature of Wettest Quarter
BIO9 = Mean Temperature of Driest Quarter
BIO10 = Mean Temperature of Warmest Quarter
BIO11 = Mean Temperature of Coldest Quarter
BIO12 = Annual Precipitation
BIO13 = Precipitation of Wettest Month
BIO14 = Precipitation of Driest Month
BIO15 = Precipitation Seasonality (Coefficient
of Variation)
BIO16 = Precipitation of Wettest Quarter
BIO17 = Precipitation of Driest Quarter
BIO18 = Precipitation of Warmest Quarter
BIO19 = Precipitation of Coldest Quarter

World Ocean Atlas 2001 (WOA01) Data for
Ocean Data View. The objectively analyzed
global ocean historical hydrographic data from
the U.S. NODC World Ocean Atlas 2001. Data
are on a 1_1 degree horizontal grid and at the
following standard depths (in m): 0, 10, 20, 30,
50, 75, 100, 125, 150, 200, 250, 300, 400, 500,
600, 700, 800, 900, 1000, 1100, 1200, 1300,
1400, 1500, 1750, 2000, 2500, 3000, 3500, 4000,
4500, 5000, 5500. Data are available for the
following variables:

Temperature [°C]
Salinity [psu]
Oxygen [ml/l]
Oxygen Saturation [%]
AOU [ml/l]
Phosphate [~$m~#mol/l]
Nitrate [~$m~#mol/l]
Silicate [~$m~#mol/l]

48

Continuous Fields 1 Km Tree Cover. This
dataset was developed by DeFries, R. Hansen,
M., Townshend, J.R.G., Janetos, A.C., Loveland,
T.R. at the University of Maryland. It uses an
alternative paradigm to describe land cover as
discrete classes by representing land cover as
continuous fields of vegetation characteristics
using a linear mixture model approach. This data
set contains 1km cells estimating:

Percent tree cover
Percentage cover for two layers representing leaf
longevity (evergreen and deciduous)
Percentage cover for two layers estimating leaf
type (broadleaf and needleleaf)

HYDRO1km. This dataset was developed at the
U.S. Geological Survey's Center for Earth
Resources Observation and Science (EROS), the
HYDRO1k provides derivatives of hydrological
data including:

Elevation
Aspect
Flow Accumulation
Compound Topographic Index
Drainage Basins
Slope
Flow Direction
Streams

Future Needs

Future needs are many if the archive is to
transition into a production resource for the
general research community. The following are
some of the main challenges:

It is envisaged that traffic could expand
considerably, as each analysis requires download

and processing of a large section of the
collection by each researcher each time they start
analysis, so local caching is only a small saving.
Meeting this need is initially envisaged via
replication of SRB archives and a means in the
client of selecting the most efficient (e.g.
proximate) archive for connection and download.

If the popularity expands, attention will be paid
to transitioning the archive to a community of
developers for maintaining, updating, cleaning
and improving the archive. Currently we are
developing a model of modeling tools for R that
would incorporate the utility. Other activities
include outreach to the OpenModelling
(http://sourceforge.net/projects/openmodeller/)
project, and also maintaining a Weblog site to
facilitate education and promotion about data
intensive approaches
(http://landscape.sdsc.edu/~davids/enm).

Finally, improved methods of access are needed,
potentially based around the WMS OpenGIS
specification to allow more flexible interaction
with servers including selection of variables for
analysis.

Acknowledgement

This work was partially funded by the National
Science Foundation primarily through the
National Science Foundation grant SEEK:
Science Environment for Ecological Knowledge
(DBI0225674).

References

[1] Stockwell D.R.B. (in press) Improving ecological
niche models by data mining large environmental
datasets for surrogate models, Ecological
Modelling, [arxiv:q-bio/0511046].

49

VOSpace and VOStore Design

Abstract1

Data grid technology provides the ability to
manage shared collections that are distributed
across multiple storage systems. Based on the
principles behind data grids, the design of
standard storage repository access
mechanisms (VOStore) and standard
information management infrastructure for
organizing shared collections (VOSpace) are
examined, with the intent of specifying the
minimal requirements needed for a functional
system.

1. Introduction.
The Astronomy community is developing

standard services for accessing image archives
and object catalogs. The standard services
provide simple interfaces to retrieve
information about stars and galaxies (Cone
Search) and information about images (Simple
Image Access Protocol). Two new services
are being developed:
• VOStore – a simple access mechanism to

retrieve images
• VOSpace – a minimal information

management system to organize shared
collections.

The development of the new services is
being driven by the desire to support access to
images that individuals have acquired, not just
the large all-sky surveys. The latter typically

1 This work was supported in part by the NSF SCI0438741
Cyberinfrastructure project and the NSF National Virtual Observatory.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the National Science
Foundation or the U.S. government.

provide portals for accessing their image
archives, as well as catalogs for discovering
object of interest.

A major challenge is differentiating between
the capabilities that should be supported within
VOStore versus the capabilities that would be
supported by VOSpace. One way to
differentiate capabilities is to note that
personal access to personally owned images
requires less information. The owner of the
images has the knowledge required to interpret
the naming conventions of the files,
understand where the files are stored, and has
the permissions required to access the data.
The owner is able to run a utility like GridFTP
to directly interact with the storage system and
retrieve a file. A VOStore interface to
personally owned data can be as simple as
GridFTP.

When data is published, such that others can
discover and retrieve relevant images, a more
sophisticated interface (VOSpace) is needed
that provides:
• Descriptive metadata to support discovery

(this can be FITS header information that
is loaded into a metadata catalog).

• Logical name space to provide a common
naming convention across the images in
the shared collection and across the remote
storage systems where the images reside.

• Ability to organize the logical name space
into sub-collections to simplify browsing
and discovery of related images or files.

• Support for queries on the descriptive
metadata

• Support for access controls to ensure data
and metadata are not maliciously altered

Reagan W. Moore
San Diego Supercomputer Center

moore@sdsc.edu

50

• Remote procedures that can be used to
extract metadata, or create image cutouts,
or support transformations of the format.

• Support for replicas to improve
availability, minimize risk of data loss,
improve performance.

• Support for federation with other shared
collections to enable the creation of global
digital holdings

• Support for state information such as
owner, version, audit trail, locks, backups,
sticky bits for setting access controls from
a parent collection, soft links to other
images in the shared collection, deletion
flags, synchronization flags for replicas,
checksums, verification time stamps,
creation time stamps, update time stamps.

The VOSpace interface also can be
designed to manage latencies that are inherent
in distributed environments, through the
provision of bulk operations for metadata and
data movement. Typical bulk operations
aggregate data before transmission and use
parallel I/O streams to minimize the transfer
time. Finally, the VOSpace interface should
support graceful interactions with network
devices such as firewalls, load levelers, and
virtual private networks. The network
protocols used to implement bulk operations
have to differentiate between client-initiated
services and remote server-initiated services.
The latter enable use of parallel I/O streams
from behind firewalls.

2. VOStore:
The VOStore service can be implemented as

a software server that is installed as
application-level software at the storage
repository. The VOStore server responds to
commands from an access client or another
VOStore server. A preferred design is for
VOStore servers to support peer-to-peer
communication. The VOStore server can be
installed under the same Unix account as the
owner of the files that are being accessed.

A simple VOStore interface would support:

• “Put” of files onto the storage system. The
source of the files may be another VOStore
server or a remote client.

• “Get” of files from the storage system.
The files may be delivered to another
VOStore server or to a remote client.

• Deletion of files from the storage system
• List of files on the storage system.
• Access to Unix state information such as

owner, file name, and creation date.
The advantages of this VOStore server

specification is that it can be implemented on
top of existing Unix file systems without
having to manage a separate metadata catalog.
All read accesses are assumed to be to data
that are publicly accessible. All write accesses
are assumed to be through the account of the
person who owns the data.

3. VOSpace:
The VOSpace service implements a

metadata catalog to manage the logical name
spaces, the shared collection state information,
and the descriptive metadata that are generated
when files are published. The VOSpace
service corresponds to a shared collection that
may be distributed across multiple VOStores.
The files that are members of the shared
collection are owned by an account associated
with the VOSpace service.

This appears to impose an authentication
barrier. How do files migrate from privately
owned data in file systems to shared
collections that are owned by a VOSpace
account? Data grids manage this
transformation through the concepts of
registration and shadow links. A shadow link
is a pointer to a file that resides on a remote
VOStore instance. For operations to be
performed upon the remote file, access
permission must be given to the VOSpace
account. Registration corresponds to the
recursive loading of pointers into a VOSpace
metadata catalog for the files that exist within
a directory.

51

An example of this approach to migrating
data from a private context into a shared
collection was the replication of the DPOSS
sky survey into a Storage Resource Broker
(SRB) data grid. The DPOSS sky survey
images resided at Caltech on the HPSS
archival storage system. An account was
established on the HPSS system for the SRB
server. Access permission was then given to
the SRB server account for all of the image in
the DPOSS survey. A SRB server was
installed on the HPSS system. Note that the
metadata catalog into which the files were
being registered resided at SDSC. No
metadata catalog was installed at Caltech.

The SRB registration command was issued
from a client running at SDSC, redirected by a
SRB server at SDSC to the SRB server
running at Caltech (peer-to-peer server
architecture), and executed on the HPSS
system. The entire DPOSS collection was
registered into the SRB collection in 10
minutes. The time would have been shorter,
but HPSS provided information for only one
file at a time.

Once the files were registered into the SRB
collection, then they could be replicated onto
resources managed by the SRB over an
arbitrarily long period of time.

The ability to register filesinto a VOSpace
collections requires no additional capabilities
in the VOStore interface.

4. VOSpace implementation
The Storage Resource Broker data grid

provides a proof of concept that it is possible
to build a viable VOSpace system. The SRB
system consists of peer-to-peer servers that are
installed at each storage repository where the
shared data reside, and a metadata catalog that
resides anywhere on the network linking the
servers. The SRB server implements the
VOStore interface functionality using standard
Posix I/O functions. Actually, the set of
operations include not only single file “get”

and “put”, but also a wide variety of bulk
operations that deal with firewalls.

The metadata catalog manages both state
information for the shared collection (replica
locations, versions, checksums, owner, access
controls, time stamps, etc.) and descriptive
information. The SRB also supports the ability
to write to remote storage systems through the
GridFTP interface, and the ability to write files
under a user account ID. Note that writing
data under a user account ID means that the
data cannot be shared until access permissions
are established for the SRB shared collection
account ID.

The design principles on which the SRB is
based are:
• Latency management. The number of

messages and the amount of data sent
over wide area networks are minimized.

• Trust virtualization. Authentication,
authorization, and audit trails are
managed independently of the remote
storage system.

• Data virtualization. The properties of
the shared collection, including the
name spaces used to describe the shared
files are managed independently of the
remote storage system.

• Collection management. The shared
collection can be organized and
managed as a collection hierarchy. The
descriptive metadata can be extended
dynamically, schema extension supports
user-specified table structures for
metadata, import and export of XML
files is supported, and a template
language for automated extraction of
metadata is supported.

