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Abstract

DIAMOND, the UK third generation light source, will
be optimised to produce high brightness radiation from a 3
GeV electron storage ring.  To meet the needs of the user
community it is planned to operate with various fill
structures, including modes with few buckets filled.  This
will require high single and multibunch currents to satisfy
specified brightness requirements, and estimates of
instability thresholds are therefore an important part of the
design process.  We present here results of calculations of
current thresholds for coherent instabilities in the storage
ring, using established models of beam instability.  We
also comment on the influence of phase space diffusion
caused by synchrotron radiation.

1  INTRODUCTION
Third generation light sources exhibit various types of

instability that affect the quality of the beam or the
brightness that can be achieved.  The instabilities
generally arise from impedance in the machine, as the
motion of charged particles through the storage ring
generates electromagnetic fields that act back on other
particles.  The thresholds at which various types of
instability are seen depend on a number of lattice
parameters.  Here, we consider the most recent
DIAMOND storage ring lattice [1], with relevant
parameters given in Table 1.  We have assumed that the
RF is configured to give an energy acceptance of 4%, and
the energy loss per turn resulting from insertion devices is
820 keV.

In this paper, we consider the effects of potential-well
distortion, and single and mutlibunch instabilities.  We
give a brief discussion of each effect, and apply standard
analytic formulae to find the relevant current thresholds
for the present DIAMOND lattice. We also present the
results of longitudinal tracking of coherent bunch
oscillations in the presence of a higher harmonic RF
system, using a model that incorporates quantum
radiation.

2  SINGLE BUNCH INSTABILITIES
The short range wakefield of a single bunch, acting

only over a time period of the order of a bunch length, is
generally associated with low quality-factor resonating
structures within the ring.  We therefore consider only the
action of broad-band and resistive wall impedances on a
single bunch, which are expressed for the longitudinal
direction as
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respectively [2].  In both these cases the transverse and
longitudinal impedances are approximately related by [2]:
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In these expressions, bcr βω =  is the beam pipe cut-off

frequency, β  is the relativistic velocity, 0µ  is the

permeability of free space, and 0Z  is the impedance of

free space (377 Ohms).

 Table 1: Parameters used in instability calculations.

 Broadband shunt impedance  sR  6300 Ω
 Beam pipe radius  b  25 mm
 Vacuum vessel conductivity  σ  1.69 106 Ω-1

 Design current  0I  300 mA

 Design energy  0E  3 GeV

 Phase slip factor  η  1.60 10-4

 Synchronous phase  sφ  2.56 rad

 Revolution frequency  0ω  3.85 106 s-1

 Machine circumference  C  489.24 m
 RF harmonic number  h  816

 RF amplitude  rfV  3.34 MV

 Natural bunch length  0τσ  9.08 10-12 s

 Natural energy spread  0δσ  9.61 10-4

 Betatron tunes  yx QQ ,  28.9, 10.7

 Synchrotron tune  sQ  0.00440

 Beta functions at RF cavities  yx ββ ,  10.0, 10.0 m

 Transverse damping times  yx ττ ,  9.8, 9.8 ms

 Longitudinal damping time  sτ  4.9 ms

2.1  Potential Well Distortion

The wakefields of a single Gaussian bunch modify the
single particle longitudinal equation of motion [2].  This
results in a direct change in the synchrotron oscillation
frequency, and also an indirect change through a variation
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of the synchronous phase.  The equilibrium energy spread
of particles is unaffected, so the bunch length remains
inversely proportional to the synchrotron frequency.  The
ratio of the bunch length extended by this effect, τσ , to

the natural bunch length, 0τσ , is given by
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where bI  is the single bunch current.  Using the values
presented in Table 1, we find the ratio of bunch length to

the natural bunch length is 1.016.

2.2  Fast Head-Tail Instability

To model the effect of the wakefield from the head of
the bunch on the tail, we split the bunch into two
macroparticles executing synchrotron and betatron
oscillations [3].  By causality, particles in the tail of the
bunch cannot affect the head, whose transverse motion is
simply represented by betatron oscillations; particles in
the tail execute oscillations driven by wakefields from the
head.  A phase space map may be written down that takes
into account the interchange of the roles of head and tail
every half a synchrotron period.  Applying a stability
condition to the map gives the beam stability condition
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where bI  is the bunch current.  Above threshold, the

driven oscillations become unstable, and current is lost
from the bunch.  Using the values from Table 1 we find
the bunch current limit for stability against the fast head
tail effect is 45 A.

2.2 Head-Tail Instability

If the effects of chromaticity are included in the model
for the fast head-tail effect, we find a chromaticity-
dependent stability condition:
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Correction of the chromaticity to zero (achieved by use of
sextupole magnets in the lattice) prevents the onset of
head tail instability in the beam.

