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Abstract Let A be an Azumaya algebra of constant rank n2 over a Hensel pair (R, I )
where R is a semilocal ring with n invertible in R. Then the reduced Whitehead group
SK1(A) coincides with its reduction SK1(A/I A). This generalizes a result of Hazrat (J
Algebra 305:687–703, 2006) to non-local Henselian rings.
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Let A be an Azumaya algebra over a ring R of constant rank n2. Then there is an étale faithfully
flat commutative ring S over R which splits A, i.e., A⊗R S ∼= Mn(S). For a ∈ A, considering
a ⊗1 as an element of Mn(S), one then defines the reduced characteristic polynomial of a as

charA(x, a) = det(x − a ⊗ 1) = xn − Trd(a)xn−1 + · · · + (−1)nNrd(a).

Using descent theory, one can show that charA(x, a) is independent of S and the isomorphism
above and lies in R[x]. Furthermore, the element a is invertible in A if and only if Nrd A(a),
the reduced norm of a, is invertible in R (see [10, III.1.2], and [14, Theorem 4.3]). Let
SL(1, A) be the set of elements of A with the reduced norm 1. Since the reduced norm map
respects the scalar extensions, it defines the smooth group scheme SL1,A : T → SL(1, AT )

where AT = A⊗R T for an R-algebra T . Consider the short exact sequence of smooth group
schemes

1 −→ SL1,A −→ GL1,A
Nrd−→ Gm −→ 1

where GL1,A : T → A∗
T and Gm(T ) = T ∗ for an R-algebra T and A∗

T and T ∗ are invertible
elements of AT and T , respectively. This exact sequence induces a long exact sequence

1 −→ SL(1, A) −→ A∗ Nrd−→ R∗ −→ H1
et (R,SL(1, A)) −→ H1

et (R,GL(1, A)) → · · ·
(1)
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296 R. Hazrat

Let A′ denote the commutator subgroup of A∗. One defines the reduced Whitehead group
of A as SK1(A) = SL(1, A)/A′ which is a subgroup of (non-stable) K1(A) = A∗/A′. Let
I be an ideal of R. Since the reduced norm is compatible with extensions, it induces the
map SK1(A) → SK1(A), where A = A/I A. A natural question arises here is, under what
circumstances and for what ideals I of R, this homomorphism would be injective and/or sur-
jective and thus the reduced Whitehead group of A coincides with its reduction. The following
observation shows that even in the case of a split Azumaya algebra, these two groups could
differ: consider the split Azumaya algebra A = Mn(R) where R is an arbitrary commutative
ring (and n > 2). In this case the reduced norm coincides with the ordinary determinant and
SK1(A) = SLn(R)/[GLn(R),GLn(R)]. There are examples such that SK1(A) �= 1, in fact
not even torsion. But in this setting, obviously SK1(A) = 1 for A = A/m A where m is a
maximal ideal of R (for some examples see [13, Chap. 2]).

If I is contained in the Jacobson radical J (R), then I A ⊂ J (A) (see, e.g., [4, Lemma 1.4])
and (non-stable) K1(A) → K1(A) is surjective, thus its restriction to SK1 is also surjective.

It is observed by Grothendieck [5, Theorem 11.7] that if R is a local Henselian ring
with maximal ideal I and G is an affine, smooth group scheme, then H1

et (R,G) → H1
et

(R/I,G/I G) is an isomorphism. This was further extended to Hensel pairs by Strano [15].
Now if further R is a semilocal ring then H1

et (R,GL(1, A)) = 0, and thus from the sequence
(1) we have the following commutative diagram:

(1 + I A)A′/A′ ��

��

1 + I

��
1 �� SK1(A) ��

��

K1(A)
Nrd ��

��

R∗ ��

��

H1
et (R,SL(1, A)) ��

∼=
��

1

1 �� SK1(A) �� K1(A)
Nrd ��

��

R
∗ ��

��

H1
et (R,SL(1, A)) �� 1

1 1
(2)

The aim of this note is to prove that for the Hensel pair (R, I ) where R is a semilocal ring,
the map SK1(A) → SK1(A) is also an isomorphism. This extends a result of [6] to non-local
Henselian rings.

Recall that the pair (R, I ) where R is a commutative ring and I an ideal of R is called a
Hensel pair if for any polynomial f (x) ∈ R[x], and b ∈ R/I such that f (b) = 0 and f

′
(b)

is invertible in R/I , then there is a ∈ R such that a = b and f (a) = 0 (for other equivalent
conditions, see Raynaud [12, Chap. XI]).

In order to prove the statement, we use a result of Vaserstein [17] which establishes the
(Dieudonnè) determinant in the setting of semilocal rings. The crucial part is to prove a
version of Platonov’s congruence theorem [11] in the setting of an Azumaya algebra over a
Hensel pair. The approach to do this was motivated by Suslin in [16]. We also need to use
the following facts established by Greco in [3,4].