• Federation management. Multiple
independent SRB data grids can cross-
register name spaces, enabling the
creation of hierarchies of shared
collections. Each data grid retains
control of their data, while enabling
access from a user in a remote data grid
under appropriate access controls. All

52

authentication information remains with
the original home data grid of each user.
This is similar to the Shibboleth model
for authentication, but does not require
redirection through http proxies.

For each of these functional areas, the SRB
supports the associated logical name space, an
extensive set of operations, and the associated
state information that is generated by each
operation. A representative set of capabilities
is listed in Table 1 for the SRB.

Logical naming Standard operations State information

Latency Logical resource names Load leveling Quotas on storage and usage of storage

Management Fault tolerant replication Replication state

 Compound resources File staging Names for file system cache

 Automated access control setting
Sticky bits to inherit access controls of parent
collection

 Client and server initiated parallel I/O on access Creation time, update time

 Client and server initiated bulk file registration

 Client and server initiated remote procedures Location in SRB of remote procedures

 Client and server initiated bulk metadata load

 Bulk delete - trash can Deletion flag

 Automated checksum verification on load

 Third party transfer

 Store files in a logical container

Trust Logical user names Add or delete user User:Group:Zone

Virtualization GSI authentication Certificate authority location

 Challenge-response authentication Encrypted user password

 Issue ticket-based authentication Time to live and number of allowed accesses

 User roles List user roles
Curate, audit, annotate, read, write, group
administration, superuser, public

 Set access control by role for user Access controls on users

 Group names Set access control by role for group Access controls on groups

 Set access control on metadata for user Access controls on metadata

 Set access control on resource for user Access controls on resources

 Turn on audit trails Audit trails

 Enable client-based encryption Encryption key

 Resolve error number System log of all accesses

Data Logical entity names Define SRB physical file name structure SRB physical file pathname structure

Virtualization Load a file into SRB collection (Sput) Physical location where SRB stores file

 Unload a file from a SRB collection (Sget)

 Shadow links Register existence of external file Location of external file

 Register existence of external directory Location of external directory

Logical container
names Create container Physical file in which data is aggregated

 Create checksum Checksum

 Verify checksum

 Synchronize replicas Dirty bit for writes

 Synchronize remote files with SRB files

 Synchronize SRB files with remote files

53

Synchronize SRB files between two SRB
collections

 Posix I/O - partial read and write Replica location

 Delete file

 Recursive directory registration

 Register a file as a replica of existing file Owner, size

 Create version Version number

 Create backup Backup time

 Lock a file Lock status

 Register SQL command

 Issue a registered SQL command

 Create and issue a Datascope query

 Register URL

Collection Descriptive metadata Extensible metadata Descriptive metadata for SRB file

Managment Collection hierarchy Create/delete subcollection Parent collection identity

 Create collection metadata Descriptive metadata for SRB collection

 Extensible schema Table structure of metadata

 Create soft link between two logical files Soft link

 Import of XML files

 Export of XML and HTML files

 Remote template-based metadata extraction Location in SRB of templates

 Synchronize slave catalog with master catalog Location of slave catalog

 Queries on descriptive and state information

Federation
Distinguished zone
names Access zone authority to register zone name Zone name and port number

Management Zone authority name User authentication by home zone

 Cross-registration of resources between zones

 Synchronization of user names between zones

 Synchronization of file names between zones

 Synchronization of metadata between zones

Table 1. Storage Resource Broker logical name spaces, global data manipulation operations, and
global state information for the functional areas of latency management, trust virtualization, data
virtualization, collection management, and federation management.

A simple VOSpace implementation would
provide a subset of the SRB capabilities by
eliminating support for:

• Bulk operations
• Containers
• Ticket based authentication
• Separate access controls on metadata

and resources
• Encryption
• Versions
• Backups

• File locks
• URL, SQL registration
• Datascope query access
• Extensible schema
• Slave metadata catalogs

The other features are already in use in
astronomy data grids such as NOAO and in the
Teragrid replication of sky survey image
archives.

54

Near-real-time Backup of Large Seismic Waveform Datasets with the Storage
Resource Broker

Kent G. Lindquist
Lindquist Consulting, Inc.

kent@lindquistconsulting.com

Jennifer Eakins
Univ. of California, San Diego

jeakins@ucsd.edu

Frank L. Vernon
Univ. of California, San Diego

flvernon@ucsd.edu

Arcot Rajasekar
Univ. of California, San Diego

sekar@sdsc.edu

Abstract*

The Earthscope USARRAY project at full deployment
is expected to generate more than four GigaBytes of data
per day from approximately 400 seismic monitoring
stations. The testbed as of October, 2005 is producing
1.2 GB/day from 102 stations (612 seismic channels) in
the prototype Transportable Array. These data are being
acquired via an Antelope near-real-time system into
Datascope databases. The large data volumes, the need for
deep-archival and up-to-date retrieval of waveform files,
and the desire to have these data backed up and also
accessible through internet portals make the Storage
Resource Broker ideal for the application. A recently
constructed driver for the SRB adds Datascope relational
databases as one of the possible storage resources. A
corresponding client library allows access to these data
with Datascope operations mediated by the SRB. We
have written Datascope database utilities (in this case
based also in part on SRB S-commands) that routinely
and automatically archive incoming USARRAY data
into the Storage Resource Broker, tracked additionally
through another Datascope database table linked into the
main seismic database. This archival data collection starts
with data from April of 2004, and as of October, 2005
encompasses over 265,000 individual files representing
slightly over 1.3 million seismic waveform segments,
with a total storage allocation of 0.6 TeraBytes.

* This research was sponsored by a funding agency. Views and

conclusions contained in this report are the authors’ and should not be
interpreted as representing the official opinion or policies, either
expressed or implied, of the Government, or any person or agency
connected with them.

1. Introduction

1.1. Earthscope

The Earthscope project [1] is a National Science
Foundation multi-year initiative to investigate the
structure and evolution of the North American continental
lithosphere as well as the physical processes controlling
earthquakes and volcanic eruptions. One of the major
components of Earthscope is the USArray seismic
observatory [2], a continent-wide deployment of
seismometers designed to study the Earth’s structure over
many different physical length scales. In addition to
permanent stations that will enhance the US Advanced
National Seismic System (ANSS), a “Transportable
Array” of 400 broadband, 3-component seismic stations
will be deployed and systematically moved to cover
subsections of a uniform grid across the United States, as
shown in Figure 1. In addition, a “Flexible Array” will
augment these for active and passive seismic experiments.

Figure 1. The Transportable Array

1.2. The Array Network Facility

Data received from the Transportable Array and
Flexible Array seismic stations will be acquired and

55

initially processed by the Array Network Facility (ANF)
located at the Institute for Geophysics and Planetary
Physics (IGPP) and Scripps Institution of Oceanography
(SIO) at the University of California, San Diego [3]. The
ANF will be responsible for maintenance of all station
metadata, as well as quality control of incoming seismic
data and control of the running stations.

1.3. Antelope

The Array Network Facility runs real-time acquisition
and processing systems based on the Antelope
Environmental Monitoring System produced by Boulder
Real-Time Technologies, Inc. (BRTT) [4]. The Antelope
suite of programs and programmer interfaces contains
both real-time data transport, acquisition, and gridded
distribution mechanisms (the “orb” utilities), and an
embedded relational database system called Datascope,
which is well suited to real-time processing tasks as well
as the collection and archival of real-time data. The real-
time utilities include signal detectors that examine the
incoming data streams for candidate seismic energy
arrivals, associator programs that can derive from these
detections the approximate locations of the source
earthquakes or explosions, and magnitude estimators to
derive the approximate sizes of the events. All incoming
seismic waveforms, station metadata, and processing
results are saved in a real-time Datascope database in the
Antelope “rt1.0” format, a derivative of the Center for
Seismic Studies “css3.0” schema which is a de-facto
standard in the seismic community [5]. Files of seismic
waveform data are referenced in a database table called
“wfdisc.” This relation tracks station and channel names,
start and end times of each segment, and the directory
name, data file name, and byte offset in the file for each
contiguous waveform segment. The actual files of
waveform data are stored separately in a Unix filesystem.

2. Storage Resource Broker Connectivity

While the ultimate fate of seismic waveform data in
the Earthscope program will be archiving at and
distribution through the Incorporated Research
Institutions for Seismology (IRIS)’s Data Management
Center (DMC) in Seattle [6], the scale of ANF operations
requires internal capabilities for virtual access and large-
volume archiving and backup to sustain robust
operations. This need provides a clear role for the Storage
Resource Broker (SRB) [7].

The current connection between the USArray data
being acquired and the Storage Resource Broker is
established through extensions to the USArray Datascope
database and through SRB S-commands. Two wrapper
utilities have been written to provide straightforward tools

for USArray system operators: rtbackup_srb and
get_archive_srb. The former runs automatically in the
USArray Antelope real-time system; the latter is used as
needed to recover waveform data and their corresponding
database tables out of the Storage Resource Broker
archives.

2.1. Database extensions

We have expanded the Antelope rt1.0 schema by
adding one new table, called “wfsrb”, which tracks SRB
objects into which waveform-segment files have been
copied. Many of the features of the wfsrb table mirror
those of the css3.0 wfdisc table, except that the “dir” and
“dfile” fields used to reference external binary large objects
in the wfdisc table are replaced by fields appropriate to the
SRB in the wfsrb table. A simplified sketch of the wfsrb
relation structure is shown in Table 1.

Table 1. wfsrb extension to rt1.0 schema
Field Content
sta Time-series station name
chan Time-series channel name
Time Unix epoch start time of time-series
Endtime Unix epoch end time of time-series
Nsamp Number of samples in time-series
Samprate Sample rate in Hz of time-series
Foff Byte offset in file of time-series start
Szone SRB Zone name for stored BLOB
Scoll SRB Collection name for stored BLOB
Sobj SRB Object name for stored BLOB
……. Various other data fields indicating data

type, calibration, instrument, and units
representation

2.2. Rtbackup_srb

The rtbackup_srb program is designed to run within
the context of an Antelope real-time system. Antelope
real-time systems support a utility for periodic execution
of operational tasks, quite similar to the Unix cron(1)
program. For the USArray systems, rtbackup_srb is set
to run once per day. For each invocation, a database no-
join operation is performed to determine all the rows of
the wfdisc table (and therefore their corresponding binary-
large-object waveform files) which do not have entries in
the wfsrb table. These files are all loaded into the SRB,
and appropriate entries are made in the wfsrb table. A
variety of check mechanisms verify that the transfers are
conducted successfully, that waveform files are not
repeatedly loaded if they are referenced by multiple wfdisc
rows, and that system operators are notified of any

56

problems. The collection name under which each
waveform is stored is constructed from the dir field of the
wfdisc table, combined with the top-level SRB collection
for the archive as specified at run-time to rtbackup_srb.
For cases where many waveforms (months worth or
more) must be archived to a new wfsrb table and new
SRB archive, an incremental mode is provided in
rtbackup_srb such that the run periods of rtbackup_srb
may be interleaved with real-time data acquisition (these
tasks must be coordinated to prevent corruption and/or
significant latency in the real-time databases). In addition
to backing up the raw waveform files, rtbackup_srb will
copy any and/or all of the tables of station metadata,
seismic processing results, and other parametric data to
the SRB. Any tables that are backed up in the SRB are
automatically replicated with a version string giving the
current system time in UTC epoch seconds. This provides
a convenient rollback facility for retrieving seismic
processing results, since by nature those tables are
updated continuously by the Antelope real-time system.
Finally, the entire top-level collection into which
rtbackup_srb saves its archives can be automatically
replicated to one or more alternate SRB physical
resources, thus immediately producing a much safer
archive through the strengths of the SRB, as well as
providing database copies in other convenient locations.
This automatic replication, if enabled, is accomplished
with the SRB Sbkupsrb(1) command. The architecture of
rtbackup_srb is shown in context in Figure 2.