2.3 Longitudinal Microwave Instability

A coasting beam model is set up, with the assumption
that the spatial density of particles is constant but for a
small sinusoidal perturbation; the Vlasov equation then
leads to a dispersion relation [2] that gives the coherent
frequency shift for the perturbation.  For a given beam
current the perturbation will grow exponentially unless the
complex impedance at the frequency of the perturbation is
within certain bounds.  The coasting beam result is
applied to a bunched beam by replacing the total current
with the peak current, which may be easily related to the
bunch current.  We thus arrive at the condition for
stability against the longitudinal microwave effect
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Using the values presented in Table 1 we find that the
threshold bunch current is 16.6 ��� � ��� ��� �	
��� ���� ��

above expression that above threshold, the momentum
spread, and hence the bunch length, varies as 31

bI .  For a

total current of 300 mA, the bunch length is increased by
a factor 2.8.  Taking account of SPEAR scaling raises the

threshold peak current by a factor of 68.1)( τσcb  [4] and

no bunch lengthening would be expected at 300 mA.

3  MULTIBUNCH INSTABILITIES

3.1 Longitudinal Multibunch Instability

Our calculations are based on a model consisting of a
number of rigid, identical bunches equally spaced around
an accelerator [3].  The longitudinal equation of motion of
a particular bunch in the presence of impedance is written
down.  Only the contribution of the higher order modes of
the RF system to the impedance are considered, since
wakefields from any other source will have damped to
zero between the passage of two bunches.  Solving the
equation of motion reveals that the coherent oscillations
will grow exponentially unless
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in which case the oscillation is damped by the effects of
synchrotron radiation.  In this expression homR  and homω
are the shunt impedance and frequency of a higher order
mode of the RF cavities.  Using the values presented in
Table 1 and the most recent proposal for the DIAMOND
RF system [5], where the maximum value of homhomωR

for a single cavity is 1.15 1013 Ωs-1, and assuming use of
six cavities, we find a total current threshold of 3 A.
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3.2 Transverse Multibunch Instability

A similar model is used to that applied to the analysis
of longitudinal multibunch instabilities, and in this case
leads to the stability condition

( )
⊥⊥

<
βωτ

π
hom0

0

4

R
I e

E
.

Using the values in Table 1 and the same RF system as for
the longitudinal case, with the maximum value of homR  at

48.2 kΩ m-1 per cavity, and again assuming six cavities,
this gives a threshold of 346 mA.  However, because of
the simple model used to derive the above expression, it is
usual to allow a factor of 2 to 3 as a safety margin.
Inspection of the RF system impedance, shown in Figure
1, suggests that transverse feedback operating between
0.85 and 2.2 GHz may be required to ensure a stable beam
at 300 mA.

0.E+00

1.E+05

2.E+05

0.0E+00 2.5E+09 5.0E+09

Frequency (Hz)

0.E+00

1.E+05

2.E+05

3.E+05

Longitudinal Impedance

Longitudinal Threshold

Transverse Impedance

Transverse Threshold

L
on

gi
tu

di
na

l I
m

pe
da

nc
e 

(O
hm

s)
  

T
ra

ns
ve

rs
e 

Im
pe

da
nc

e 
(O

hm
s/

M
et

re
)

Figure 1: Impedance of the DIAMOND RF system and
threshold impedances for multibunch instability [5].

4  LONGITUDINAL DAMPING
It is possible that higher harmonic RF cavities will be

used in DIAMOND to introduce bunch lengthening and
thus increase the Touschek lifetime.  Longitudinal
tracking has been carried out to study the damping of
coherent oscillations in the presence of 702 kV of third
harmonic RF (this increases the bunch length by a factor
of 4.5).  A bunch of 104 electrons was placed with its
centre 0.25 ns from the synchronous point and tracked
through many turns.  The decay in the amplitude of the
oscillation of the bunch centre about the synchronous
point is plotted in Figure 2.

Without harmonic RF, the offset bunch executes
synchrotron oscillations with exponentially decaying

amplitude about the synchronous point.  In the presence of
harmonic RF the synchrotron oscillation frequency
becomes amplitude dependent.  Thus the offset bunch
becomes stretched into a spiral about the synchronous
point.  As the entire bunch is wrapped around the origin
the mean offset is greatly reduced.  Phase space diffusion
eventually blurs the structure of the spiral.  A harmonic
RF system increases the damping of coherent oscillations
and must therefore raise the threshold current for
longitudinal coherent instabilities.
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Figure 2: Graph showing the decay of a coherent
oscillation both with and without higher harmonic RF.

5  CONCLUSION
The calculations presented in this paper give confidence

to the performance of DIAMOND, though it may be that
transverse feedback will be required to counter transverse
multibunch instabilities.  Use of higher harmonic RF to
cause bunch lengthening is expected to significantly raise
the thresholds for longitudinal instability.  Further modes
of instability have yet to be investigated (e.g. transverse
fast blow-up), and it is intended that numerical
simulations will be carried out to verify the predictions of
analytic formulae.
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