Proposition 1 [4, Prop. 1.6] Let R be a commutative ring, A be an R-algebra integral over
R and finite over its center. Let B be a commutative R-subalgebra of A and I an ideal of R.
Then I A ∩ B ⊆ √

I B.
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Corollary 1 [3, Cor. 4.2] Let (R, I ) be a Hensel pair and let J ⊆ √
I be an ideal of R. Then

(R, J ) is a Hensel pair.

Theorem 1 [3, Th. 4.6] Let (R, I ) be a Hensel pair and let B be a commutative R-algebra
integral over R. Then (B, I B) is a Hensel pair.

We are in a position to prove the main theorem of this note.

Theorem 2 Let A be an Azumaya algebra of constant rank n2 over a Hensel pair (R, I )
where R is a semilocal ring with n invertible in R. Then SK1(A) ∼= SK1(A) where A =
A/I A.

Proof Since for any a ∈ A, Nrd A(a) = Nrd A(a), it follows that there is a homomorphism
φ : SL(1, A) → SL(1, A). We first show that ker φ ⊆ A′, the commutator subgroup of A∗.
In the setting of valued division algebras, this is the Platonov congruence theorem [11]. We
shall prove this in several steps. Clearly ker φ = SL(1, A) ∩ 1 + I A. Note that A is a free
R-module (see [1, II, Sect. 5.3, Prop. 5]).

(i) The group 1 + I is uniquely n-divisible and 1 + I A is n-divisible.
Let a ∈ 1 + I . Consider f (x) = xn − a ∈ R[x]. Since n is invertible in R, f (x) =

xn − 1 ∈ R[x] has a simple root. Now this root lifts to a root of f (x) as (R, I ) is a
Hensel pair. This shows that 1 + I is n-divisible. Now if (1 + a)n = 1 where a ∈ I , then
a(an−1 + nan−2 + · · · + n) = 0. Since the second factor is invertible, a = 0, and it follows
that 1 + I is uniquely n-divisible.

Now let a ∈ 1 + I A. Consider the commutative ring B = R[a] ⊆ A. By Theorem 1,
(B, I B) is a Hensel pair. On the other hand by Proposition 1, I A ∩ B ⊆ √

I B. Thus by
Corollary 1, (B, I A ∩ B) is also a Hensel pair. But a ∈ 1 + I A ∩ B. Applying the Hensel
lemma as in the above, it follows that a has a n-th root and thus 1 + I A is n-divisible.

(ii) Nrd A(1 + I A) = 1 + I .
From compatibility of the reduced norm, it follows that Nrd A(1 + I A) ⊆ 1 + I . Now

using the fact that 1 + I is n-divisible, the equality follows.
(iii) SK1(A) is n2-torsion.
We first establish that NA/R(a) = Nrd A(a)

n . One way to see this is as follows. Since A is
an Azumaya algebra of constant rank n2, i : A ⊗ Aop ∼= EndR(A) ∼= Mn2(R) and there is an
étale faithfully flat S algebra such that j : A ⊗ S ∼= Mn(S). Consider the following diagram

A ⊗ Aop ⊗ S
i⊗1 ��

��

EndR(A)⊗ S
∼= �� EndS(A ⊗ S)

∼= �� Mn2(S)

ψ

��
Aop ⊗ A ⊗ S

1⊗ j �� Aop ⊗ Mn(S)
∼= �� Mn(Aop ⊗ S)

∼= �� Mn2(S)

where the automorphism ψ is the compositions of isomorphisms in the diagram. By a
theorem of Artin (see, e.g., [10, Sect. III, Lemma 1.2.1]), one can find an ètale faithfully
flat S algebra T such that ψ ⊗ 1 : Mn2(T ) → Mn2(T ) is an inner automorphism. Now the
determinant of the element a ⊗ 1 ⊗ 1 in the first row is NA/R(a) and in the second row is
Nrd A(a)

n and since ψ ⊗ 1 is inner, thus they coincide.
Therefore if a ∈ SL(1, A), then NA/R(a) = 1. We will show that an2 ∈ A′. Consider the

sequence of R-algebra homomorphism

f : A → A ⊗ Aop → EndR(A) ∼= Mn2(R) ↪→ Mn2(A)
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298 R. Hazrat

and the R-algebra homomorphism i : A → Mn2(A) where a maps to aIn2 , where In2

is the identity matrix of Mn2(A). Since R is a semilocal ring, the Skolem–Noether theo-
rem is present in this setting (see [10, Prop. 5.2.3]) and thus there is g ∈ GLn2(A) such
that f (a) = gi(a)g−1. Also, since A is a finite algebra over R, A is a semilocal ring.
Since n is invertible in R, by Vaserstein’s result [17], the Dieudonnè determinant extends
to the setting of Mn2(A). Taking the determinant from f (a) and gi(a)g−1, it follows that

1 = NA/R(a) = an2
ca where ca ∈ A′. This shows that SK1(A) is n2-torsion.