Figure 2. Context of rtbackup_srb.

2.3. Get_archive_srb

The get_archive_srb script retrieves waveform data that
has been archived in the Storage Resource Broker, as
described by a wfsrb database table, and extracts the raw
waveforms files as well as recreating an appropriate
wfdisc table. The standard mode in which to run

get_archive_srb would be as a bulk extraction of
waveform files. However, get_archive_srb also contains a
fairly powerful and general mechanism to preprocess the
database and create a complex input view on which to
base the extraction. This may be used, for example, to
extract waveforms for specific earthquakes, sets of
arrivals, seismic-phase moveout patterns across the array
of stations, and so on. Additionally, subsets may be
applied to constrain the extraction to particular time
ranges, stations and channels, etc. These constraints may
be important in many cases since the SRB may contain
far more data than a given local filesystem and wfdisc
could ever hold. A sketch of the architecture for
get_archive_srb is shown in Figure 3.

Figure 3. Context of get_archive_srb

3. Conclusions

The rtbackup_srb utility has been running at the
ANF since October of 2004, with over 0.6 Terabytes of
data (dating from April, 2004 onwards) backed up in the
SRB. This encompasses over 265,000 individual files
representing slightly over 1.3 million seismic waveform
segments, as well as version-stamped daily snapshots of
all the database tables representing seismic processing
information (seismic arrival detections, located earthquake
hypocenters, etc.). The archived files and databases, along
with the get_archive_srb utility, have already proven
useful on more than one occasion to contribute to robust
ANF operations. Please direct any technical questions or
f e e d b a c k t o K e n t G . Lindquist,
k e n t @ l i n d q u i s t c o n s u l t i n g . c o m .

57

4. Acknowledgments

This work and the ROADNet project are sponsored by
grants from the National Science Foundation (OCE-
0121726), the Office of Naval Research (N00014-98-1-
0772), and with matching funds from the California
Institute of Telecommunications and Information
Technology, Scripps Institution of Oceanography, San
Diego State University, and the Cecil H. and Ida M.
Green Institute of Geophysics and Planetary Physics. We
thank Breck Betts for assistance with the figures for
rtbackup_srb and get_archive_srb. Figure 1 is courtesy of
the USArray web-site [2]. Some of the material in this
paper was presented in poster form at the 2005 meeting of
the Seismological Society of America, Incline Village,
Nevada [8].

References

[1] http://www.earthscope.org
[2] http://www.iris.iris.edu/USArray/
[3] http://www.anf.edu/
[4] http://www.brtt.com/
[5] J. Anderson, W.E. Farrell, K. Garcia, J. Given, and H.

Swanger. “Center for Seismic Studies Version 3
Database: Schema Reference Manual”, Science
Applications International Corporation, Arlington,
Virginia, Technical Report C90-01 (1990), 61 pp.

[6] http://www.iris.iris.edu/USArray/facilities.htm
[7] http://www.sdsc.edu/srb/
[8] K.G. Lindquist, J.A. Eakins, F.L. Vernon, A. Rajasekar

“Near-real-time backup of large seismic waveform
datasets with the Storage Resource Broker.” Seis. Res.
Lett. 76 (2005), 230.

58

Some Tools for Supporting SRB Production Services

R. Downing
CCLRC-Daresbury Laboratory

A. Weise, C. Koebernick
University of Reading

A. Hasan
CCLRC-Rutherford Appleton Laboratory

Abstract*

Providing production-level services requires monitoring
applications, performance and intercepting errors as soon
as they occur. In this paper we describe some of the tools
that have been developed to assist production SRB
services. We describe the approaches used and how they
can be more generally applied.

1. Introduction

The Data Management Group (DMG)[1] is part of the
Council for the Central Laboratory of the Research
Councils (CCLRC) e-science centre [2] and provides data
storage solutions for a large number of e-science projects.
The DMG uses the Storage Resource Broker (SRB) [3] as
the core component for many projects, tailoring the
system to meet the needs of the project. Once a system is
deployed the DMG also provides a level of support for the
service ranging from troubleshooting to responding to
further feature requests and upgrades.

Through the course of developing various SRB
systems we have managed to identify a number of tasks
that appear common and which greatly help in supporting
a production system. In this paper we describe a few of
the tools developed to aid this task.

2. Monitoring Production Servers

Careful monitoring of production servers provides a
number of benefits: aids debugging, provides information
on the distribution of load in the system and provides

* This work has been funded by a range of UK agencies incl. the

e-Science Programmes of the Natural Environmental Research
Council, the Engineering and Physical Science Research Council, the
Council of the Central Laboratory of the Research Councils, the
Biotechnology and Biological Sciences Research Council and the Joint
Information Systems Committee.

information for planning purposes. Troubleshooting and
load balancing require both instantaneous information and
also historic information whereas planning requires only
historic information.

2.1. Ganglia and Nagios Monitoring

Since the SRB system is distributed any monitoring
application must be capable of working with distributed
systems. With this requirement in mind we have selected
Nagios [4] to report instantaneous information on server
properties, such as cpu, machine load, etc. The Nagios
system emails a list of subscribers when any of the
monitored properties of a server go beyond an acceptable
threshold limit as well as reporting when a server is
down.

For the collection of historic information we chose
Ganglia [5]. The Ganglia monitoring system collects a
set of system properties at regular intervals and stores
them in a round-robin database. It is also possible to
monitor additional properties by providing a script to
extract these properties to Ganglia. The system also
provides tools for presenting the information as a series
of web-pages (see figure 1). As we run more than one
SRB server on a given host we needed to make a minor
kludge to allow the same host to appear in more than one
group.

59

Figure 1: Ganglia web page displaying usage for a test
SRB server.

3. Monitoring SRB Server Log Files

Each SRB server writes activity information to a log
file. These log files contain information about which
process, and from which machine, connected to the SRB
server as well as error messages detected by the server
when handling a request. These error messages along with
the time that they occurred are an essential tool in
troubleshooting. It is important to notify administrators
as soon as an error occurs, it is also important to log the
error messages in order to identify chronic problems and
possibly identify patterns.

Any application to monitor the log files would need to
be able to parse the log files for error messages, email to
a subscriber list serious errors and collect in a central
location the error messages for later searches. With these
requirements we decided to build a system in Python to
parse, log and notify when error messages occurred [6].

It is possible that Ganglia could be used to parse the
log files and store the resulting error messages in a central
round-robin database, but we found that the database was
not flexible enough for our queries and we also required
email notification when problems occurred.

The system essentially consists of three components:
a Parser a Collector and a Displayer, figure 1 shows a
simple diagram of how the application works.

Figure 2: A simple schematic showing the log file
parser system.

The Parser is actually an XML-RPC server that is
started on the SRB server host and consists of a method
to parse the SRB log file. The Collector is a daemon that
sends an XML-RPC message to the Parser to parse the
log file. The parser then returns an XML message
containing the error message, line number, date, server
and error message code to the Collector. The Collector
then extracts the information from the XML message and
stores the contents in an SQLite database and sends an
email containing the error message information to a list
of subscribers. The list of SRB servers that the Collector
should contact and the frequency with which to contact
them is read from a configuration file.

The Displayer is used to graphically display the error
messages as a function of server that can help in
identifying potentially chronic problems with a server.
The Displayer can also plot error messages of a particular
type as a function of time that may reveal interesting
patterns that could help troubleshooting. Figure 2 shows
a screenshot of a histogram of error messages for a given
server.

60

Figure 3: Screenshot of the error message numbers
extracted from an SRB log file.

The numbers above the bars correspond to the actual
occurrences of errors with that error number and error
number 999999 corresponds to messages that do not have
an SRB defined error number.
The Parser assumes all messages are error messages
unless the user specifies in a configuration file a pattern
contained in messages that should be ignored. The
approach of assuming every message is an error ensures
that we do not accidentally miss an unusual error
message.

4. Tools for Measuring Performance

Measuring the performance of a system is important
as it helps to determine the capabilities of the system, it
helps to determine bottlenecks in the system and it
provides a means of tuning a system. We have developed
a framework that can be used to run performance tests [7]
and a number of scripts that execute performance tests
using Scommands on an SRB system.

The framework consists of the Ganglia monitoring
system to monitor the SRB server and client application,
an SQLite database to hold the measurements and
Collector collect the results from Ganglia and store them
in the SQLite database. The framework can also display,
in real-time, graphs of the server properties as a function
of time. A Displayer is also provided to graphically
display previous data with the option to overlay previous
performance tests. Figure 3 shows a simple schematic of
the framework.

Figure 4: Schematic of the framework for performance
measurements.

The Ganglia gmond daemons on the client and server
machine are started by the Collector daemon before the
performance tests start. The Collector collects the

monitoring information in the form of XML messages at
periodic intervals, extracts the information from the XML
message and stores it in the SQLite database.
At this point the client application can be started and the
performance measurements are recorded. The Collector
reads from a configuration file the host names and
applications that should be monitored as well as the
interval at which the data should be collected. Figure 4
shows the cpu-load graph produced by the Displayer.In
principle, the framework is not tied to the SRB and can
be used for any application.

Figure 3: Graph of cpu-load produced by the Displayer
application.

In order to measure the performance of an SRB system
we have developed a set of tools based on the
Scommands. The tools are capable of storing information
in the SRB as collections, containers or simply files. The
tools are configurable and can store large numbers of
objects in flat or nested directory structures and are also
capable of producing nested collections. The tools can
also store variable amounts of metadata within the SRB.

61

5. Conclusion

Monitoring a production system is an essential aid in
planning future extensions to the system, it can also be
an essential aid in troubleshooting. Tools to carry out
performance tests and collection, store and present the data
are also important as they provide a means of providing a
references against which the production system
performance can be measured. Such tools can also help in
troubleshooting problems either by comparing the
performance against a benchmark, or simply by
exercising a particular aspect of the system.

In this paper we have described a few of the tools that
we have developed to help our production systems. All
the tools we have developed are extensible as they have to
accommodate new features or aspects of the production
system.

References

[1] h t t p : / / w w w . e - s c i e n c e . c l r c . a c . u k / w e b / g r o u p s / D a t a -
M a n a g e m e n t / D a t a - M a n a g e m e n t

[2] http://www.rcuk.ac.uk/escience
[3] h t t p : / / w w w . s d s c . e d u / s r b
[4] h t t p : / / w w w . n a g i o s . o r g
[5] h t t p : / / g a n g l i a . s o u r c e f o r g e . n e t
[6] A. Weise, M.Sc Thesis (in preparation).
[7] C. Koebernick. M.Sc Thesis (in preparation).

62

Building a Demonstration Prototype for the Preservation of Large-Scale
Multimedia Collections *

Arcot Rajasekar (PI)
Richard Marciano

Reagan Moore
Chien-Yi Hou

Francine Berman (co-PI)
San Diego Supercomputer

Center, Univ. of California, San
Diego

Lynn Burstan (co-PI)
Steve Anderson

Mellisa McEwen
Bee Bornheimer

UCSD-TV, Univ. of California,
San Diego

Harry Kreisler
UCTV-Berkeley

Brian Schottlaender (co-PI)
Luc Declerck

Brad Westbrook
Arwen Hutt

Ardys Kozbial
Chris Frymann

Vivian Chu
UCSD Libraries, Univ. of

California, San Diego

Abstract*

The NSF-DIGARCH is building digital preservation
lifecycle management infrastructure for the preservation of
large-scale multimedia collections. The infrastructure
consists of interfaces to TV production lifecycle systems,
metadata definition and capture systems, and a persistent
archive workflow which preserves the material in a SRB
data grid. Kepler is used to build the workflow.

1. Introduction

The preservation framework development is viewed as
a three part process which needs to interact constantly.
The first part of this framework is the pre-existing video
production lifecycle that should be preserved as much as
possible; the second part is the metadata flow, capture and
modeling framework that needs to be addressed in order to
access, capture and finally preserve the additional material
that is needed to complete the preservation packages, and;
the third part of the framework is the persistent archive
infrastructure and associated workflows [1]. Figure 1
provides a schematic view of this framework.

2. Video Production

For nearly 25 years now, Harry Kreisler has been
conducting interviews as part of the “Conversations with
History” series [2]. Over 230 guests have been
interviewed, including diplomats, statesmen, soldiers,
economists, political analysts, scientists, historians,
writers, foreign correspondents, activists, and artists.
These interviews are one-hour video-taped conversations.

* This research was sponsored the National Science Foundation

and the Library of Congress. Views and conclusions contained in this
report are the authors’ and should not be interpreted as representing
the official opinion or policies, either expressed or implied, of the
Government, or any person or agency connected with them.

This significant “at risk” collection includes video,
audio, text transcripts, web-based material, databases of
administrative and descriptive metadata and contains
diverse types of data, created at multiple stages within the
content production workflow.

Initial “archiving” of the video content has 230
programs in 3 formats:

• digital master files in DV format (.mov files) of
typical size 12GB (compressed)

• UCTV broadcasting file in MPEG format of
typical size 2GB

• Web archive files in Real Player format of
typical size 200 MB

This makes the video content roughly 15GB per show
or 230 x 15GB = 3.5TB for the complete collection.
When preserving this content, we will replicate the
collection in at least two locations, making this a 7TB
persistently archived collection. The video metadata is
stored in a FileMaker Pro 3.0 database at UCSD-TV [3].
Initially, a subset of this database will be exported for
preservation. A dedicated Macintosh machine “eMac” was
set up in the television laboratory at UCSD-TV. This
machine will be used to convert the master tapes to
digital DV format using Final Cut Pro (eventually,
several platforms will be used to convert 2- or 3-way to
speed up the process, as the conversion takes place in
real-time). The eMac has a storage capacity of 183GB
and was augmented with a 500GB external hard-drive. We
also installed a version of Timbuktu Pro for remote
access, the Kepler [4] software and a client version of the
SRB [5].

63

Figure 1. DIGARCH Preservation Framework

3. Metadata and Modeling

A series of modeling exercises of the existing
production workflow were carried out. Two production
workflows are described. The first is for creation and
transfer of the video taped interviews of the CwH
(Conversations with History) program at Berkeley, and its
subsequent transfer to the UC/SD TV broadcast studio,
which eventually broadcasts and webcasts the program.
The second workflow is to model the flow of the audio
transcript of the interview produced by CwH staff. Both
workflows reflect the descriptive, technical, and rights
metadata that needs to be created during the lifecycle of
the interview to successfully manage the interview files
for the long term.

3.1. First Work Flow: Capturing / Preserving
Video of Interview

The interview is taped by UCB staff. The interview is
then described, and the description is forwarded to UCSD-
TV with a digital version of the original taping.

UCTV staff enters the description into their
FileMakerPro database and augments it wherever useful.
UCSD-TV also makes three versions of the original
digital file. The files are an edited DV version, a MPG
version, and a RealPlayer version.

UCSD-TV outputs an XML record containing
preservation descriptive metadata for the interview and
preservation technical metadata for each of the content
files. This forms the first AIP for preservation.

3.2. Second Work Flow: Capturing / Preserving
Transcript of the Video

The interview is transcribed from the video by CwH
staff. CwH staff submits an rtf version of the transcript
file, along with technical metadata for the file, to SDSC
for inclusion in the AIP for the interview.

SDSC verifies the submission and, if all is valid, adds
the transcript file and its technical metadata to the AIP for
the interview.

These workflows are the basis for the following SIP
and AIP models (OAIS-based Submission Information
Package and Archival Information Package).

3 .2 .1 . Submission Information Packages
(SIPs):

The SIP for video data expresses in an XML non-
standard format the metadata for the core production
materials - an edited DV file, a MPEG broadcast file, and
a RealPlayer streaming file.

There are two instances of SIPs. The first is for the
digital video files metadata maintained by UCSD-TV in
its FileMaker Pro database. This SIP includes the

Store/Replicate/
Preserve

Aggregate
AIP/Verify

Make
SIPS

Metadata
DB Capture

Interview
Metadata Capture

Metadata
Validation

Capture
Scripts

SIP/AIP
Definitions

Schema
Generation

Metadata Analysis

Post
Interview

Tran-
scription

Broadcast/
Transfer

InterviewPre-
Interview

TV production Lifecycle

Metadata Definition & Capture Workflow

Persistent Archival Workflow

64

requisite descriptive metadata, technical metadata, and
rights metadata in a non-standard expression for the
interview captured in the corresponding content files.
This SIP can be produced from the UCTV FileMaker Pro
database and delivered, with the video content files,
directly to the digital archive.

The second SIP is for the digital transcript of the
interview, which Conversations with History staff will
submit directly to SDSC. The submission typically will
occur after the first SIP is submitted. However, there is
no requirement that the transcript SIP be submitted
within a certain period of time or that it cannot be
submitted prior to the video SIP, or indeed, even that a
transcript be submitted and included in the final AIP.

The transcript SIP contains the technical metadata for
the transcript file and just enough descriptive metadata
(e.g., UCTV program number) to insure it is properly
integrated with the SIP constructed and submitted by
UC/SD TV.

3 .2 .2 . Archival information Package (AIP)
The SIPs for the metadata are captured in an AIP

expressed as a METS document. The METS wrapper
utilizes standard data formats. The descriptive metadata is
expressed in the MODS schema, the technical metadata
in the PREMIS schema , and the rights metadata in the
MetsRIGHTS schema. The METS wrapper properly
relates the metadata and content files and indicates which
file is the original master, which file contains the
broadcast version and which file contains the web
(streaming) version. For the long view, the METS
allows the content files and their metadata to be
transmitted to other repository and more easily
interoperate with other collection materials should that be
desirable.

The SIP from UCSD-TV can be expressed in the basic
METS schema if that is desirable for the digital
repository. In that case, the CwH SIP would have to be
integrated into it the METS as a PREMIS technical
metadata record for the digital transcript.

At this stage, the SIPs and AIP are draft versions.
There are several matters to address:
• expressing the format name, format version, and

mime type accurately for each content file
• adding metadata to the SIP and / or AIP that the

digital repository requires to fulfill its services
• determining if ARKs shall be used and what agency

will be responsible for minting / applying them

4. Preservation

The preservation of CwH content is based on using
data grid technology to manage distributed data. The

Storage Resource Broker (SRB) is used as the
preservation repository. A central metadata catalog
(MCAT) manages preservation metadata for each video
fi le . A dedicated MCAT instance called
UCTVStudioArchive was set up. Two additional logical
storage resources were registered to store digital video
replicas on SAMQfs (uctv-fs1) and HPSS (hpss-sdsc).
Also, SRB client software and Kepler scientific workflow
software were installed on the eMac machine at UCSD-
TV. Finally, a grid brick (srbbrick7) with 300GB of disk
was configured for the DIGARCH project.

A grid brick [6] is a low-cost commodity disk system
to store electronic records. Copies of the electronic
records can still be kept on a tape archive at SDSC for
minimizing risk of data loss. Grid Bricks are modular
systems that are managed by data grid technology. As
additional storage space is needed, additional grid bricks
can be added to the data grid, and the electronic records can
be automatically distributed across the new storage
modules.

4.1. Kepler Scientific Workflows:

Kepler is an “executable Visio” type program, which
allows you to build a workflow program by dragging and
dropping components, glue them together, and execute
the overall flow. Components can be grid-enabled and
perform grid type operations (put, get, authenticate,
monitor, report, filter, store, discover, etc.) [7].
Scientific Workflows:
• used to combine data integration, analysis, and

visualization steps into larger, automated knowledge
discovery pipelines and grid workflows

• allow the building of models of systems based on the
assembly of pre-designed components

Components:
• actors: encapsulation of parameterized actions

performed on input data to produce output data
(parameters configure and customize the behavior).
Actors can be simple of composite

• ports: actors communicate through interfaces called
ports (ports are connected to one another via
channels)

• director: given an interconnection of actors, the
director controls the execution

A Kepler workflow is being developed for transferring
the legacy video programs from UCSD-TV to the SDSC
Archive. The main transfer operation is an SRB “Sput”
type operation, which accessions content into the
receiving grid brick. Estimates are

65

4.2. Preservation Workflows:

We have developed 4 legacy workflows for managing
the preservation processes. The Legacy Load Workflow
is shown in Figure 2, a Video File Monitor workflow is

shown in Figure 3, and a Safe Delete Workflow is shown
in Figure 4. The workflows are assembled using
composite actors, allowing the creation of quite complex
logic decision processes.

Figure 2. Legacy Load Workflow

Figure 3. Composite Actor for the Video File Monitor

66

Figure 4. Safe-Delete Workflow

5. Acknowledgements

We are working closely with Efrat Jaeger and Ilkay
Altintas from the Kepler group and Lucas Gilbert from
the SRB group (Jargon) and wish to thank them for their
support.