(iv) Platonov’s Congruence Theorem: SL(1, A) ∩ (1 + I A) ⊆ A′.
Let a ∈ SL(1, A) ∩ (1 + I A). By part (i), there is b ∈ 1 + I A such that bn2 = a. Then

Nrd A(a) = Nrd A(b)
n2 = 1. By part (ii), Nrd A(b) ∈ 1 + I and since 1 + I is uniquely

n-divisible, Nrd A(b) = 1, so b ∈ SL(1, A). By part (iii), bn2 ∈ A′, so a ∈ A′. Thus
ker φ ⊆ A′ where φ : SL(1, A) → SL(1, A).

It is easy to see that φ is surjective. In fact, if a ∈ SL(1, A) then 1 = Nrd A(a) = Nrd A(a)

thus, Nrd A(a) ∈ 1+ I . By part (i), there is r ∈ 1+ I such that Nrd A(ar−1) = 1 and ar−1 = a.
Thus φ is an epimorphism. Consider the induced map φ : SL(1, A) → SL(1, A)/A

′
. Since

I ⊆ J (R), and by part (iii), ker φ ⊆ A′ it follows that ker φ = A′ and thus φ : SK1(A) ∼=
SK1(A). �


Let R be a semilocal ring and (R, J (R)) a Hensel pair. Let A be an Azumaya algebra
over R of constant rank n2 and n invertible in R. Then by Theorem 2, SK1(A) ∼= SK1(A)
where A = A/J (R)A. But J (A) = J (R)A, so A = Mk1(D1) × · · · × Mkr (Dr ) where Di

are division algebras. Thus SK1(A) ∼= SK1(A) = SK1(D1)× · · · × SK1(Dr ).
Using a result of Goldman [2], one can remove the condition of Azumaya algebra having

a constant rank from the Theorem.

Corollary 2 Let A be an Azumaya algebra over a Hensel pair (R, I ) where R is semi-
local and the least common multiple of local ranks of A over R is invertible in R. Then
SK1(A) ∼= SK1(A) where A = A/I A.

Proof One can decompose R uniquely as R1 ⊕ · · · ⊕ Rt such that Ai = Ri ⊗R A have
constant ranks over Ri which coincide with local ranks of A over R (see [2, Sect. 2 and
Theorem 3.1]). Since (Ri , I Ri ) are Hensel pairs, the result follows by using Theorem 2. �

Remark Let D be a tame unramified division algebra over a Henselian field F , i.e., the value
group of D coincides with value group of F and char(F) does not divide the index of D (see
[18] for a nice survey on valued division algebras). Let VD be the valuation ring of D and
UD = V ∗

D . Jacob and Wadsworth observed that VD is an Azumaya algebra over its center
VF (Theorem 3.2 in [18] and Example 2.4 in [8]). Since D∗ = F∗UD and VD ⊗VF F � D,
it can be seen that SK1(D) = SK1(VD). On the other hand our main Theorem states that
SK1(VD) � SK1(D). Comparing these, we conclude the stability of SK1 under reduction,
namely SK1(D) � SK1(D) (compare this with the original proof, Corollary 3.13 in [11]).

Now consider the group CK1(A) = A∗/R∗ A′ for the Azumaya algebra A over the Hensel
pair (R, I ). A proof similar to Theorem 3.10 in [6], shows that CK1(A) ∼= CK1(A). Thus in
the case of tame unramified division algebra D, one can observe that CK1(D) ∼= CK1(D).

For an Azumaya algebra A over a semilocal ring R, by the exact sequence (1), one has

R∗/Nrd A(A
∗) ∼= H1

èt(R,SL(1, A)).

If (R, I ) is also a Hensel pair, then by the Grothendieck-Strano result,

R∗/Nrd A(A
∗) ∼= H1

èt(R,SL(1, A)) ∼= H1
èt(R,SL(1, A)) ∼= R

∗
/Nrd A(A

∗
).

123



SK1 of Azumaya algebras over Hensel Pairs 299

However specializing to a tame unramified division algebra D, the stability does not follow
in this case. In fact for a tame and unramified division algebra D over a Henselian field F with
the valued group �F and index n one has the following exact sequence (see [7, Theorem 1]):

1 −→ H1(F,SL(1, D)) −→ H1(F,SL(1, D)) −→ �F/n�F −→ 1.
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