6. Summary

The DigArch project integrates preservation processes
on top of a SRB data grid for long-term preservation
with a Kepler-based workflow system. The unique
aspect of the project is the integration of the preservation
processes into a production workflow.

7. References

1 . ICADL 2005, The 8th International Conference on
Asian Digital Libraries, December 12-15, 2005,
Bangkok, Thailand, “Digital Preservation Lifecycle
Management for Multimedia Collections”, Arcot
Rajasekar, Reagan Moore, Fran Berman, Brian

Schottlaender,
h t t p : / / w w w . i c a d l 2 0 0 5 . a i t . a c . t h / p r o g r a m . h t m

2 . Kreisler, H. “Conversations With History”, UC
Berkeley, Institue of International Studies,
h t t p : / / g l o b e t r o t t e r . b e r k e l e y . e d u / c o n v e r s a t i o n s /

3. UCSD-TV, h t t p : / / w w w . u c s d . t v /

4. Kepler: A System for Scientific Workflows,
http://kepler-project.org/

5 . SRB, Storage Resource Broker, Version 3.1,
h t t p : / / w w w . s d s c . e d u / d i c e / s r b , 2004.

6 . D a t a G r i d s , C o l l e c t i o n s a n d G r i d B r i c k s ,
Arcot Rajasekar, Michael Wan, Reagan Moore,
George Kremenek, and Tom Guptill, 2 0 t h I E E E /
1 1 t h N A S A G o d d a r d C o n f e r e n c e o n M a s s S t o r a g e
S y s t e m s & T e c h n o l o g i e s (M S S T 2 0 0 3) San Diego,
California, April 7-10, 2003.

7 . Developing Data Grid Workflows using Storage
Resource Broker and Kepler, Tim Wong, UC-Davis.
h t t p : / / w w w . t h w o n g . c o m / d o c u m e n t s / S R B _ P a p e r . d o c

67

A Review of SRB Gridbrick Administration *

Geoffrey Avila
Univ. of California, San Diego

avlg@sdsc.edu

Abstract*

We provide some observations about the Storage
Resource Broker gridbricks as a production resource at
SDSC, and speculate about future directions.

1. Introduction

We have run SRB gridbricks [2] at SDSC for nigh on
four years now. Our original test systems, using the then-
new 80GB disk drives and Linux 2.2 kernel software
RAID, have given way to production-quality hardware
using twenty-four disks of 250GB apiece, with dedicated
hardware RAID done at the level of the disk controller.

2. Grid Brick Evolution

The intent of SDSC IT was to manage the gridbrick
systems as we would any other server host; complete
with configuration management via our in-house
authorization system, configuration management via
cfengine [1], a full set of mounts from our NFS servers
(including user home directories, project workspaces, and
third-party software), and centrally managed vendor-
supplied OS patches. All of this was done to present a
more homogenous environment to users and
administrators. The rubrics were to be managed like any
other server, save for the running SRB server process and
the unusually large amount of local storage. At present,
SDSC IT manages twelve SRB storage bricks for the
DAKS group, with capacities between 1 and 5TB each,
for a total of about 32TB in all.

In the past several years of running these systems as a
production resource for the DAKS group, the performance
& capacity of commodity hardware has increased
tremendously. Our fourth–gen gridbricks have nearly five
times the formatted capacity of the first-generation

* This research was sponsored by the NSF SCI0438741 project on

Delivering Cyberinfrastructure from Vision to Real. The views and
conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of the National Science Foundation, the National
Archives and Records Administration, or the U.S. government.

systems. This is a conservative reflection of the order-of-
magnitude increase in hard disk per-spindle capacity, and
the 100% increase in port capacity on high-end RAID
controllers. Likewise, I/O throughput has increased
fivefold by the PC industry move from PCI 2.1 to PCI-X
and PCI-E. This raises the maximum capacity for a 10U
rack mount system to nearly 20TB.

In addition to increases in the capacity of storage
media, the current generation of SATA and SATA-2 disk
drives supports many of the availability features that were
previously common only to SCSI and FC-AL devices.
Hot swapping defective spindles from a degraded array are
one of those features that are essential to high uptime.

Outside of the configuration changes necessary for
SRB use, our gridbricks must live in the same datacenter
environment as any other SDSC server. This means
using electricity, expelling waste heat, and taking up
floor space. The commodity nature of many gridbrick
components means that an aggressive packaging of
system internals in not possible, but the high-end server
case market is sufficiently competitive to ensure that no
6U system should be without externally accessible hot-
swap disk drive pays, or triple-redundant hot-swap power
supplies.

It should also be noted that the processor and
motherboard for a gridbrick could be chosen to maximize
the efficient use of power. Using a slower, less cache-
heavy CPU, can save tens of watts. While having more
memory is always nice, rarely do we find a gridbrick in
normal use to be deep into swap.

At the motherboard level, the most important
consideration is reliability. We buy from reputable
manufacturers, and always validate the model and revision
of critical subsystem components on a particular board
(I/O controllers and Ethernet MACs) with our system
software vendor before purchase.

3. Grid Brick Management

As our experience with gridbricks grew, we began to
notice some subtle differences in the expectations that the
DAKS group had for gridbrick reliability & availability,
compared with the users of our other Linux systems, who

68

are running edge servers or desktop workstations. We
consider local disk on the latter machines to be scratch
space, where if no special provision for backups has been
made, local space can be overwritten or removed. The
local SRB data partitions on the gridbricks are absolutely
inviolate, and must be preserved at all costs. We can
reboot or reinstall system software on most of our Linux
servers and all of our desktops with at most a week’s
worth of warning to users, and often much less than that.
As SRB users worldwide depend on the availability of the
gridbrick-hosted data, downtime must be as short as
possible and cleared weeks in advance.

The changes in system software have been occurring at
a more gradual pace than the changes in hardware. Our
choice of OS for all of our gridbricks has been RedHat
Linux. This was a natural choice, given that the bulk of
SDSC’s production Linux systems are and were RedHat-
based. The RH tools for installation, package
management and patching were all known quantities from
a sysadmin’s perspective. We make heavy use of custom
RedHat Kickstart for network installations, which allows
us to get gigabit speeds from our install media to target
systems, as well as allowing for per-host customization
of disk layout and package selection.

Most of effort involved in maintaining our reference
systems at SDSC is directed towards providing a secure
computing environment. This doesn’t just mean the
absence of intruders or malicious worm software; it is the
assurance that all computers under our control will behave
predictably. In order to guarantee this, we employ a
robust and flexible means of configuration management, a
central database of all user accounts, the heavy use of
secure access technology like ssh and Kerberos, and active
security measures like host-based firewalling, NAT and
Tripwire.

Our means of configuration management is through
cfengine, a high-level language describing the on-disk
state of a system. The cfagent interpreter copies files,
changes permissions, makes symbolic links, removes
temporary files, and runs scripts. The platform-
independent and modular nature of cfengine allows for
detailed yet replicable configuration of machines, from the
most general of categories down to a specific host.
Gridbricks are a class of systems in cfengine, a class that
has some specific customizations unique to its role (such
as the locations and names of the SRB data file systems),
but also inherit from the class of managed hosts in
general and RedHat Linux machines in particular.

SDSC account management ensures that only the
users who need to have access to a system are able to log
in. The system for distributing the /etc/passwd file is
centrally managed, with remote updates to ensure that
only our controlling authority can allow individuals
access to a system.

Patch early and patch often, is IT industry best practice
from a security standpoint. The Linux install on the
gridbricks is liable to almost all of the kernel and userland
vulnerabilities common to such software. RedHat, in the
previous few years has moved from rolling out patches as
they are released to a quarterly schedule for noncritical
patches to software. Critical security patches can be and
often are released at a frequency greater than four times a
year. These patches often require a system restart, forcing
us to choose between running unpatched systems and
compromising the availability of SRB data.

To avoid this, we have made several changes to the
software configuration on several of the gridbricks, and,
should it be successful, we shall make it the standard for
all such systems.

For starters, we only NFS mount a single file system
for the purpose of running configuration management
tools. While cfengine can be started and run as a daemon,
the regular nightly per-machine run mounts, reads from,
and then dismounts the filesystem containing the
configuration data. We have greatly reduced the number of
users with login privileges on the gridbricks, cognizant of
the fact that most critical vulnerabilities found on Linux
systems are “local” exploits, which can only be employed
by someone who already has a valid user account. IT has
made a great investment in hardware One Time Password
devices, which we will issue to users who need shell
access to the gridbricks.

We are employing tcpd and considering the use of
ipfilter on gridbricks, especially ones that may need to
live outside of the predictable SDSC network
environment. Restricting the number of services run on a
gridbrick allows us to trim potential routes of access
down to a minimum. Much of the time, the only two
services that need to be both running and visible to the
outside network is the SRB server itself, and sshd for
remote access.

Every gridbrick IT has maintained since our original
proof-of-concept has deprecated software RAID in favor of
dedicated hardware RAID, in the form of 3ware Escalade
controllers. These controllers require a driver specific to
the running Linux kernel version, as well as a matching
on-card firmware specific to the driver version, and a
utility (web-based or CLI) that schedules maintenance and
alerts administrators of possible problems.

3ware maintains the driver themselves, often rolling in
bug fixes ahead of the driver version in the currently
shipping kernel. It is important to keep the version
numbers of 3ware drivers/firmware/utilities in sync,
something that can easily be undone by upgrading to a
new kernel that may not have the latest vendor driver
included. The symptoms of a mismatch between the
driver and the management utility can at first resemble a
bad disk or array controller, and can lead to I/O timeouts

69

or file system corruption. Proper installation of the
driver, firmware and utility programs through cfengine
has been critical to maintaining stability.

The default file system as used by RedHat can also
lead to difficulties. For ext3 on our RedHat Linux 2.4
servers, the maximum file system size is 4TB; already
too small for the largest possible combinations of disks
and controllers. The selection of different file system
types, while possible, is discouraged. RedHat will only
support ext3 without added cost when using their
Enterprise v.3 product.

We have tested the included, but as-yet unsupported
ReiserFS 3.x file system on some of the gridbricks, with
mixed results. ReiserFS seems to recover from an
unexpected shutdown instantaneously, far better than the
72-hour fsck one can expect when using ext3.

The downside is that ReiserFS is much less tolerant of
misconfigured hardware than ext3. Should a RAID
controller show too much latency on writes, file system
metadata can be irretrievably lost. IT has since begun a
move back away from ReiserFS, as it looks to be
removed completely from shipping versions of RedHat
Linux.

While it is not usually necessary to have conventional
disaster-recovery or archival backups scheduled for data
stored on gridbricks (the SRB software handles this
function internally by replication), it is sometimes
necessary to do bulk data transfer when SRB is not
available. In these cases, we have discovered that many
tools, like tar, cpio, or dump, have limitations on file
size or name length than can make the transfer of data off
gridbricks outside of an SRB session troublesome. For
instance, both the POSIX and GNU tar utilities have hard
limits of 256 characters or less in the pathname of file to
be stored in an archive, and a limit of 8GB on the final
size of an archive[3]. These limits are not usually reached
on desktop systems, but can be hit when dealing with
SRB data volumes with tens of thousands of directories
and gridbricks with hundreds of gigabytes of space to put
them in.

At present, SDSC IT is evaluating new system
software and hardware for future gridbrick systems. We are
looking at new RAID controllers from LSI Logic and
Adaptec. The RAID-6 capability of many new controllers,
where an additional parity block is added to the array,
allows for the simultaneous failure of two spindles
without the loss of data. On a similar note, IT is also
testing Sun’s new Solaris 10 OS and ZFS file system.
The design of ZFS allows for RAID volumes that can be
interrupted during parity write, but not lose stripe data[4].

We would also like to examine possibilities for
storage clustering through the use of network block
device like functionality, which has been mature on
Linux and certain BSD variants for some time now.

While there are limits to the number of disks one can
enclose in even the largest single PC case, it should be
possible to merge via a dedicated high-performance
network a vast cluster of gridbricks, up to petabytes in
size. A builder would be limited not so much by the brick
hardware itself, but by the speed of his or her network and
the environmental and electrical capacity of the datacenter.

4. References

[1] M. Burgess and R. Ralston, Strategies for
Distributed Resource Administration Using
Cfengine, Software-Practice and Experience 27, 1083
(1997)

[2] Data Grids, Collections & Grid Bricks, Arcot
Rajasekar, Michael Wan, Reagan Moore, George
Kremenek, and Tom Guptill, 20th IEEE/ 11th NASA
Goddard Conference on Mass Storage Systems &
Technologies (MSST2003) San Diego CA, April 7-
10th, 2003 pp.5-8

[3] tar(8) manual page
[4] Sun Microsystems, ZFS Administration Guide, Sun

Part#817-2271-2, January 2006, pp.17

70

Performance Optimization of SRB Hardware Configurations

Peter Ashford
Ashford Computer Consulting Service

ashford@accs.com

Abstract

The configurations required for large production
installations of the Storage Resource Broker (SRB) are
discussed. Small installations can use scaled-down
versions of the configurations that will be discussed.

1. About the author

Peter Ashford has been working in the computer field
since 1979. He currently builds custom computer
systems based on off-the-shelf commodity components.
He has worked for Cray Research supporting both
hardware and software maintenance activities at multiple
customer sites. He has been involved with every phase of
the software life-cycle from initial concept to termination.

ACCS has supplied the SRB project with ten SRB
servers and a test SRB MES. In addition, ACCS has
supplied several other projects and organizations with
SRB servers. ACCS also supplies custom systems to
other organizations for use as compute servers, file
servers and high-performance workstations.

2. SRB overview

SRB consists of three components. There’s an SRB
client, an SRB server, and an MCAT-Enabled SRB Server
(MES). The first step in optimizing performance is that
the MES not be used to store datasets, but only to store
and work with the MCAT database. The rest of this paper
will assume that the MES is not used to store SRB
datasets.

The client communicates with both the server and the
MES. When processing user queries, the MES and server
each communicate with the client, and with each other.
In addition, the MES communicates to a database engine,
where the actual query processing is performed.

Due to the limited abilities of current performance
analysis tools under Linux, this paper discusses the
requirements in fairly general terms.

3. Redundancy

The SRB is used to perform many functions. All of
these functions rely on the ability of SRB to store data,
and retrieve it in the original form. This can only be
done reliably if redundancy is used. For maximum
availability and accuracy of production data, some thought
needs to be put into redundancy of the systems and the
data. In a typical large installation, there would be one or
two MES systems, and several server systems. Due to
the different tasks that the SRB systems are required to
perform, different levels of redundancy are required.

Due to the low number of MES systems, they should
have a high level of internal redundancy, in order to
provide maximum availability of user data. An MES
should have hot-swap redundant power supplies, and all
file-systems on it should reside on redundant arrays.

Since the SRB architecture allows a dataset to reside
on multiple SRB servers, the redundancy in those servers
need not be as high as on the MES to maintain excellent
data availability. The power supply and the disk
containing the operating system don’t need to be
redundant. Only the stored data needs to have redundancy.
This is not so much to keep from losing the data, but to
reduce the chance of having to recover the data from
another server. Even with a Gigabit Ethernet network,
transferring the multiple terabytes that often reside on an
SRB server can require a significant amount of time and
network bandwidth (at least 2.5 hours per Terabyte).

When redundant disks are used, a hot-spare is
suggested. This will decrease the window of opportunity
where a second disk failure can cause loss of data.

To reduce down-time of the systems, hot-swap disks
are strongly suggested for any disk.

All SRB servers and MESs should use ECC memory.
This is to reduce the impact of the occasional memory
errors that will occur.

4. Client hardware requirements

The user communication with the SRB is through a
client system. The hardware requirements for this system

71

are minimal. The system must have a network
connection, be able to run the user interface software, and
be able to perform any processing of the data that is
required by the user. The hardware requirements for the
user interfaces are similar to the hardware requirements for
the web browser interface.

5. Server hardware requirements

An SRB server receives file requests from a client or
an MES, reads the requested file from disk, and returns the
file. The type of system that the activities on an SRB
server most closely resemble is a file server. We will
discuss this architecture in this section.

In an SRB implementation, we’re interested in how
quickly an SRB server can deliver stored content to
clients. Several factors limit the ability of an SRB server
to deliver content to clients. These include the I/O bus,
network, CPU and disks.

When a single-processor motherboard is used in a file-
server, the PCI bus often limits the rate at which content
can be delivered to clients. A 32-bit/33MHz PCI bus has
an effective bandwidth of approximately 100MB/S. This
bandwidth is usually shared between the network interface
and the disk controller, giving a limit of approximately
50MB/S of delivered content. A system with a PCI-X
bus for the disk controller and network will have a total
effective PCI-X bandwidth of at least 400MB/S (single
64-bit/66MHz PCI-X bus), and as high as 1600MB/S
(dual 64-bit/133MHz PCI-X buses). Even higher
bandwidths are available when a PCI-Express bus is
used, but the extra bandwidth is rarely required.

Another limit to the rate at which content can be
delivered is the network. Currently available file servers
normally have a single Gigabit Ethernet connection
which limits overall content delivery to approximately
100MB/S. If a higher rate of content delivery is required,
it is possible to use a faster network connection, and hope
that the network infrastructure can keep up, or to use
multiple systems to deliver the content. Single transfers
will not be able to use the full network bandwidth, due to
network latencies. To saturate a Gigabit Ethernet
network connection will normally require at least three
concurrent transfers. Higher bandwidth connections will
require additional connections to saturate them.

Most of the system memory will be used to buffer
disk data. Due to the way SRB data is retrieved and used,
there will normally be little or no reuse of data in the
system buffers. This gives us a relatively small memory
requirement. In general, 1GB of memory is adequate for
an SRB server. Larger memory (up to 2GB) may be of
use if high transfer rates are required.

For maximum performance, the CPU and disk
subsystem need only be fast enough to keep up with the

network. The principal usage of CPU cycles is TCP/IP
encapsulation, which can be done only as fast as memory
can deliver data to the CPU. Because SRB uses packet
sizes of up to 1MB, a cache of less than 2MB will have
little impact on peak network performance. If the cache
size is 4MB or larger, the encapsulation process can be
performed entirely within cache, significantly speeding up
the process.

In addition, when the data is encrypted prior to transfer,
additional CPU time is required. The encryption process
is almost as fast as the encapsulation process, as the CPU
cache provides a significant speedup to the process,
allowing it to run at CPU speed, instead of at memory
speed.

It should be noted that any modern high-performance
CPU will be able to encapsulate data at the speeds
required for a single Gigabit Ethernet connection,
requiring no special processing. When more network
bandwidth is available, or where a large portion of the
data is encrypted prior to transfer, it might be necessary to
use special processors, or multiple processors, to
maximize data delivery.

The disk sub-system is the most likely real limit that
will be encountered. When multiple transfers are being
performed, the disk subsystem must seek between the
individual datasets. With small datasets, seeks are likely
to limit the overall throughput. For large datasets, the
SRB server software reads in enough data in a single read
to counteract the seek time.

In order to provide reliable data storage, SRB server
system data should be stored in a redundant manner. The
I/O pattern (large I/Os, mostly read) on an SRB server
system is well suited to use with RAID levels 5 and 6.
To decrease the interference between multiple transfers, it
may be useful to have multiple arrays in the system.

Currently available SATA disks are fast enough to
provide reasonable throughput on an SRB server. The
reliability of the latest data-center versions of the SATA
disks is similar to the reliability of the latest SCSI disks.
Specifically, the Seagate NL35 series and the Western
Digital RAID Edition series both have a 5-year warranty.
In addition, both of the above series are specified with an
MTBF of at least 1 million hours, and an error rate of 1
per 1014 bits. This can be compared to an error rate of 1
per 1015 bits for the newest SCSI and Fiber Channel
disks, and the Western Digital Raptor series of SATA
disks.

Although the SATA drives are reliable, the SATA
interconnects aren’t. The standard SATA connector is
easily pulled out of it’s socket. It can come loose during
shipping, while the system is being worked on, and it can
even come loose due to the system vibrations. This
problem can be corrected by using MultiLane backplanes
and cables. The connector on the end of a MultiLane

72

cable has a positive latching mechanism, so that the cable
won’t come loose easily. The MultiLane cable also
carries the signals for four disks, reducing the cable clutter
within the system.

6. MES hardware requirements

An SRB MES receives SRB queries from a client,
locates the appropriate matches in the SRB servers that it
controls, and sends that metadata, including the file name
and SRB server identification, to the client. The type of
system that the activities on an MES most closely
resemble is a database server, and is the architecture that
will be discussed here.

In an SRB implementation, we’re interested in the
number of queries that can be satisfied in a given period
of time. Since an SRB MES typically controls many
SRB servers, it is possible to have a significant number
of queries coming into an SRB MES. An SRB query,
like any database query, can be simple to satisfy, or can
require a large amount of work to satisfy. In order to
satisfy these queries in a reasonable period of time, the
SRB MES must be able to respond to the average
complex query in about a second. If this level of
response can be achieved, and there are no undue delays in
the SRB server, the SRB system as a whole will appear
to the user to be very responsive. Any delay in the
ability of an MES to generate a response will translate
directly to a delay in the responsiveness of the SRB
system as a whole.

Like other database servers, there is a significant
memory requirement for caching the database. With a 32-
bit CPU, the limit to the memory size of the database
engine is normally 3GB. When 64-bit CPUs are used,
the memory that can be used by the database engine
expands significantly. Fortunately, the database engine
used by the SRB rarely requires more than 1GB of
memory for optimum performance.

When a query is searching the contents of the metadata
for a matching string, a large amount of CPU power is
required. Unfortunately, the maximum performance of a
CPU in searching through data is limited by the memory
interface bus, as the CPU has virtually no reuse of the
searched data before the cache is flushed. For this reason,
multi-CPU systems, with the fastest possible memory
interconnect, are appropriate for an SRB MES. Multi-
core processors are of marginal use here, as the memory
bandwidth is not increased with the second core.

When choosing a CPU architecture, there will be
some temptation to use a 64-bit processor, as the database
benchmarks are usually significantly better than with 32-
bit processors. Unfortunately, some of the code in the
64-bit releases of Linux isn’t 64-bit clean yet. This
situation is currently improving, and should be resolved

shortly. In addition, the MES hasn’t yet been tested on
either a 64-bit Linux of 64-bit Windows platform. What
this boils down to is that although it’s safe to use a 64-
bit commodity processor, it’s not yet safe to run them in
64-bit mode as an MES.

Like all database servers, an SRB MES will respond
well to a fast disk subsystem. A large portion of the disk
I/O consists of small random reads. Unfortunately, there
is also a significant amount of small random write
activity. When choosing the RAID level for the disk
subsystem, it is the write I/O pattern that determines the
best possible choice. In this case, RAID-10 is best for
storage of the MES database and temporary files.
Increasing the number of disks in the RAID array will
give a performance improvement. For the operating
system and applications, RAID-1 is the appropriate
choice. For the database transaction log files, RAID-5
may be used, but due to the low storage requirements for
these files, RAID-1 would also be a good choice. Due to
the I/O pattern, the use of RAID-5 or RAID-6 to store the
MES database will have a significant performance
penalty.

In order to maximize the benefit of a good disk
configuration, fast disks should also be used. The
Western Digital Raptor series of SATA disks (10,000
RPM) is an economical choice, but the 15,000 RPM
SCSI or Fiber Channel disks will perform significantly
better, especially in large installations.

When using a commercial DBMS with an MES, it
might be necessary, for fiscal reasons, to have the
database reside on a different system than the MES. If
this is the case, the CPU and memory requirement will be
slightly lessened, and the disk sub-system need not be as
fast. Additionally, it might be useful to use a dedicated
network interface on the MES for communications to the
DBMS system.

7. Lifespan

Experience has shown that a computer system built
from commodity components has a maintainable lifespan
of between three and five years. This is because
compatible replacement components are typically only
available for that period of time. Recent changes in the
market are tending towards shorter availability times for
CPUs and motherboards and longer availability times for
disks.

Budgets should allow for replacement of systems on a
schedule similar to the above mentioned component
availability.

When low-quality components are used in a computer,
the lifespan of the computer is likely to be shorter. An
example of this is that a few years ago, several
motherboard manufacturers changed the brand of capacitor

73

used in the CPU voltage regulator. The result was
motherboards with a life expectancy that was significantly
shorter than normal, but at a slightly lower price.

There are three environmental factors that can help to
maximize the lifespan of a computer. These are: clean
air, cool air, and good power. If the air coming into a
computer isn’t clean, it will cause dust buildup on the
components. This dust will insulate the components, and
increase their operating temperature. In general, the dust
level in the average office is high enough to cause
problems within six months to a year.

Cool air is also useful for extending the life of a
server. If the air temperature entering a computer climbs,
the temperature of all the components in the computer
also climbs. The rule of thumb is that for every five
degrees that the temperature of a computer climbs above
optimal (normally 70-75 degrees), the life expectancy of
that computer will be cut in half. Lowering the intake air
temperature below optimal will have little or no impact
on the life expectancy of a system with reasonable
airflow.

Good power is devoid of surges, spikes, brownouts
and dropouts. These can all be removed by a good UPS.
The reason that these power issues are bad for the lifespan
of a computer is that they stress the power supply. In
addition, power surges and spikes can cause a short-term
increase in the voltage coming from a power supply.
This increase will stress the components of the computer,
shortening its lifespan.

8. Summary

In summary, an SRB server may be configured with
one CPU, small memory (1GB) and a Gigabit Ethernet
network interface. The data storage should be in a
redundant array (RAID-5 or RAID-6), preferably with a
hot-spare. Larger numbers of disks will improve the
performance. Multiple arrays may be used for additional
storage space, and improved performance.

An SRB MES should be configured with multiple
CPUs, large memory (2-4GB), and a Gigabit Ethernet
network interface. The database storage should be in a
redundant array (RAID-10), preferably with a hot-spare.
Larger numbers of disks will improve performance.

74

 SRB Portlet Development for the Grid Portals*

Mary P. Thomas
San Diego State Univ.

mthomas@sciences.sdsu.edu

Tarun Bansal
San Diego State Univ.
tbansal@rohan.sdsu.edu

Tushar Gupta
San Diego State Univ.
tgupta@rohan.sdsu.edu

Akhil Seth
Univ. of Texas at Austin
akhil@tacc.utexas.edu

Dave Thomas
San Diego State Univ.

dthomas@rohan.sdsu.edu

Abstract*

This paper describes the design and architecture of a set
of simple portlets that interface to the SRB services using
the Jargon library and the GridPort toolkit, and the
GridSphere framework. The client side interface has been
enhanced with AJAX architecture. These portlets have
been designed to use either SRB account and passwords,
or the GSI credentials. They have been demonstrated to
work on both TeraGrid and DOE Fusion Grid SRB
Collections.

1. Introduction

Portals are well-established as useful interfaces to
complex, distributed services and are in use by both
commercial and scientific applications [MPT-1]. More
recently, they have emerged as important components in
large scientific applications known as Science Gateways
[TG]. Science Gateways enable entire communities of
users with a common scientific goal to use grids (such as
the TeraGrid) through a common interface and sharing
common information. It is not uncommon for a science
portal to provide access to resource information, job
submission and control, help users build job control
scripts, and provide access to files and to view or
visualize data. As the resources, services, and
computation on grids increases, the need to organize,
classify, search, and store in a distributed manner becomes
an important aspect of most projects.

The Storage Resource Broker (SRB) project from the
San Diego Supercomputer Center (SDSC) is a system of
services that integrate diverse storage resources (e.g.

* This research was sponsored by the National Science Foundation

(grant #12345) and the Department of Energy (Grant #12345). Views
and conclusions contained in this report are the authors’ and should not
be interpreted as representing the official opinion or policies, either
expressed or implied, of the Government, or any person or agency
connected with them

databases, workstations, archival and NFS systems)
behind a virtualized interface [SRB]. Users can customize
the metadata used to query and search their collections.
Portals that interface to data collections via services such
as SRB have the potential to reduce the complexities
associated with data investigations and hence increase
productivity and information distribution and
collaboration.

The architecture, design, and coding examples of a
simple portlet that interfaces to the SRB services are
described in the sections below. The client side interface
has been enhanced with AJAX architecture. These
portlets, based on the Grid Portals Toolkit (GridPort)
[GP4], have been designed to use either SRB account and
passwords, or the GSI credentials. They have been
demonstrated to work on both TeraGrid and DOE Fusion
Grid SRB Collections.

2. Architecture

Portals are deployed on science grids using Java, Perl,
Python and other languages. The Java portlet framework
[PB] has emerged as a key development environment for
grid portals for several reasons. It is component based, so
that user interfaces and experiences can be customized and
web pages can be composed of several portlets. The
portlet components can be shared among projects (since
portlets are standardized). The portlet component
architecture maps well to the services oriented architecture
(SOA) on which the current grid and Web are being based.
Additionally, portlet frameworks allow developers to
utilize the large number of existing libraries, tools, and
services being developed in the commercial, open source
world, which enhances the capabilities of a portal.

The SDSU SRB Portlets discussed in this paper are
written using the GridPort Toolkit (GridSphere
Framework), and follow the classic portlet lifecycle
(initialization, handling of requests/actions, rendering a

75

Figure 1. GridPort 4 Toolkit diagram
depicting the layered architecture and
component services approach.

view, destruction) and employ the JSP (Java Server
Pages) Portlets pattern [JSP-1]. AJAX is used to obtain
local updates to the user interface (no new data/remote
service required) and to help to reduce web page update
lifecycles.

2.1. SRB Technologies

The current set of portlets are based on the NMI R5
release, which contains versions of the Globus Toolkit
and the SRB client software that are interoperable. The
reasons driving this choice are discussed in the
‘Challenges’ section. The portlets use the SRB Jargon
API [JAR] which interfaces to the SRB services using
either SRB authentication or Grid/GSI.

2.2. GridPort Toolkit

The SDSU SRB portlets are designed to work within
the GridPort Toolkit [GP4], which is a major component
of the NMI OGCE software project [OGCE]. The vision
for GridPort 4 is a software package that includes core
portlets, application specific portlets, and portal services
(see Figure 1). GridPort is intended for use by developers
of grid-enabled portals, portlets, and applications.
GridPort is based on the GridSphere framework, and hence
inherits all of the GridSphere capabilities as well [GS].
In GridPort, the portlets expose backend services via
customizable web interfaces that enable personalization of
grid portal user interfaces. GridPort has 3 basic layers: a
Portal Layer, a Service Layer, and a Resource Layer.

In the Portal Layer, there are core Webapp portlets,
which are interfaces to core grid technologies such as
Globus, Condor, SRB, GPIR, etc. Application specific
portlets provide interfaces to specific applications such as
Fusion Grid, Gaussian, NWChem, and NAMD.

The Portal Services Layer is intended to be the
connective glue between the portlets and resources, and
help to increase cohesion between the portlets. Internal
portal services support the portlets at the portal layer by
augmenting their capabilities in an extensible and
reusable way while tying the portlets together in order to
make them more cohesive. The GridPort Information
Repository(GPIR) service is an example of the connective
glue. This is a Web service that allows
content/information providers to insert data into a
database, and web clients to perform queries and pull data
from the service.

The Resources Layer consists of both hardware
(clusters, databases, etc.) and remote grid services such as
the GPIR, SRB or GRAM services. Some of these
services are also standard Web services, etc.

2.3. SRB Portlet Security

GridPort maps portal user accounts to their grid
credentials by using the Open Grid Computing
Environments (OGCE) proxy credential management
service, which retrieves proxy credentials from a
MyProxy service. The internal service then makes that
credential available to all portlets.

The Jargon API includes a GSI authentication
mechanism. The SRB portlet code pulls the credential and
passes this information to the appropriate Jargon method.
Optionally, Jargon can be used to authenticate SRB users
via the proprietary SRB authentication scheme.

2.4. AJAX

The SDSU SRB Portlets follow a modified Model-
View-Controller (MVC) architecture. The use of AJAX
modifies the View aspect of MVC. AJAX stands for
Asynchronous JavaScript and XML [AJAX]. It has an
advantage over standard HTML because it allows
information to be transmitted dynamically between the
client and the server without having to refresh the page.

Standard HTML sends a request to the server, which
processes the request and either returns a static HTML
page or sends the request to a framework (such as a
portlet), or another service. The request is processed,
returned to the server, which creates and returns an HTML
page for the browser to render. When the client has to
retrieve new data from the server the browser has to reload
another HTML file. This can often take time if the
network is slow, the server is overloaded, or the web page
is date intensive. Often, only a small portion of the new
HTML page varies.

AJAX is not based on new or novel technologies, but
is working because of advances and standardization in
browsers, servers, networks, services, etc. AJAX uses

76

XHTML for the data presentation of the view layer, DOM
(Document Object Model) to dynamically manipulate the
presentation, XML for data exchange, and
XMLHttpRequest to create a direct connection between
the browser and the Web server. With AJAX, the web
pages do not need to be updated, just some of the data on
the page. A powerful example of an AJAX application is
the Google Map Search engine page [GM].

[1] SRB Portlet Design & Operation

In this section, the life cycle of the SDSU SRB
Portlets for the case of file upload is described, including
code examples to help clarify the operational states of the
portal. Presenting an in-depth discussion of how portlets
work is outside the scope of this paper, however a
textbook reference on portlets for the interested reader is
[JP]. In this scenario, we assume that the client has
logged in, authenticated to the grid (obtained a credential),
has authenticated to the SRB server (e.g. the TeraGrid),
and is currently sitting in some collection or directory.
Via the browser interface (view), the client chooses “File
Upload.”

Typically, when a new function is selected, a request to
the Web server will result in a new web page being
downloaded. However, with the use of AJAX, in the
SDSU SRB Portlets, this type of interaction is
minimized to only occur when the data being displayed
requires an update. We use AJAX to update and retrieve
new form elements and additional Web page display
information (text, icons, etc). Because AJAX is still a
“new” approach, we chose to conservatively utilize this
feature, and hence limited the scope to updating simple,
common, web page elements.

function fileUploadForm(relativePath) {
 var url = '/srb/AJAXServlet?relativePath=' + relativePath +
 "&requestAction=fileUploadForm&formAction=" +
 document.dummyForm.action;
 loadURL(url);
 }

Next, the request is sent to the AJAX servlet service
running on a Web server:
function loadURL(url) {
// branch for native XMLHttpRequest object
if (window.XMLHttpRequest) {
 req = new XMLHttpRequest();
 req.onreadystatechange = processRequest;
 req.open("GET", url, true);
 req.send(null);
 // branch for IE/Windows ActiveX version
 } else if (window.ActiveXObject) {
 req = new ActiveXObject("Microsoft.XMLHTTP");
 if (req) {
 req.onreadystatechange = processRequest;
 req.open("GET", url, true);
 req.send();
 } } }

Inside the AJAXServlet class, the request for
‘fileUploadForm’ will generate the required HTML to be
returned and to appear on the client’s Web page. Since the
Web page on the browser does not need to be reloaded, the
HTML Form elements appear to be written as if from
local cache:
public class AJAXServlet extends HttpServlet {
public void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 …..
 if (action.equals("fileUploadForm")) {
 res.getOutputStream().println("<h2>File Upload</h2>");
 res.getOutputStream().println("<form
 name=\"fileUploadForm\" action=\"" +
 formAction + "&gs_action=&requestAction=fileUpload\"
 enctype=\"multipart/form-data\" method=\"post\">");
 res.getOutputStream().println("File: <input type=\"file\"
 name=\"fileUploadPath\" size=\"40\">");
 res.getOutputStream().println(" <input
 name=\"submitUpload\" type=\"submit\"
 value=\"Upload\">");
 res.getOutputStream().println(" <input type=\"hidden\"
 name=\"relativePath\" value=\""+ relativePath + "\">");
 res.getOutputStream().println("</form>");
 }
}

The “File Upload” view is a familiar interface to all
web browser users. Once the client has entered the file
name (typically by selecting the ‘Browse’ button which
allows file selection from the users machine), he hits the
‘Submit’ Button. The Request is sent to the Web server,
which registers the event. The event causes the portlet to
invoke its ProcessAction methods (in MVC model, this
Control). Within this method all of the Request data is
filtered and interpreted and a switch block is used to
invoke the correct action and set the mode for the next
request:
public void processAction(ActionRequest request,
 ActionResponse response)
 throws PortletException, IOException
{
 getPrefs(request); //get users SRB prefs
 PortletSession session = request.getPortletSession(true);
 String requestAction =
 request.getParameter("requestAction");
 If (requestAction.equals("fileUpload")) {
 try {
 doFileUpload(request, relativePath);
 }
 catch(Exception e) { … }
 String relativePath =
 (String)session.getAttribute("relativePath");
 session.setAttribute("requestAction", "afterFileUpload",
 PortletSession.APPLICATION_SCOPE);
 response.setPortletMode(PortletMode.VIEW);
 }
}

In the method, doFileUpload, the basic filenames and
paths are set up. The file is uploaded from the clients’

77

Figure 2. Composite image of the SDSU
SRB Portlets demonstrating Directory
Navigation and File Upload from local client
to remote SRB server.

browser when a message is sent to a GridPort common
interface method called FileUploadManager, which gets and
stores the file on the local server:

private void doFileUpload(ActionRequest request,
 String relativePath) throws Exception
{
 // code to set up paths and file names appears here
 String portalFullFileName =
 FileUploadManager.uploadFileToPortal(request);
 ….
 /* upload to srb server */
 boolean actionResult = copyFrom(absolutePath,
 portalFullFileName);
} /* End doFileUpload

Finally, doFileUpload sends a message to the copyFrom

method, which will copy the file from the local web
server system to the remote SRB server using the Jargon
method, copyFrom(file):

private boolean copyFrom(String srbAbsolutePath,
 String localFileName)
{
 try {
 SRBFileSystem srbFileSystem = new
 SRBFileSystem(srbLogin());
 SRBFile srbFile = new SRBFile(srbFileSystem,
 srbHome + "/" + srbAbsolutePath);
 LocalFile file = new LocalFile(localFileName);
 srbFile.copyFrom(file);
 file.delete();
 return true;
 } catch (IOException e) { … }
 //clean up
} // END copyFrom()

Once the file has been transferred to the remote SRB
server, new data for the display must be obtained and so a
new view of the web page is generated. This is invoked
because the ‘afterFileUpload’ action was set earlier.

2.5. Portlet Status

Currently, the SDSU SRB portlets allow users to
perform the following SRB S* commands and functions:
• Collection Browsing (list, change directory)
• File manipulation (rename, delete, copy).
• Directory manipulation (change directory, create new

dir, remove directory.
• View file/document contents
• File upload from local host to SRB server
• File download from SRB server to local host
• Third party file transfer between SRB collection or

FTP servers.

2.6. Installation

The SDSU SRB Portlets are part of the GridPort Toolkit
which uses the GridSphere framework. It can be
downloaded from the GridPort website [GP4]. The
download can either be a full GridPort demo portal, or a
separate WAR file that you install into an existing portal.
The Jargon & GSI jar files can be pulled from SDSC
[JAR]. Since GridPort uses Maven to build projects, the
files will be pulled automatically. To run the portlets you
fire up the portal, obtain a valid credential for the portal
(run the MyProxy portlet), and set the SRB user
preferences (which are saved for later sessions).

2.7. Challenges

Because there are so many versions of the Globus
Toolkit and the SRB servers and clients, installation and
configuration of clients and servers tended to be empirical
and lengthy (note: we did get very good support from the
SRB team). The portals pull certificates from MyProxy
credential services, and those certificates are based on a
certain version of the Globus Toolkit. The SRB servers
run a particular version of the SRB server, and the server
may or may not be GSI enabled. If a project installs the
SRB and then changes to GSI versions, new SRB servers
need to be hosted, which changes the port configuration,
etc. If a portal is accessing multiple SRB’s, then
managing the configuration data can be complex. In
addition, the most current versions of SRB hosted on the
project website is not necessarily compatible with your
grid. As a result, we chose to install the latest NMI stable
release, which included SRB client, and once we did this,
everything worked fine. Although not required to install
the portal, we do recommend that developers install both
Globus and SRB clients, and to develop test scripts to
confirm that basic functions work, that certificates are
valid, etc.

78

3. Conclusions & Future Work

A general, simple SRB portlet has been developed
which provides basic functionality (collection navigation,
file upload/download/transfer, create/deletion, etc.) to any
SRB server. These portlets work on several grids,
including the TeraGrid and the FusionGrid, and use either
the SRB or GSI authentication mechanisms. These
portlets will be integrated into the NMI Open Grid
Computing Environments (OGCE) project [OGCE].

Future plans include an admin interface and inclusion
of more S* commands, as well as an MCAT browser.
These portlets will be released in Feb, 2006 as part of the
GridPortal Toolkit, which is part of the OGCE NMI
release and is scheduled for deployment on the Fusion
Data Grid project [MPT-2]. In addition, the user interface
and design used by the GridPort GridFTP portlets will be
adopted so the GridPort demo portal has a uniform look
and feel. Another area of research will be the use of Java
Server Faces, which will allow clients to make simpler
web pages that will access portal services running on the
Web server. Finally, plans are underway to develop a
portlet that abstracts the nature of the data system behind
the portal so that the user is unaware of whether or not
they are using FTP, SSH, SRB, etc. to access or migrate
files.

References

 [PB] J. Linwood, D. Minter. “Building Portals with the Java
Portlet API.” Published by Apress, 2005.
[TG] TeraGrid Gateways Project. Website last accessed on 1-
Jan-06 at http://www.teragrid.org/programs/sci_gateways/
[GP4] The GridPort Toolkit Project. Website last accessed on
1-Jan-06 at http://www.gridport.net .
[GS] The GridSphere Project. Website last accessed on 1-Jan-
06 at http://www.gridsphere.org
[GM]: Google Map Search Page. Website last accessed on 1-
Jan-06 at http://maps.google.com .
[JSP-1] Jetspeed-1 Portlet Tutorial. Website last accessed on
1-Jan-06 at http://portals.apache.org/jetspeed-
1/tutorial/8/jsp.html
[MPT-1] D. Gannon, G. Fox, M. Pierce, B. Plale, G. von
Laszewski, C. Severance, J. Hardin, J. Alameda, M. Thomas,
J. Boisseau, Grid Portals: A Scientist's Access Point for Grid
Services, GGF Community Practice document, working draft
1, September 2003.
[SRB] SDSC SRB Project. Website last accessed on 1-Jan-06
at at http://www.sdsc.edu/srb .
[JAR] SDSC Jargon Project. Website last accessed on 1-Jan-
06 at at http://www.sdsc.edu/srb/jargon/index.html .
[OGCE] NSF NMI Open Grid Computing Environments
(OGCE) project. Website last accessed on 1-Jan-06 at
http://www.ogce.org .

[MPT-2] M. P. Thomas, J. Burruss, L. Cinquini, G. Fox, D.
Gannon, L. Gilbert, G. von Laszewski, K. Jackson, D.
Middleton, R. Moore, M. Pierce, B. Plale, A. Rajasekar, R.
Regno, E. Roberts, D. Schissel, A. Seth, and W. Schroeder.
Grid Portal Architectures for Scientific Applications.
Accepted for publication in Journal of Physics: Conference
Series, 2005.

79

